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ARTICLE INFO ABSTRACT

Keywords: Streptococcus agalactiae (Strep. agalactiae) and Staphylococcus aureus (Staph. aureus) are originally regarded as
Latent class analysis contagious mastitis pathogens, however, both pathogens have recently been isolated from extramammary and
Mastitis environmental sites, indicating that other sites than the udder might contribute to the spread of these pathogens

Polymerase chain reaction
Sensitivity
Specificity

potentially causing intramammary infections. Diagnostic tools to identify pathogens at extramammary sites are
available but still needs to be validated. The objective of this cross-sectional field study was to estimate the
diagnostic sensitivity (Se) and specificity (Sp) of the commercially available Mastit4 qPCR assay and bacterial
culture (BC) in identifying Strep. agalactiae and Staph. aureus from milk and teat skin samples. We randomly
selected 30-40 cows with high somatic cell counts from eight Danish Strep. agalactiae-positive dairy herds with
automatic milking systems. Teat skin samples and aseptic milk samples were collected from right rear quarters
(n = 287) for BC and PCR analysis. Se and Sp were estimated in a Bayesian latent class analysis. For milk
samples, the Se and Sp of qPCR for Strep. agalactiae were estimated to 0.97 and 0.99, respectively, whereas the Se
and Sp of BC were 0.41 and 1.00, respectively. The Se and Sp of qPCR for Staph. aureus were estimated to 0.95
and 0.99, respectively, whereas the Se and Sp of BC were 0.54 and 0.77, respectively. For teat skin samples, the
Se and Sp of qPCR for Strep. agalactiae were estimated to be 0.97 and 0.96, respectively, whereas the Se and Sp of
BC were 0.33 and 1.00, respectively. The Se and Sp of qPCR for Staph. aureus were estimated to 0.94 and 0.98,
respectively, whereas the Se and Sp of BC were 0.44 and 0.74, respectively. In conclusion, the Se for diagnosing
Strep. agalactiae and Staph. aureus IMI was higher for qPCR than BC, suggesting that qPCR is a valuable method
for detecting both pathogens from quarter-level milk samples. The performance of BC in the detection of Strep.
agalactiae and Staph. aureus on teat skin was poor compared to qPCR, indicating that differences in the target
condition of the two methods should be considered when implementing them as routine diagnostic tests for
detecting teat skin colonisers. The low Se of BC may preclude the use of BC for skin testing, and qPCR is better for
this task.

1. Introduction Danish dairy herds (DANMAP, 2016). Therefore, effective control of
mastitis is an important factor in reducing the risk of antimicrobial

Intramammary infections (IMI) are a major economic and public resistance.
health challenge in dairy herds (Keefe, 2012), and the use of antibiotics The contagious udder pathogen Staphylococcus aureus (Staph.
for mastitis treatment constitutes the majority of the total usage in aureus) is widespread in dairy herds, and despite successful control
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efforts to reduce Streptococcus agalactiae (Strep. agalactiae) in
Scandinavian countries during the 20t century (Katholm et al., 2012;
Lyhs et al., 2016), the proportion of positive herds in Denmark and
Norway increased throughout the early 21% century (Katholm et al.,
2012; Mweu et al., 2012; Radtke et al., 2012). The estimated herd-level
prevalence of Staph. aureus and Strep. agalactiae in Denmark, Germany,
Belgium and Canada has been reported at 91% and 7% (Katholm et al.,
2012), 90% and 29% (Tenhagen et al., 2006), 86% and 5.3% (Piepers
et al., 2007), and 74% and 1.6% (Olde Riekerink et al., 2006), re-
spectively.

