

This document is a postprint version of an article published in Meat Science © Elsevier after peer review. To access the final edited and published work see https://doi.org/10.1016/j.meatsci.2018.03.018

1		
2 3	1	TITLE:
4 5	2	Effect of sex and RYR1 gene mutation on the muscle proteomic profile and main
6 7		
8 9	3	physiological biomarkers in pigs at slaughter
10	4	
11 12	5	AUTHORS' NAMES AND AFFILIATIONS:
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20	6 7 8 9 10 11 12 13 14 15 16 17 18	 Mamen Oliván ^{a,*}, Joel González ^b, Anna Bassols ^c, Fernando Díaz ^a, Ricard Carreras ^b, Eva Mainau ^b, Laura Arroyo ^c, Raquel Peña ^c, Yaiza Potes ^d, Ana Coto-Montes ^d, Kristin Hollung ^e, Antonio Velarde ^b ^a SERIDA, Apdo 13, 33300 Villaviciosa, Asturias, Spain. ^b IRTA, Finca Camps i Armet s/n, 17121 Monells, Spain. ^c Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. ^d Universidad de Oviedo, C/ Julián Clavería s/n, 33006 Oviedo, Asturias, Spain. ^e Nofima, AS, PO BOX 210, N-1431 Aas, Norway.
30 31	19	of Meat Science and Technology (ICOMST) held at Punta del Este, Uruguay, on
32 33 34	20	August 2014.
35 36	21	
37 38	22	*Corresponding author:
39 40	23	E-mail: mcolivan@serida.org (M. Oliván)
41 42 43	24	Postal address: SERIDA, Apdo 13, 33300 Villaviciosa, Asturias, Spain
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	25	1

27 ABSTRACT

Gender and RYR1 gene mutation might have an effect on the muscle metabolic characteristics and on the animal's stress at slaughter, which could influence the process of muscle-to-meat conversion. Forty-eight pigs were distributed in a design including two factors: sex (male/female) and RYR1 genotype (NN/Nn). At slaughter, physiological blood biomarkers and muscle proteome were analysed and carcass and meat quality traits were registered. Females had higher serum levels of glucose, urea, C-reactive protein "CRP", Pig-MAP and glutation-peroxidase "GPx" and lower levels of lactate, showed faster muscle pH decline and higher meat exudation. RYR1 mutation increased serum creatinine, creatine kinase and CRP and decreased GPx. The proteomic study highlighted significant effects of gender and RYR1 genotype on proteins related to fibre composition, antioxidant defense and *post mortem* glycolytic pathway, which correlate to differences of meat quality. This study provides interesting information on muscle biomarkers of the ultimate meat quality that are modulated by the animal's individual susceptibility to stress at slaughter.

43 Key words: sex, RYR1, pig, biomarker, proteomics, stress

1. Introduction

46 Meat quality should be considered as a multifactorial trait, including technological, 47 nutritional, sensory, safety and ethical aspects, and is affected by several factors, such as 48 the genetic animal type, the particularities of the production system, the physiological 49 response of the animals to the *ante mortem* treatment and the *post mortem* conditioning 50 of the carcasses, among others.

The effect of gender on the pig carcass development has been described in the literature. In general, males present less accumulation of fat tissues (Gispert et al., 2010), but there is still controversy about the effect of gender on the incidence of pale, soft and exudative (PSE) meat, with some studies showing significant effects (Cisneros, Ellis, McKeith, McCaw, & Fernando, 1996; Channon, Kerr, & Walker, 2004) whereas others did not (Blanchard, Warkup, Ellis, Willis, & Avery, 1999; Channon, Payne, & Warner, 2000). These differences between experiments could be due in part to different ante mortem handling conditions, which may influence the animal stress reactions at slaughter and could have consequences on the ultimate meat quality (Boler et al., 2010; Hambrecht et al., 2005a,b; Terlouw and Rybarczyk, 2008; D'Eath et al., 2010).

The most usual crossbreds used in Spain includes the Pietrain sire line, presenting in most cases heterozygosity (Nn) to the mutated RYR1 gene. Mutations in the RYR1 gene have been related to higher susceptibility to stressful conditions and to the induction of malignant hyperthermia in pigs (Fujii et al., 1991), with detrimental effects on meat quality (Fàbrega et al., 2004).

66 Then, pigs of different sex and genetic types may respond differently to pre-slaughter
67 handling, which may affect the *post mortem* process of muscle-to-meat conversion. This
68 process implies complex biochemical mechanisms that are to a large extent dependent

on the genetic background, the tissue physiological milieu and the animal's perceptionof danger or fear during the slaughter procedure.

To date, there is still no precise definition of animal stress, probably due to the complexity of different physical and psychological stressful situations, although it can be described as "the physiological, behavioural and psychological state of the animal when confronted with, from the animal's point of view, a potentially threatening situation" (Terlouw, 2005).

Furthermore, it is important to note that the stress level of the animal depends indirectly on the situation and directly on the animal's evaluation of the situation (Terlouw, 2005). For this reason, meat scientists show increasing interest in the identification of animal-based biomarkers that could be indicators of stress at slaughter and even that could be used as indirect predictors of the ultimate meat quality. In this field, proteomics is a promising tool, although its application is still in its infancy and very few studies have focused on stress-dependent muscle proteome changes (Franco et al., 2015; Oliván et al., 2016). The objective of this work was to investigate the effect of gender (Male/Female) and RYR1 genotype (NN/Nn) on physiological, biochemical and proteomic variables detected in the carcass that might influence the process of meat quality acquisition and reflect animal's susceptibility to stress at slaughter.

88 2. Materials and Methods

This study was approved by the Institutional Animal Care and Use Committee (IACUC) of IRTA (Monells, Spain). The care and use of animals were performed in accordance with the European Union Directive 2010/63 on the protection of animals used for experimental and other scientific purposes (EU, 2010).

2.1. Animals and Management procedures

Forty-eight crossbred pigs ([Large White x Landrace] sows sired with Pietrain boars) were randomly selected at a commercial farm and assigned to four groups of 12 pigs each one. Each group either consisted of NN females, NN entire males, Nn females and Nn entire males. The RYR1 genotype of the pigs was determined from a hair sample using PCR (polymerase chain reaction) amplification and digestion with restriction enzymes as described by Fujii et al. (1991) when pigs aged 5 weeks.