Although both bacteria are considered contagious pathogens, en-
vironmental reservoirs have been described in the scientific literature
(Haveri et al., 2008; Jgrgensen et al., 2016). Klaas and Zadoks (2017)
added that a faeco-oral transmission cycle may perpetuate and amplify
the presence of Strep. agalactiae within dairy herds, but the importance
of these environmental reservoirs is still being discussed. Furthermore,
it has yet to be determined whether it is primarily milk that is con-
taminating the environment, or if colonisation of extramammary sites
also leads to IML

Advances in the dairy industry have led to larger herds, and auto-
matic milking systems (AMS) became more frequent in the Nordic
countries in the early 21% century (Barkema et al., 2015). Milking hy-
giene and teat cleaning in AMS differ from the conventional milking
system, with more cows per milking unit and no contact with human
hands (Hovinen and Pyorald, 2011; Rodenburg, 2017). This, together
with the environmental reservoir of contagious mastitis pathogens,
could explain why Staph. aureus remains a problem, and why there has
been a re-emergence of Strep. agalactiae in line with an increase in the
proportion of farms using AMS in Denmark (Bennedsgaard and
Katholm, 2013).

Accurate diagnostic tests to detect pathogen-specific subclinical
mastitis are essential in initiating appropriate control efforts (Barkema
et al., 2006; van den Borne et al., 2010), e.g., separating infected from
susceptible animals and establishing other measures to reduce the risk
of spread within and between herds (Barkema et al., 2009). Bacterial
culture (BC) has been considered the reference standard for identifying
mastitis pathogens, but studies comparing the sensitivity (Se) and
specificity (Sp) of real-time PCR and BC for diagnosing IMI with Staph.
aureus or Strep. agalactiae in composite milk samples have suggested a
higher Se for PCR compared to BC (Holmoy et al., 2018; Mahmmod
et al.,, 2013a, 2013b). Furthermore, the bovine teat skin may be an
important reservoir for contagious mastitis pathogens, as the presence
of bacteria on teat skin has been associated with IMI in the same quarter
and bacteria has been found on teat skin in quarters not having IMI,
suggesting that colonisation or contamination of teat skin from sources
other than milk of the same quarter is likely (da Costa et al., 2014;
Svennesen et al., 2018). Furthermore, controlling Staph. aureus and
Strep. agalactiae in large herds without considering the environmental
reservoirs may lead to unsuccessful control and eradication. Therefore,
PCR tests on teat skin or environmental samples could become a useful
tool in controlling Strep. agalactiae and Staph. aureus mastitis.

The objective of this cross-sectional field study was to estimate the
Se and Sp of the commercially available Mastit4 qPCR assay and BC for
the identification of Strep. agalactiae and Staph. aureus in milk and teat
skin samples from high somatic cell count (SCC) cows in AMS herds
positive for Strep. agalactiae. In the absence of a reference test, a
Bayesian latent class analysis (LCA) framework was used.

2. Materials and methods

We followed the guidelines for reporting diagnostic accuracy in
studies that use Bayesian LCA (Kostoulas et al., 2017).

2.1. Study population

Eight dairy herds with Danish Holstein cows were selected for a
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project investigating the epidemiology and diagnostics of Strep. aga-
lactiae, Staph. aureus and non-aureus staphylococci in Danish AMS
herds. Eligible herds had = 3 milking robots and a bulk tank milk PCR
cycle threshold (Ct) value < 32 for Strep. agalactiae. More herd char-
acteristics are presented in Mahmmod et al. (2018). Samples were
collected from the right rear quarters of 30 to 40 lactating dairy cows
from each herd. These cows were randomly selected among those with
a SCC > 200,000 cells/mL at the preceding milk recording, and with
no clinical mastitis or antimicrobial treatment four weeks prior to
sample collection.

2.2. Sample collection

The cows selected for sampling were separated by the farmer and
restrained in headlocks during sampling. Before sampling, the cows
followed their normal milking routine, meaning that the time since last
milking varied from 30 min to approximately 12 h. All herds used post-
milking teat disinfection in the AMS (Mahmmod et al., 2018).

The teats were cleaned with dry paper towels using at least one for
each teat until they were visually clean. The teat skin samples were
taken with the modified wet-dry method (Paduch and Kroemker, 2011)
using a wet and a dry rayon swab (DaklaPack, Glostrup, Denmark) for
each teat. The swabs were rolled 360° around the teat about 1 cm from
the teat canal orifice and were then broken into a corresponding tube
containing 2 mL of % Ringer’s solution (Merck, Darmstadt, Germany).