At 9 weeks of age, pigs were transported from the commercial farm to the experimental facilities of IRTA and housed separately by treatment (sex x genotype) in 8 pens (6 pigs per pen), that is, two replicas per treatment. Pigs were kept in pens (5 x 2.7 m) on fully slatted floor under natural light conditions and at a constant environmental temperature of $22 \pm 3^{\circ}$ C. Each pen was provided with one steel drinker bowl (15 x 16 cm) connected to a nipple and with a concrete feeder (58 x 34 cm) with four feeding places. Pigs had water and feed ad libitum. Pigs were inspected daily and no health problems were observed during the experimental period. At an average weight of 111.4 ± 10.5 kg the pigs were fasted for 8 h before being transported to the experimental slaughterhouse of IRTA (1.2 km trip), without mixing groups. Animals were gently handled during transport and at the slaughterhouse to avoid additional stress. There were two slaughter batches, in two consecutive weeks, including 24 animals per day. Slaughtering started 30 min after the animals arrived at the lairage pens and lasted for 3 h. Pigs were stunned by exposure to 90 % of carbon dioxide (CO₂) by volume in atmospheric air during 3 min and exsanguinated afterwards.

- 2.2. Blood collection

At the slaughterhouse, blood samples were collected at exsanguination from each pig in 10-mL tubes without anticoagulant. Serum were obtained by centrifugation at 2000× g for 10 min and immediately frozen at -80 °C until analysis. 2.3. Biochemical and physiological parameters Metabolites analyzed were: - Markers for glucose utilization: glucose (Hexokinase method, Olympus System Reagent OSR), lactate (Enzymatic method LOD -Lactate Oxidase-, Olympus System Reagent OSR). - Markers of nitrogen metabolism: creatinine (Jaffé method, Olympus System Reagent OSR), urea (GLDH method, Olympus System Reagent OSR), total proteins (Biuret method, Olympus System Reagent OSR). - Lipid metabolism markers: triglycerides (GPO-PAP method, Olympus System Reagent OSR), total cholesterol (CHOP-PAP method, Olympus System Reagent OSR), HDL-cholesterol (HDL-chol, Immunoinhibition method, Olympus System Reagent OSR), LDL-cholesterol (LDL-chol, Selective protection method, Olympus System Reagent OSR), non-esterified fatty acids (NEFAs, NEFA-C reagent, Wako Chemicals) and 3-hydroxybutyrate (BHB, Ranbut reagent, Randox Laboratories, Ltd). - Acute phase proteins "APPs" as inflammatory markers: haptoglobin (Phase Haptoglobin, Tridelta Ltd), C-reactive protein (CRP, immunoturbidimetric method, Olympus Systems Reagent) and Pig-MAP (ELISA, PigChamp ProEuropa). - Skeletal muscle marker: creatine kinase (CK, IFCC method, Olympus System Reagent OSR). - Oxidative stress marker: glutathione peroxidase GPx (Cumene Hydroperoxyde method, Ransel, Randox Laboratories Ltd).

143 - Stress hormone: cortisol (ELISA, DRG Diagnostics, Germany).

All parameters were determined by spectrophotometric techniques in the analyzer
Olympus AU400, with the exception of Pig-MAP and cortisol, which were determined
by ELISA.

6 147

148 2.4. Carcass measurements and meat sampling

149 The skin lesions in each pig were assessed using the Welfare Quality® protocol 150 (Dalmau, Temple, Rodríguez, Llonch, & Velarde, 2009) considering 5 regions (ears, 151 front, middle, hind-quarters and legs) in one side of the carcass after scalding. Values of 152 0 (<2 lesions in all regions), 1 (2-10 lesions in at least one region) and 2 (>10 lesions in 153 at least one region) were used by a trained observer at the slaughter line.

The left side of each carcass was used to assess meat quality. Muscle pH was measured at 45 min (pH45) and at 24 h (pH24) *post mortem* on the *longissimus thoracis* (LT) muscle, using a Crison (Hach Lange S.L.U., Spain) portable meter equipped with a kerolyt electrode. Electrical conductivity (EC) was also measured at 24 h *post mortem* on the same location using a Pork Quality Meter (PQM-I, INTEK Aichach, Germany).

Meat samples (20 g) were taken after slaughter (15-20 min post mortem) from the LT muscle of each pig at the last rib level for analysis of electrophoretic protein profile of sarcoplasmic extracts by SDS-PAGE. These muscle samples were immediately frozen in liquid nitrogen and stored at -80°C until analyzed.

Meat color was determined using a colorimeter Minolta CR-400 (Konica Minolta
Holdings, Inc, Japan) measuring in the CIELAB space (L*, a*, b*), at 24 h *post mortem*on the exposed cut surface of the LT muscle (last rib) after 15 min blooming.

406
407166Meat drip loss (% exudates) was determined by duplicate on 25 mm diameter fresh407
408
409167samples taken from the LT muscle at 24 h *post mortem*, and placed on a special

a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a containing the drip loss percentage by gravimetry, according to the method described by
a containing the drip loss percentage by gravimetry, according to the method described by
a containing the drip loss percentage by gravimetry, according to the method described by
a containing the drip loss percentage by gravimetry, according to the method described by
a containing the drip loss percentage by gravimetry, according to the method described by
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,
a container (Meat juice collector, Sarstedt, Nümbrecht, Germany) during 24 hours at 4°C,

Instrumental texture was determined in LT samples by using the Warner Bratzler test, following the procedures described in Ampuero-Kragten and Gil (2015). Samples were vacuum packaged at 24 h post mortem and stored at 4°C, and they were frozen (-20°C) after 1, 3 and 5 d aging to allow muscle tenderization. Each sample was thawed overnight at 4°C, cooked in an oven until a core temperature of 71°C, and then 5 subsamples were obtained by using a perforating punch. These subsamples were individually analyzed for instrumental toughness (maximum shear force, in kg) with the TA.XT plus Texture Analyzer (Stable Microsystems, Haslemere, UK) and the mean value for each animal was calculated.