Quarter-level milk samples were collected directly after the teat skin
swab samples, according to the National Mastitis Council guidelines
(NMC, 1999). In brief, the teat end was disinfected with cotton swabs
soaked in ethanol (70%). Individual quarter foremilk samples were then
aseptically collected in sterile screw-cap plastic tubes. Latex gloves
were worn and were changed after each cow and sampling procedure.
Tubes containing the teat skin and milk samples were stored at a
maximum of 5°C and delivered to the microbiology laboratory within
24 h. All study activities including farm visits, collection of samples and
laboratory examination were carried out between February and May
2017.

2.3. Bacterial culture

Milk samples were vortexed for 10s, and 10 pL was streaked with a
disposable calibrated loop onto a quarter of a plate of each a calf blood
agar (5% sheep blood), a chromogenic agar selective for staphylococci
(SASelect, Bio-Rad, Hercules, CA) and a modified Edward’s medium
(Oxoid, Roskilde, Denmark) supplemented with 5% calf blood and 2%
filtrate of a B-toxin producing Staph. aureus, prepared as described by
Jorgensen et al. (2016).

Teat skin samples were vortexed for 20s, and the swabs were re-
moved with a sterile pair of tweezers before 100 pL of the sample was
inoculated and spread with a Drigalski spatula on a whole plate of calf
blood agar, SASelect medium and modified Edward’s medium. The
plates were incubated aerobically at 37 °C for 48h in total and read
after 24 and 48 h. The approximate number of colony forming units
(cfu) was determined by colony counting.

Colonies of Strep. agalactiae were phenotypically identified on blood
agar and modified Edward’s medium. Suspected colonies were con-
firmed as Strep. agalactiae using latex agglutination for Lancefield group
B (PathoDxtra Strep Grouping Kit, ThermoFisher Scientific, Waltham,
MA) or MALDI-TOF (Bruker Biotyper software system, Microflex LT,
Bruker Daltonics GmbH, Bremen, Germany). Staph. aureus colonies
were phenotypically identified on SASelect medium according to the
manufacturer’s guidelines, and on calf blood agar according to the
National Mastitis Council recommendations (NMC, 1999). Suspected
colony types were confirmed as Staph. aureus using MALDI-TOF. For BC,
a quarter was defined as positive in milk or teat skin if at least one
colony of Staph. aureus or Strep. agalactiae appeared on any of the used
agar plates. This corresponded to a detection limit of 100 cfu/mL for
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milk and 10 cfu/mL for teat skin samples.

2.4. qPCR assay

A FLOQswab (COPAN ITALIA spa, Brescia, Italy) was immersed in
the original milk and teat skin samples immediately after streaking for
BC. The principle of using these swabs were that they would dry out
quickly, thus there was no need for cooling under transport. The swabs
were shipped to the laboratory of DNA Diagnostic A/S on the same day
that BC was performed, for analysis 1 or 2 days later.

The samples were tested using the Mastit4 qPCR assay (DNA
Diagnostic, Risskov, Denmark). The personnel at the laboratory were
blinded to the samples and results of the BC. Ct values were recorded
for each sample, and samples were defined as positive for Staph. aureus
or Strep. agalactiae if the Ct value was < 37.

The approximate volume soaked by the FLOQSwab was 220 pul, and
after DNA extraction and purification steps, this left 18 pl of the original
sample for qPCR analysis, corresponding to 60% of the 3 x 10 pl spread
on plates for milk samples and 6% of the 3 x 100l inoculated on
plates for teat skin samples.

2.5. Statistical analysis

In the absence of a reference standard to classify true cases of IMI
and teat skin colonisation with Strep. agalactiae and Staph. aureus, the
test characteristics (Se and Sp) of qPCR and BC were estimated using a
Bayesian LCA model (Branscum et al., 2005) based on the paradigm
described by Hui and Walter (1980).

The study population was divided into two subpopulations based on
robot type used in the herds from which the cows originated. Robot
type could be considered a risk factor, thus different herd prevalences
were expected. Priors for Staph. aureus were used based on the results
from Mahmmod et al. (2013a), and we considered these to be in-
formative despite them being based on composite milk samples and the
PCR test being from another manufacturer. Priors for Strep. agalactiae
(Se and Sp of BC and PCR) were based on the results from Holmgy et al.
(2018), who used the same PCR test, but composite milk samples. No
prior information on the diagnostic performance of BC or qPCR on teat
skin samples was available, so non-informative priors and the priors
from milk were used. All priors are given in Table 1. For non-in-
formative priors, a Beta(1,1) distribution was used. For informative
priors, the particular prior distribution was created based on the
median and the 95% posterior credibility interval (PCI) reported in the
original publications with the Beta-distributions shown in Table 1.

The model was implemented in the freeware program OpenBUGS,
version 3.2.3, rev. 1012 (Thomas et al., 2006). OpenBUGS uses a
Markov Chain Monte Carlo (MCMC) sampling algorithm to obtain a
Monte Carlo (MC) sample from the posterior distribution. Three chains

Table 1

Priors used for analysis: Median and 95% posterior credible interval (PCI) for
sensitivity (SeqPCR) and specificity (SpqPCR) estimates for qPCR and sensi-
tivity (SeBC) and specifity (SpBC) estimates for bacterial culture for
Streptococcus agalactiae (Holmoy et al., 2018) and Staphylococcus aureus
(Mahmmod et al., 2013a) in composite milk samples.

Pathogen Parameter  Test estimates Probability distribution
Median  95% PCI
Strep. agalactiae SeqPCR 0.93 0.78 - 1.00 Beta(16.3; 1.2)
SeBC 0.39 0.32-0.47  Beta(78; 121)
SpqPCR 0.99 0.95 - 1.00 Beta(94; 1.46)
SpBC 1.00 0.99-1.00 Beta(365; 1.36)
Staph. aureus SeqPCR 0.91 0.74-1.00  Beta(14.3; 1.55)
SeBC 0.52 0.44 - 0.61  Beta(72; 67)
SpgPCR 0.99 0.94 -1.00  Beta(71; 1.35)
SpBC 0.90 0.86 - 0.94  Beta(138; 114)
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were run and the first 10,000 MC samples were discarded as a burn-in
to allow convergence, and the following 20,000 iterations were used for
posterior inference. Convergence of the MCMC chain after the initial
burn-in period was assessed by visual inspection of the time-series plots
of the chains. Posterior inference was based on median and 95% PCI for
the Se and Sp of the two tests, where the PCI was constructed based on
the percentiles of the posterior distributions. An example of the Open
Bugs code is available in Appendix I.

3. Results

In total, 287 quarters with complete observations for qPCR and BC
from milk and teat skin samples were used for the LCA analysis. Results
of cross-tabulation (contingency table) of the dichotomous outcome of
gqPCR and BC for the detection of Strep. agalactiae and Staph. aureus from
Population 1 (robot type 1) and Population 2 (robot type 2) are dis-
played in Table 2. Estimates of the posterior median and 95% PCI of Se
and Sp of qPCR and BC for the detection of Strep. agalactiae and Staph.
aureus are displayed in Table 3.

For milk, the posterior median Se estimates for Strep. agalactiae were
0.97 and 0.41 for qPCR and BC, respectively, with PCI as shown in
Table 3. The corresponding Sp estimates were 0.99 and 1.00, using the
results from the analysis with informative priors. For Staph. aureus, the
median Se estimates were 0.95 and 0.54 for qPCR and BC, respectively,
with corresponding Sp estimates of 0.99 and 0.77. For teat skin, Se for
Strep. agalactiae were 0.97 for qPCR and 0.33 for BC, and the corre-
sponding Sp estimates were high (0.96 and 1.00). For Staph. aureus, Se
estimates were 0.94 and 0.44 for qPCR and BC, respectively, with
corresponding Sp estimates of 0.98 and 0.74. The sensitivity analyses
demonstrated that most estimates were relatively unaffected by the
choice of priors, except for the sensitivity of BC, which appeared to be
affected to some extent (Table 3).