442 180

444 181 2.5. Sarcoplasmic Protein Extraction and Electrophoresis

The sarcoplasmic protein fraction, which contains most of the enzymes of the glycolytic pathway and other metabolic proteins (Hollung et al., 2007), were extracted from each individual muscle sample (one per animal), taken immediately after slaughter, and quantified following the method described by Jia et al. (2009). A total of 600 mg of muscle tissue was dissected and homogenized in 2 mL of Tris-EDTA-Sucrose "TES" buffer (10 mM Tris [pH7.6], 1 mM EDTA, and 0.25 M sucrose), using a Polytron PT1200 E (Kinematica Inc., Luzern, Switzerland) three times for 15 s at maximum speed. The homogenate was centrifuged (30 min at 8,800 x g) at 4°C to remove TES-insoluble proteins. Protein concentrations were measured with a commercial kit at 760 nm (RC DC Protein Assay, Bio-Rad Laboratories, Hercules, CA) in a

475 476 476 477 478 478 478 479 479 470 470 470 470 471 471 472 473 473 473 474 474 475 475 475 476 477 478

Then, 120µg of proteins were denatured by mixing with sample buffer (62.5 mM Tris/HCl pH 6.8, 2% SDS, 20% glycerol, 5% mercaptoethanol, 0.025% of bromophenol blue) and heated at 95°C for 5 min, and loaded to 1mm dual vertical slab gels (Xi Protean II, Bio-Rad Laboratories Inc., CA, USA) for one-dimensional sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), according to the procedure described by Sierra et al. (2012). The resolving gel contained 11% and the stacking gel 4% of 30% (wt/vol) acrylamide: bisacrylamide and a mixture of Tris/HCl (375 mM) pH 8.8, milli-Q water, SDS 10% (wt/vol), ammonium persulphate 10% (wt/vol), and 0.1% TEMED. Pre-stained molecular weight standards (Precision Plus Protein All Blue Standards, Bio-Rad Laboratories Inc., Hercules, CA) were also run on each gel to determine protein band molecular weights. Gels (20 cm x 20 cm size) were run at 80 V for 2 h, 160 V for 2 h, 250V for 10 h and 500 V for 20 min (Universal PowerPack 500, Bio-Rad), stained in a mixture of 30% (vol/vol) methanol, 10% (vol/vol) acetic acid and 0.01% (wt/vol) Coomassie Brilliant Blue R-250 and destained using a mixture of 40% (vol/vol) methanol and 10% (vol/vol) acetic acid.

511
512
513
514
209 Three gels were produced per muscle sample and the mean value was calculated for
513
514
210 each animal with image analysis techniques.

516 211

212 2.6. Image Analysis and protein identification by peptide mass fingerprint

Stained gel images were captured using the UMAX ImageScanner (Amersham Biosciences). SDS-PAGE densitometry analysis and band quantitation were carried out using the ImageQuant TL software by means of its 1D gel analysis tool (version 7.0, GEHealthcare, Buckinghamshire, UK). To account for slight variations in protein

⁵³⁴ 217 loading, the density protein bands was expressed as relative abundance (normalized
⁵³⁶ 218 volume) and expressed in arbitrary units.

Protein bands were manually excised from gels and sent for identification to the proteomics laboratory of Inbiotec S.L. (León, Spain). The proteins were digested following the method of Havlis et al. (2003) and processed for further analysis as indicated by Jami, Barreiro, García-Estrada, & Martín (2010). The samples were analyzed with a 4800 Proteomics Analyzer matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF) mass spectrometer (ABSciex, MA, USA). A 4700 proteomics analyzer calibration mixture (Cal Mix 5, ABSciex) was used as external calibration. All MS spectra were internally calibrated using peptides from the trypsin digestion. The analysis by MALDI-TOF/TOF mass spectrometry produced peptide mass fingerprints, and the peptides observed (up to 65 peptides per spot) were collected and represented as a list of monoisotopic molecular weights with a signal to noise (S/N) ratio greater than 20 using the 4000 Series Explorer v3.5.3 software (ABSciex). All known contaminant ions (trypsin- and keratin- derived peptides) were excluded for later MS/MS analysis. Hence, from each MS spectra, the 10 most intensive precursors with a S/N greater than 20 were selected for MS/MS analyses with CID (atmospheric gas was used) in 2-kV ion reflector mode and precursor mass windows of ± 7 Da. The default calibration was optimized for the MS/MS spectra. For protein identification, Mascot Generic Files combining MS and MS/MS spectra were automatically created and used to interrogate a non-redundant protein database using a local license of Mascot v 2.2 from Matrix Science through the Global Protein Server v 3.6 (ABSciex). The search parameters for peptide mass fingerprints and tandem MS spectra obtained were set as follows: i) NCBInr (2012.09.13) sequence databases were used; ii) taxonomy: All entries (20363435 sequences, 6986060206 residues); iii) fixed and variable

242 modifications were considered (Cys as S carbamidomethyl derivative and Met as 243 oxidized methionine); iv) one missed cleavage site was allowed; v) precursor tolerance 244 was 100 parts per million and MS/MS fragment tolerance was 0.3 Da; vi) peptide 245 charge: 1+; and vii) the algorithm was set to use trypsin as the enzyme. Protein 246 candidates produced by this combined peptide mass fingerprinting/tandem MS search 247 were considered valid when the global Mascot score was greater than 85 with a 248 significance level of P < 0.05.

250 2.7. Statistical Analysis

The effect of sex (M/F) and genotype (NN/Nn) on carcass and meat quality traits, blood biochemical and muscle proteomic variables was analyzed by Analysis of Variance (ANOVA) using the General Linear Model (GLM) procedure of SPSS (v 15.0 2006, SPSS Inc, Chicago, USA). The model included sex, genotype and its interaction as fixed factors and slaughter day (batch) as random factor. When the interaction was significant, the differences between the four treatments (M-NN, M-Nn, F-NN, F-Nn) were analysed by the Tukey post-hoc test. The post mortem evolution of meat toughness (Warner Bratzler maximum shear force) was analysed by GLM including sex, genotype, aging time and their interactions as fixed factors and animal as random factor. Bivariate correlations were calculated using Pearson's correlation coefficient.

Furthermore, multivariate analysis (PCA) was performed in order to study the relationships between meat quality and physiological, biochemical and proteomic variables obtained for every animal studied, by using XLStat software (XLStat 2013, Addinsoft Inc, Paris, France). The Kaiser-Meyer-Olkin test was performed in order to measure sampling adequacy for each variable in the model, and only variables with

KMO over 0.6 were selected. The overall KMO measure of the performed PCA was0.725.