4. Discussion

This study estimated the test accuracy of BC and the commercially
available Mastit4 qPCR assay using LCA, which does not require a
perfect reference test. To our knowledge, this is the first study to
evaluate BC and qPCR assays on quarter-level milk and teat skin sam-
ples for detection of Staph. aureus and Strep. agalactiae.

In general, we found a higher Se of qPCR compared to BC across
pathogen and sample type. The Sp of BC and qPCR were at the same
level for Strep. agalactiae, but for Staph. aureus the Sp of BC was lower
than for qPCR.

The considerable differences in the performance of BC and qPCR is
probably due to that the two tests have different target conditions; vi-
able bacteria vs. bacterial DNA, which subsequently could affect the
test performance. This particular aspect should be considered for clin-
ical application, interpretation, and future investigation.

4.1. Estimates of qPCR and BC for IMI

The higher Se of qPCR compared to BC is in line with the general
perception that qPCR is more sensitive than BC (Holmgy et al., 2018;
Mahmmod et al., 2013a, 2013b; Nyman et al., 2016).

In the current study, the Sp of BC and qPCR were comparable for
Strep. agalactiae, but for Staph. aureus, the Sp of BC was lower than for
qPCR. Holmgy et al. (2018) also reported similar Sp estimates for BC
and qPCR for Strep. agalactiae, and Mahmmod et al. (2013a, 2013b)
reported lower Sp of BC compared to qPCR for Staph. aureus, but also
for Strep. agalactiae, whereas Nyman et al. (2016) and Cederlof et al.
(2012) reported comparable estimates for the Sp of BC and qPCR for
Staph. aureus.

These differences could be explained by the different sampling and
laboratory procedures. In the current study, we evaluated both qPCR
and BC on the same aseptic quarter-level milk sample, whereas previous
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Table 2

Preventive Veterinary Medicine 161 (2018) 69-74

Cross-tabulated results for combinations of qQPCR at a Ct value cut-off < 37 and bacterial culture (BC) at a cut-off = 1 cfu for identification of Streptococcus agalactiae
and Staphylococcus aureus from 287 quarter-level milk and teat skin samples collected from eight Danish dairy herds with AMS, stratified based on robot type

(Population 1 = 6 herds, Population 2 = 2 herds).

Sample Population Pathogen Test combinations (T1; gPCR and T2; BC) Total
T1+/T2+ T1+/T2- T1-/T2+ T1-/T2-
Milk Population 1 Strep. agalactiae 10 20 0 184 214
(Robot type 1) Staph. aureus 7 5 1 201 214
Population 2 (Robot type 2) Strep. agalactiae 9 1 0 63 73
Staph. aureus 12 5 2 54 73
Teat skin Population 1 Strep. agalactiae 1 47 0 166 214
(Robot type 1) Staph. aureus 5 35 8 166 214
Population 2 (Robot type 2) Strep. agalactiae 0 3 0 70 73
Staph. aureus 2 0 8 63 73
Table 3

Posterior median and 95% posterior credible interval (PCI) of sensitivity (SeqPCR) and specificity (SpqPCR) for Mastit4 qPCR assay at a Ct value cut-off < 37, and
sensitivity (SeBC) and specificity (SpBC) for bacterial culture at a cut-off of = 1 cfu of Streptococcus agalactiae and Staphylococcus aureus in quarter-level milk and teat

skin samples from 287 cows in eight Danish dairy herds with AMS.