)

3. Results and discussion

3.1. Carcass and meat quality

Female pigs showed lower muscle pH than entire males (Table 1), with significant differences at 45 min *post mortem* (P = 0.002). This agrees with D'Souza and Mullan (2002) and D'Eath et al. (2010), who found lower pH (P = 0.006) in the loin muscle of females compared with castrated pigs. These differences may be in part due to physiological and metabolic differences in the cell response, indicating in some extent higher susceptibility of females to stress at slaughter. This is a controversial issue, as it has been postulated that entire male pigs are more susceptible to stress, because they show more aggressive behavior than females and castrates (Fabrega et al., 2010), while in cattle Tarrant (1990) showed that females and young animals are more susceptible to stress compared to males and older animals.

When looking to the effect of genotype, we found that the *post mortem* muscle pH decline was faster in animals heterozygous for the RYR1 mutation (Nn), that showed significantly (P < 0.001) lower pH at 45 min *post mortem*, while the ultimate pH did not differ between genotypes (Table 1), so the pH amplitude (45 min - 24 h) was lower in the Nn group (0.76 vs 1.03 for Nn and NN, respectively, P < 0.05).

Furthermore, Nn animals produced meat with higher values of electrical conductivity (EC) (P < 0.05) and also higher drip loss (P < 0.001). Thus, the pH amplitude correlated negatively with EC (r=-0.702, P < 0.001) and drip loss (r=-0.726, P < 0.001) and EC and drip loss showed a positive and significant correlation (r= 0.858, P < 0.001). These differences seem to indicate *post mortem* muscle metabolic differences due to the RYR1

mutation but also might be modulated by a higher susceptibility to stress at slaughter in Nn pigs, which have more intense reaction to stress than NN animals (Roberts et al., 1998). This effect could produce higher leakage of calcium to the cytoplasm and the accompanied calcium related effects (e.g. muscle contraction, stimulation of the muscle metabolism) resulting in a rapid reduction of the pH - due to the lactic acidosis - and an increase of the electrical conductivity, as shown in previous reports (Depreux, Grant, & Gerrard, 2002; Fernandez, Neyraud, Astruc, & Sante, 2002; Krischek, Natter, Wigger, & Wicke, 2011; Shen, Underwood, Means, McCormick, & Du, 2007).

Consequences of this calcium-related metabolic changes are often increasing drip loss and higher meat lightness (L*), although the results found in the literature depend on the particularities of every experiment (stress level and duration, animal's evaluation of the situation), the intrinsic characteristics of the muscle (glycogen reserves, antioxidant status) and the resulting *post mortem* rate of pH decline and protein denaturation. In our work, the component L* did not show any significance for the analyzed factors, which is in accordance with some reports (Channon et al., 2000; D'Souza, Dunshea, Warner, & Leury, 1998; Hambrecht et al., 2005a) but contrary to others (Terlouw and Rybarczyk 2008; Boler et al., 2008; Edwards et al., 2010; Dokmanovic et al., 2015) which clearly reflects the complexity of the processes involved. Nevertheless, other meat color traits, such as a^{*}, was significantly reduced in the Nn genotype (P < 0.01), which could be result of higher *post mortem* protein denaturation and/or proteolysis (Kazemi, Ngadi and Gariépy et al., 2011). This effect was significantly higher in males than in females, and the same effect was observed for b* coordinate, for this reason there was a significant interaction of sex and genotype on meat colour variables a* and b* (Table 1).

Another key quality trait, such as meat toughness, was significantly affected by RYR1 genotype (P < 0.05), with Nn animals exhibiting tougher meat (higher shear force) along the process of meat aging (1 to 5 d post mortem, see Fig. 1), which agrees with previous reports that described higher shear force and less tender meat in Nn than in halothane free (NN) pigs (Channon et al., 2000; Fernández et al., 2002; Van den Maagdenberg, Stinckens, Lefaucheur, Buys, & De Smet, 2008).

Furthermore, our results indicate increasing differences of shear force between genotypes as the process of meat tenderization progressed (Fig. 1), although the interaction between RYR1 genotype and aging time was not significant (P = 0.737). Obviously, meat tenderness tended to increase as aging time increased in all meat types, but the effect of the RYR1 mutation on meat toughness is probably related to differences in the *post mortem* metabolism. All data recorded in this work (faster pH decline, higher drip loss) indicate a fast post mortem metabolism in the muscle of Nn pigs, confirmed in previous works, such as the one by Cheah, Cheah, & Krausgrill (1995), who observed higher sarcoplasmic levels of calcium in vivo in the muscle from Nn animals in contrast with NN, possibly causing a faster than normal rate of post mortem muscle glycolysis in these pigs. In the same way, Depreux et al. (2002) described a higher proportion of glycolytic fibres in the muscle of Nn genotype than NN, expecting a more rapid *post mortem* pH decrease. This could imply a higher rate of exhaustion of enzymes implicated in meat tenderization and therefore shorter tenderization process. This agrees with previous histological and histochemical investigations that have revealed increased fibre diameter and increased glycolytic metabolic potential in the LT muscle of pigs with the RYR1 mutation, due to higher proportion of the fast twitch glycolytic fibre type and lower of the slow twitch oxidative type (Fiedler et al., 1999).

3.2. Blood biochemical variables

833
834342Sex affected several blood metabolites at slaughter (Table 2). Then, females showed835
836343higher levels than males of glucose (P < 0.05), urea (P < 0.001), CRP (P < 0.05), Pig-837
838344MAP (P < 0.01) and GPx (P < 0.01) and lower of lactate (P < 0.05).

Higher glucose level may indicate a higher stress response of females at slaughter, as it is known that during psychological stress the organism feels threatened and gets ready to respond to protect itself, then the glucose level in plasma increases due to the secretion of hormones that leads to an increase on the hepatic glycogen breakdown and gluconeogenesis (Becerril-Herrera et al., 2007; Mota-Rojas et al., 2009). There are a number of studies that describe the increase of serum or plasma levels in glucose as a consequence of stress in different animal species (see Becerril-Herrera et al., 2007) but the effect of sex on the energetic profile is not clear as it may be affected by hormonal differences. Our results are in accordance with the report by Mota-Roja et al. (2012) who found increased concentration of glucose at exsanguinations in female pigs subjected to acute stress, when compared to barrows and entire males.

356 Our data are also consistent with previous studies describing increased levels of APPs
357 such as CRP and Pig-MAP in plasma as consequence of stress in pigs (Murata 2007;
358 Piñeiro et al., 2007a, 2007b; Saco et al., 2003; Salamano et al., 2008).

When looking to differences of urea serum content within groups (Fig. 2a), it is worthwhile to mention that increased urea concentration in females was consistent in both NN and Nn groups, suggesting a faster catabolism of proteins, probably associated to the above mentioned higher susceptibility of females to pre-slaughter stress.

⁸⁷⁸ 363 The effect of the RYR1 genotype on variables such as creatinine (P < 0.05), CRP (P < 879

⁸⁸⁰ 364 0.05), Pig-MAP (P = 0.05), CK (P < 0.001) and GPx (P < 0.01) was significant (Table

2). Heterozygous (Nn) pigs showed higher serum CK activity, which suggests increased muscle damage, and higher CRP concentration, that may indicate higher stress level and subsequent inflammation. To date, some APPs have been proposed as indicators of animal stress (Saco et al., 2003; Piñeiro et al., 2007a; Salamano et al., 2008; Marco-Ramell et al., 2011; Marco-Ramell et al., 2016), although the effect of stress on their serum concentration remains controversial, since it is difficult to distinguish it from the effect of trauma or subclinical infections.

903
904372On the other side, the higher GPx activity in homozygous (NN), but especially in904
905
906373females (there was significant S*G interaction, P < 0.01) suggests more potent907
908374antioxidant defenses in females, probably due to estrogen influence (Fig. 2b).

912 376 *3.3. Muscle proteins*

A total of 26 protein bands (201 to 20 kDa) were differentiated by SDS-PAGE gels in
the muscle sarcoplasmic extracts, as shown in Figure 3, where band names are denoted
by S of "sarcoplasmic" protein, followed by a number (1 to 26).

920
921380Table 3 gives the identification of protein bands with differential expression between922
923381treatments and Table 4 shows the effect of sex and genotype and its interaction on the924
925382abundance of these proteins.

927 383 3.3.1. Effect of sex

Myosin-binding protein C fast type, "MyBP-C" was overrepresented (P < 0.05) in the muscle of females. MyBP-C belongs to the myosin-binding protein C family, including fast- and slow-type isoforms, each of which is a myosin-associated protein found in the cross-bridge-bearing zone (C region) of sarcomeric A bands, where interaction between the thick and thin filaments occurs. Both structural and regulatory roles have been

947
948
949
950
389 proposed for MyBP-C, as it may modulate muscle contraction (Oakley, Hambly, Curmi,
949
950
390 & Brown, 2004).

The presence of S6 (muscle-6-phosphofructokinase "PFK-M") was also significantly affected by gender, with lower values in the muscle of females. PFK-M is the main rate-controlling enzyme of glycolysis, which catalyzes the transfer of a phosphoryl group from ATP to fructose-6-phosphate to yield ADP and fructose-1,6-bisphosphate. This enzyme is tightly regulated and responds to diverse molecules and signals by changing its catalytic activity and behaviour and is one of the few examples in which inhibition by the substrate occurs, as ATP may inhibit PFK at different levels, depending on the tissue metabolic state (Sola-Penna, Da Silva, Coelho, Marinho-Carvalho, & Zancan, 2010). Furthermore, lactate potentiate the inhibitory effects of ATP on PFK (Leite, Da Silva, Coelho, Zancan, & Sola-Penna, 2007). Then in our study underexpression of PFK-M in the muscle of females, that showed faster post mortem acidification, could be potentiated by inhibition due to lactate, although we can not discard a possible lower inherent PFK-M concentration in the muscle of females due to physiological differences between males and females.

981 405 *3.3.2. Effect of genotype*

Genotype affected the presence of four peptide bands, thus producing lower presence of S2 (MyBP-C, P < 0.05), S18 (glyceraldehyde-3-phosphate dehydrogenase "GAPDH", P < 0.01) and S24 (containing two proteins: carbonic anhydrase "CAIII" and phosphoglycerate mutase-2 "PGM2", P < 0.05) and higher of S23 (ENO3) in the muscle of Nn pigs (Table 4).

411 Changes of MyBP-C, which corresponds to the muscle fibre structure, could be due to
412 the above mentioned differences of fibre type composition between RYR1 genotypes,
413 while the other significant changes affected to metabolic enzymes (GAPDH, CAIII

and/or PGM2, ENO3) that showed significant correlation with the rate of post mortem muscle pH decline (pH-amplitude), being this relationship positive for GAPDH (r=0.540, p < 0.01) and CAIII/PGM2 (r=0.410, P < 0.05) and negative for ENO3 (r=-0.541, P < 0.006). This agrees with results from Gagaoua et al. (2015) who found negative relationship between ENO3 and pH decline in beef.

Lower GAPDH in the muscle of Nn pigs indicate lower glycolysis, which could be produced by an earlier depletion of muscle metabolites (glycogen) due to stress, as found by Fernandez et al. (2002). It is worthwhile to mention that GAPDH has recently been implicated in different non-metabolic processes, including transcription activation and initiation of apoptosis (Tarze et al., 2007). Moreover, GAPDH may act as a reversible metabolic switch under oxidative stress (Agarwal et al., 2012).

With respect to ENO3, it is a glycolytic enzyme that has been associated in beef with a faster post mortem muscle energy metabolism resulting in a faster pH decline (Gagaoua et al., 2015), and also has been correlated to beef colour stability (Gagaoua et al., 2015; Gagaoua, Terlouw, & Picard, 2017; Picard, Gagaoua, & Hollung, 2017) and to meat tenderization (Lametsch et al., 2003; Polati et al., 2012). Furthermore, ENO3 has been described as a hypoxic stress protein providing protection of cells by increasing anaerobic metabolism (Pancholi, 2001; Wulff, Jokumsen, Højrup, & Jessen, 2012). Then, it could be expected to find increased ENO3 in the muscle of pigs suffering higher stress at slaughter, that is, those from the Nn genotype.