Sample Pathogen Parameter Test estimates Test estimates
Informative priors’ Non-informative priors
Median 95% PCI Median 95% PCI
Milk Strep. agalactiae SeqPCR 0.97 0.88 - 1.00 0.96 0.82 - 1.00
SeBC 0.41 0.35 - 0.47 0.82 0.44 - 0.99
SpgPCR 0.99 0.97 - 1.00 0.93 0.89 - 0.99
SpBC 1.00 0.99 - 1.00 1.00 0.99 - 1.00
Staph. aureus SeqPCR 0.95 0.82 - 1.00 0.88 0.68 — 0.99
SeBC 0.54 0.46 — 0.62 0.74 0.52 - 0.96
SpqPCR 0.99 0.96 - 1.00 0.98 0.95 - 1.00
SpBC 0.77 0.73 - 0.81 0.99 0.98 - 1.00
Teat skin Strep. agalactiae SeqPCR 0.97 0.87 - 1.00 0.23 0.0041 - 0.95
SeBC 0.33 0.27 - 0.41 0.0092 0.00030 - 0.071
SpqPCR 0.96 0.89 - 1.00 0.91 0.06 — 1.00
SpBC 1.00 0.99 - 1.00 0.99 0.93 - 1.00
Staph. aureus SeqPCR 0.94 0.80 - 0.99 0.077 0.0022 - 0.90
SeBC 0.44 0.36 - 0.52 0.087 0.030 - 0.26
SpgPCR 0.98 0.94 - 1.00 0.82 0.08 - 1.00
SpBC 0.74 0.70 - 0.78 0.91 0.72 - 0.97

! The used priors are shown in Table 1.

studies (Cederlof et al., 2012; Mahmmod et al., 2013a, 2013b; Nyman
et al., 2016) evaluated a different PCR assay (PathoProof Mastitis PCR
assay) on non-aseptically collected composite milk samples and com-
pared this to results from BC on aseptic quarter-level milk samples.

Koskinen et al. (2009) estimated the analytical Se and Sp of the
PathoProof Mastitis PCR assay at 100% for identifying bacteria from
isolates originating from bovine mastitis. Rattenborg et al. (2015) found
moderate-to-high agreement between the PathoProof Mastitis PCR
assay and Mastit4 qPCR assay for Strep. agalactiae in bulk tank milk
samples, whereas the agreement for Staph. aureus was moderate (Ct
value cut-off < 37).

Using different samples for the two tests increases the risk of not
having the same concentration of bacteria (bacterial load), and varia-
tion in shedding has been demonstrated for both Staph. aureus and
Strep. agalactiae (Thieme and Haasmann, 1978; Sears et al., 1990).
Furthermore, non-aseptically collected milk samples may increase the
number of false positive samples due to contamination and carryover
(Mahmmod et al., 2017), and evaluating BC on quarter-level against
PCR on composite milk samples could also decrease Se of PCR due to
dilution of the sample (unless all four quarters are infected). Further-
more, the selection of cows may influence the results, especially the
prevalence in the investigated population. We selected cows with
SCC > 200,000 cells/mL which may not only increase the frequency of
IMI, but also the test performance due to an increased chance of a high
concentration of bacteria in IMI quarters with an active infection. This
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could have led to the higher Sp of PCR, where non-viable bacteria have
a relatively minor influence compared to a setup with random selected
COWS.

Our estimates for Strep. agalactiae in milk samples fell within the
range reported by Mahmmod et al. (2013b) and Holmoy et al. (2018).
For Staph. aureus, our estimates fell within the range reported by
Mahmmod et al. (2013a), while our estimates of Se and Sp for BC were
lower (0.54 and 0.77, respectively) than those reported by Cederlof
et al. (2012; 0.83 and 0.97, respectively). This may be explained by the
use of results from Mahmmod et al. (2013a) as informative priors,
which seem to highly influence the estimates because of less robust
estimates due to the relatively small sample size and low number of
positive BC test results (Table 2).

4.2. Estimates of qPCR and BC for teat skin colonisation

As there were no priors for teat skin samples available, the current
teat skin results may serve as priors for future studies. Like for milk
samples, the estimates were highly influenced by the informative priors
used, primarily increasing the Se estimates of both BC and qPCR
(Table 3).