The interpretation of changes found in the protein band S24 become difficult due to the co-migration of two proteins (CAIII and PGM2) and the resultant joint quantification, which is one of the difficulties of using 1D electrophoresis for protein separation. Band S24 showed significantly (P<0.05) lower abundance in the muscle extracts of Nn animals, and this difference was consistent regardless of sex (males and females), but

we could not dilucidate if both proteins (CAIII and PGM2) or only one of them had lower presence in Nn pigs. Anyway, lower CAIII (which functions as oxyradical scavenger and thus protects cells from oxidative damage) could be expected in the muscle of Nn pigs and would reflect lower level of the antioxidant defense, which agrees with the findings of Laville et al. (2009) who described reduced abundance of antioxidant proteins in the SM muscle of pigs with RYR1 mutation (nn genotype) compared with NN pigs, probably because the nn muscle was less oxidative and in consequence presented less antioxidative and repair capacities. The growing interest of meat scientist for the role of the balance between oxidative stress and antioxidant defense in the post mortem muscle is more than evident, and gives significant correlations with ultimate meat quality traits such as meat colour and tenderness (Laville et al., 2007, 2009; Jia et al., 2009; Ouali et al., 2013; Gagaoua et al., 2015, 2017; te Pas et al., 2017).

The other protein found in band S24 was PGM2, which catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in the glycolytic pathway and therefore it has a role of regulation of the energy balance and in the glycogen metabolism and glycolysis of the skeletal muscle (Fontanesi et al., 2008). This protein is encoded by a gene localized on porcine chromosome 18 (Fontanesi, Davoli, Nanni Costa, Scotti, & Russo, 2003) in a region where quantitative trait loci for drip loss, meat colour, fat deposition, lean content, muscle fiber diameter and carcass quality have been identified, and it has been described a significant association between PGM2 and drip loss in pigs (Fontanesi et al., 2003), so a lower PGM2 abundance in the muscle of Nn pigs, that showed higher drip loss, would be expected.

462 As a whole, the deficiency of GAPDH, PGM2 and/or CAIII and the increased amount
463 of ENO3 in the muscle of Nn pigs after slaughter reflects an impairment of the

glycolysis function and a higher defense of the muscle cell to oxidative stress, which could be related to metabolic changes due to the RYR1 mutation, that causes a dysregulation of the calcium homeostasis and lead to neuromuscular disorders (Treves et al, 2005) and even can affect immunological and neuroendocrine response of pigs to stress (Ciepielewski et al., 2016). In our study we could not quantify changes in the abundance of muscle proteins involved in calcium homeostasis, such as sarcalumenin or calsequestrin-1, that were not separated in the 1D SDS-PAGE gels. These proteins have recently been detected by 2D-electrophoresis in mice muscle by Picard et al. (2016) who found that its abundance in the Tibialis anterior muscle (fast glycolytic) increased in the absence of Hsp27 (heat shock protein that has been described as beef tenderness biomarker, by the group of Picard).

1148 475

3.3.3. Interaction of sex and genotype

The statistical analysis showed that there was a significant interaction between sex and genotype for two muscle proteins: S9 (albumin) and S26 (AK-1). That is, in this study, males tended to show higher muscle albumin expression than females, which could reflect physiological differences related to the function of albumin in the skeletal muscle, where it serves as a temporary amino acid storage site, maintains osmotic pressure and acts as a transporter for free fatty acids (Ellmerer et al., 2000), but the presence of the RYR1 mutation increased the albumin expression in the muscle of females and decreased it in males. Regarding AK-1, which catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP and is a key enzyme in the muscle energetic homeostasis, it showed slightly higher level in Nn genotypes, which was more evident in males than in females, then showing significant interaction between sex and genotype. Our results show lower AK-1 level in Nn females, which

489 could be related with alterations of the muscle homeostasis as a result of higher stress 490 response at slaughter, which is in agreement with a previous report from our group that 491 showed that higher pre-slaughter stress produced lower presence of AK-1 in the *post* 492 *mortem* muscle in pigs when mixed with unfamiliar animals (Oliván et al., 2016).

4 494 *3.4. Multivariate analysis*

Multivariate analysis was applied in order to obtain a synthetic assessment of the
complex relationships between the variables best suited for factor analysis (KMO>0.6),
that were: three meat quality traits (pH45, EC and drip), four serum metabolites
(glucose, creatinine, CK and GPx) and three protein bands containing muscle proteins
of the energy metabolism and antioxidant defense (GAPDH, ENO3 and CAIII/PGM2).
The biplot obtained via PCA (Fig. 4) showed that PC1 and PC2 explained 62 % of the
variability in the data.

The first principal component (PC1) distinguished in the positive side main variables related to poor meat quality: drip loss, EC and meat toughness (shear force at 5 days aging (WBSF-5d). Other variables with high loadings for PC1 were serum creatinine and CK, which indicate higher muscle damage at slaughter, and ENO3, a muscle protein that has been related to faster energy metabolism and faster pH decline in beef (Gagaoua et al., 2015) and also to hypoxic stress (Sedoris et al., 2010).

508 Furthermore, carcass temperature showed a positive correlation with PC1, which all 509 together clearly indicates that the positive side of PC1 merged variables related to stress 509 at slaughter. These characteristics corresponded to animals of the Nn genotype, mainly 511 females, whose mean score showed high positive correlation to PC1 (Figure 4). By 512 contrast, the negative side of the PC1 grouped meat variables indicating normal *post* 513 *mortem* pH decline (higher pH at 45min), normal muscle glycolytic metabolism (higher muscle GAPDH and PGM2 at slaughter) and higher muscle antioxidant defense (CAIII), that is, those variables that in general contribute to an appropriate process of muscle-to-meat conversion, being the NN genotype (males "M-NN" and females "F-NN") represented nearby.

The second PC aimed to distinguish in the positive side animals showing higher blood levels of glucose and GPx, that is, variables indicating stress, inflammation and antioxidant response at slaughter, which corresponded mainly to Females of the NN genotype.

Overall, these results show that the RYR1 mutation in heterozygosity contributed to reduce the ultimate meat quality (higher meat exudation and toughness) and that in some extent its effect was modulated by a higher stress response of Nn individuals at slaughter (higher serum level of creatinine and creatin kinase, compared to NN pigs). On the other hand, females showed faster muscle post mortem pH decline and produced more exudative meat than males, and also showed blood biochemical parameters at slaughter that seem to reflect a physiological response to stress (higher glucose and GPx).

Furthermore, from a proteomic perspective, these results allowed the identification of key proteins involved in the *post mortem* glycolytic pathway (GAPDH, PGM2, ENO3) and the antioxidant defense (CAIII) of the muscle that contribute to the process of meat quality acquisition and are influenced by pre-slaughter stress. These proteins have a relevant role in the post mortem muscle metabolism and most of them have already been identified as biomarkers of meat quality and animal stress (Laville et al., 2007, 2009; Guillemin, Bonnet, Jurie, & Picard, 2011; Gagaoua et al., 2015, 2017; Oliván et al., 2016).

These results contribute to progress towards the comprehensive identification of proteins linked to the process of meat quality acquisition, being ultimately modulated by the animal's stress reaction at slaughter. Knowing the biological mechanism underlying this process opens up the possibility of monitoring and predicting the resulting changes. Once this is known, these potential protein biomarkers must follow a process of evaluation and validation (Navlor, 2003; Te Pas, Hoekman & Smits, 2011; Picard & Gagaoua, 2017), so further research is needed on a larger data set.

 4. Conclusions

547 Pork quality development is largely governed by the rate and extent of *post mortem*548 muscle metabolism, which is affected by animal factors like sex and RYR1 genotype,
549 with influence as well in the modulation of the animal's individual susceptibility to pre550 slaughter stress.

The results of this study showed that the sex and the RYR1 genotype affected several blood biochemical parameters at slaughter and some muscle enzymes with key role on the subsequent process of muscle-to-meat conversion, showing Nn females more susceptibility to stress, with detrimental effect on meat quality.

These differences may be monitored by protein biomarkers related to the fibre composition, the *post mortem* glycolytic pathway and the antioxidant defense of the muscle. However, it is worthwhile to mention that the complex nature of the processes that underlie the *post mortem* meat quality development and the high diversity of factors that may influence the animal's susceptibility to stress at slaughter makes difficult to find universal biomarkers. Then, more research is needed in order to apply combined "omics" techniques that allow the identification of key protein biomarkers and to validate them in different breeds and management systems.

1358		
1359 1360		
1361	563	
1362 1363	564	Acknowledgements
1364 1365	565	This study was funded by projects AGL 2011-30598-C03 (Ministerio de Economía y
1366 1367 1368	566	Competitividad, Spain), FISS-13-RD12/0043/0030 and FISS-14-PI13/02741 (Instituto
1369 1370	567	de Salud Carlos III, Spain). M. Oliván, Y. Potes and A. Coto-Montes are members of
1370 1371 1372	568	the Research Team "cellular Response to Oxidative Stress (cROS)" of University of
1373 1374	569	Oviedo. Y. Potes thanks the FISS pre-doctoral fellowship from the Ministerio de
1375 1376	570	Economía y Competitividad (Instituto de Salud Carlos III). We are grateful to V.
1377 1378	571	Fernández-Suárez for collaboration in analytical procedures.
1379 1380	572	
1381 1382	573	References
1383 1384	574	Agarwal, A. R., Zhao, L., Sancheti, H., Sundar, I. K., Rahman, I., & Cadenas, E. (2012).
1385 1386 1387	575	Short-term cigarette smoke exposure induces reversible changes in energy metabolism
1388 1389	576	and cellular redox status independent of inflammatory responses in mouse lungs.
1390 1391	577	American Journal of Physiology: Lung Cell Molecular Physiology, 303, 889-898.
1392 1393	578	
1394 1395	579	Ampuero Kragten, S., & Gil, M. (2015). Chapter 5: Instrumental tenderness - shear
1396 1397	580	force. In M. Font-i-Furnols, M. Čandek-Potokar, C. Maltin, M. Prevolnik Povše (Eds.),
1398 1399	581	A handbook of reference methods for meat quality assessment (pp.45-54). Farm Animal
1400 1401	582	Imaging Cost Action FA1102.
1402 1403 1404	583	
1405 1406	584	Becerril-Herrera, M., Alonso-Spilsbury, M., Lemus-Flores, C., Guerrero-Legarreta, I.,
1407 1408	585	Olmos-Hernández, A., Ramírez-Necoechea, R., & Mota-Rojas, D. (2007). CO2
1409 1410	586	stunning may compromise swine welfare compared with electrical stunning. Meat
1411	587	Science, 81, 233-237.
1412 1413		24
1414		
1415		

1417 1418		
1419 1420	588	Blanchard, P. J., Warkup, C. C., Ellis, M., Willis, M. B., & Avery, P. (1999). The
1421 1422	589	influence of the proportion of Duroc genes on growth, carcass and pork eating quality
1423 1424 1425	590	characteristics. Animal Science, 68, 495-501.
1426 1427	591	Boler, D. D., Dilger, A. C., Bidner, B. S., Carr, S. N., Eggert, J. M., Day, J. W., Ellis,
1428 1429 1430	592	M., McKeith, F. K., & Killefer, J. (2010). Ultimate pH explains variation in pork quality
1431 1432	593	traits. Journal of Muscle Foods, 21, 119-130.
1433 1434	594	
1435 1436	595	Channon, H. A., Kerr, M. G., & Walker, P. J. (2004). Effect of Duroc content, sex and
1437 1438	596	ageing period on meat and eating quality attributes of pork loin. Meat Science, 66, 881-
1439 1440 1441	597	888.
1442 1443	598	
1444 1445	599	Channon, H. A., Payne, A. M., & Warner, R. D. (2000). Halothane genotype, pre-
1446 1447	600	slaughter handling and stunning method all influence pork quality. Meat Science, 56,
1448 1449	601	291-299.
1450 1451	602	
1452 1453	603	Cheah, K. S., Cheah, A. M., & Krausgrill, D. I. (1995). Variations in meat quality in
1454 1455 1456	604	live halothane heterozygotes identified by biopsy samples of M. longissimus dorsi.
1457 1458	605	<i>Meat Science, 39</i> , 293-300.
1459 1460	606	
1461 1462	607	Ciepielewski, Z. M., Stojek, W., Borman, A. Myślińska, D., Pałczyńska, P., &
1463 1464	608	Kamyczek, M. (2016). The effects of ryanodine receptor (RYR1) mutation on natural
1465 1466	609	killer cell cytotoxicity, plasma cytokines and stress hormones during acute intermittent
1467 1468	610	exercise in pigs. Research in Veterinary Science, 105, 77-86.
1469 1470	611	
1471 1472		25
1473 1474		
1475		