The Sp estimates were generally high, except the Sp of BC for Staph.
aureus (informative priors). Using non-informative priors resulted in
very low Se of both BC and qPCR. When informative priors were used,
the Se increased and the Se of qPCR was significantly higher than the Se
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of BC, even though the amount of original sample material for gPCR
analysis made up only 6% of that for BC. Previous studies used BC to
detect teat skin colonisation with Staph. aureus (Haveri et al., 2008; da
Costa et al., 2014), but overgrowth with other bacteria could challenge
the Se of BC. In contrast, by using BC we ensure that the pathogens
detected are potentially capable of colonising the teat skin, whereas
qPCR could detect non-viable bacterial cells (Koskinen et al., 2009;
Mahmmod et al., 2013b; Holmoy et al., 2018), e.g. contamination or
flora of the teat skin inactivated by post-milking teat disinfection. De-
tection of non-viable bacteria with qPCR and a low Se of BC could
explain the lower number of positive teat skin samples detected by BC
for both Staph. aureus and Strep. agalactiae compared to those detected
by qPCR (Table 2). However, according to the manufacturer, in the
Mastit4 qPCR assay the extraction step includes that the bacteria are
centrifuged to a pellet two times before the lysis procedure. This en-
sures that the test will not detect free DNA, meaning that the test result
is only influenced to small extent by DNA from dead bacteria for which
the bacteria membrane is still intact. Furthermore, PCR methods that
enable distinction between live and dead bacteria have been developed
(Nocker et al., 2007) and such method could be applied to environ-
mental and teat skin samples. Result would help ruling out the issue of
whether bacteria colonize or merely contaminate teat skin.

Teat skin colonisation has been associated with IMI (Haveri et al.,
2008; da Costa et al., 2014; Svennesen et al., 2018), and environmental
reservoirs could easily colonise the teat skin (Haveri et al., 2008;
Jorgensen et al., 2016). However, the load of bacteria necessary to
cause an infection is not known, and the clinical relevance of a low
concentration of possibly non-viable bacteria detected by qPCR on teat
skin is hard to estimate. Furthermore, as we collected samples from
cows at different times since last milking, some of our samples may be
more affected by post-milking teat disinfection (cows sampled just after
milking), and others more by the environmental reservoir of bacteria
(cows laying in cubicles before sampling). It is therefore generally
difficult to assess whether it is teat skin colonisation or contamination
detected in these types of samples, and the choice of test (high or low Se
and Sp) should depend on the goal of the sampling.

A lower Ct value cut-off could increase Sp of the qPCR test by in-
creasing the detection limit and not consider very low concentration of
bacteria, e.g. contamination, as positive test results. However, as the Sp
of qPCR for teat skin is relatively high [0.96 for Strep. agalactiae and
0.98 for Staph. aureus (informative priors)], it is unlikely that setting a
lower threshold would make a substantial difference.

4.3. Model assumptions

Firstly, variation in prevalence between populations is fundamental
to LCA models (Kostoulas et al., 2017; Toft et al., 2005). In this study,
we used robot type to create populations with different prevalences,
and the assumption was verified, as posterior estimates of prevalence
were different (data not shown). Secondly, the test characteristics (Se
and Sp) should be constant across the tested populations, which was the
case as robot type would not affect test characteristics. Thirdly, there
should be independence of tests given the target condition (i.e. the
presence of pathogen or parts of the pathogen); this assumption was
fulfilled because qPCR and BC have different biological identification
mechanisms and no culturing was involved in the qPCR procedure.

5. Conclusions

The Se for diagnosing IMI with Strep. agalactiae and Staph. aureus
was higher using qPCR compared to BC. This suggests that qPCR is a
valuable method for detecting both pathogens from quarter-level milk
samples. For testing teat skin samples qPCR also has potential due to the
higher Se in the detection of Strep. agalactiae and Staph. aureus and
higher Sp for Staph. aureus. However, the clinical importance of the
findings in teat skin samples with the two different tests must be
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carefully evaluated, and further studies are required to reduce the un-
certainty.
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