1476		
1477		
1478 1479	612	Cisneros, F., Ellis, M., Mckeith, F. K., McCaw, J., & Fernando, R. L. (1996). Influence
1480 1481	613	of slaughter weight on growth and carcass characteristics, commercial cutting and
1482 1483 1484	614	curing yields, and meat quality of barrows and gilts from two genotypes. Journal of
1485 1486	615	Animal Science, 74, 925-933.
1487 1488	616	
1489 1490	617	Dalmau, A., Temple D., Rodriguez, P., Llonch, P., & Velarde, A. (2009). Application of
1491 1492	618	the Welfare Quality® protocol at pig slaughterhouses. Animal Welfare, 18, 497-505.
1493 1494	619	
1495 1496	620	D'Eath R. B., Turner, S. P., Kurt, E., Evans, G., Thölking, L., Looft, H., Wimmers, K.,
1497 1498 1499	621	Murani, E., Klont, R., Foury, A., Ison, S. H., Lawrence, A. B., & Mormède, P. (2010).
1500 1501	622	Pig's agressive temperament affects pre-slaughter mixing aggression, stress and meat
1502 1503	623	quality. Animal, 4, 604-616.
1504 1505	624	
1506 1507	625	Depreux, F. F. S., Grant, A. L., & Gerrard, D. E. (2002). Influence of halothane
1508 1509	626	genotype and body-weight on myosin heavy chain composition in pig muscle as related
1510 1511	627	to meat quality. <i>Livestock Production Science</i> , 73, 265-273.
1512 1513 1514	628	
1515 1516	629	Dokmanovic, M., Baltic, M. Z., Duric, J., Ivanovic, J., Popovic, L., Todorovic, M.,
1517 1518	630	Markovic, R., & Pantic, S. (2015). Correlations among Stress Parameters, Meat and
1519 1520	631	Carcass Quality Parameters in Pigs. Asian-Australasian Journal of Animal Sciences, 28,
1521 1522	632	435-441.
1523 1524	633	
1525 1526	634	D'Souza, D. N., Dunshea, R. R., Warner, R. D., & Leury, B. J. (1998). The effect of
1527 1528	635	handling pre-slaughter and carcass processing rate post-slaughter on pork quality. Meat
1529 1530	636	<i>Science</i> , <i>50</i> , 429-437. 26
1531 1532		
1533		
1534		

1535		
1536		
1537 1538	637	
1539 1540	638	D'Souza, D. N., & Mullan, B. P. (2002). The effect of genotype, sex and management
1541 1542	639	strategy on the eating quality of pork. Meat Science, 60, 95-101.
1543 1544 1545	640	
1545 1546 1547	641	Edwards, L. N., Engle, T. E., Correa, J. A., Paradis, M. A., Grandin, T., & Anderson, D.
1548 1549	642	B. (2010a). The relationship between exsanguination blood lactate concentration and
1550 1551	643	carcass quality in slaughter pigs. Meat Science, 85, 435-440.
1552 1553	644	
1554 1555	645	Edwards, L. N., Grandin, T., Engle, T. E., Porter, S. P., Ritter, M. J., Sosnicki, A. A., &
1556 1557	646	Anderson, D. B. (2010b). Use of exsanguination blood lactate to assess the quality of
1558 1559	647	pre-slaughter pig handling. Meat Science, 86, 384-390.
1560 1561 1562	648	
1563 1564	649	Ellmerer, M., Schaupp, L., Brunner, G. A., Sendlhofer, G., Wutte, A., Wach, P., &
1565 1566	650	Pieber, T. R. (2000). Measurements of interstitial albumin in human skeletal muscle and
1567 1568	651	adipose tissue by open-low microperfusion. American Journal of Physiology.
1569 1570	652	Endocrinology and Metabolism, 285, E352-E356.
1571 1572	653	
1573 1574	654	E.U. (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22
1575 1576 1577	655	September 2010 on the protection of animals used for scientific purposes. Official
1578 1579	656	Journal of the European Communities, L276, 33-79.
1580 1581	657	
1582 1583	658	Fàbrega, E., Manteca, X., Font, J., Gispert, M., Carrión, D., Velarde, A., Ruiz-de-la-
1584 1585 1586 1587	659	Torre, J. L., & Diestre, A. (2004). A comparison of halothane homozygous negative and
1588 1589		
1590 1591 1592		27

positive pietrain sire lines in relation to carcass and meat quality, and welfare traits. Meat Science, 66, 777-787.

Fàbrega, E., Velarde, A. Cros, J., Gispert, M., Suarez, P., Tibau, J., & Soer, J. 2010. Effect of vaccination against gonodotroping-releasing hormone, using Improvac®, on growth performance, body composition, behaviour and acute phase proteins. Livestock Science, 132, 53-59.

Fernandez, X., Nevraud, E., Astruc, T., & Sante, V. (2002). Effects of halothane genotype and pre-slaughter treatment on pig meat quality. Part 1. Post mortem metabolism, meat quality indicators and sensory traits of m. Longissimus lumborum. Meat Science, 62, 429-437.

Fiedler, I., Ender, K., Wicke, M., Maak, S., Lengerken, G. V., & Meyer, W. (1999). Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Science, 53, 9-15.

Franco, D., Mato, A., Salgado, F. J., López-Pedrouso, M., Carrera, M., Bravo, S., Parrado, M., Gallardo, J. M., & Zapata, C. (2015). Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress. Journal of Proteomics, 122, 73-85.

1653		
1654		
1655	683	Fujii, J., Otsu, K., Zorzato, F., De Leon, S., Khanna, V. K., Weiler, J. E., O'Brien, P. J.,
1656	005	
1657	684	& MacLennan, D. H. (1991). Identification of a mutation in porcine ryanodine receptor
1658	001	
1659	685	associated with malignant hyperthermia. Science, 253, 448-451.
1660 1661	000	
1662	686	
1663	000	
1664	687	Gagaoua, M., Terlouw, E. M. C., Micol, D., Boudjellal, A., Hocquette, J. F., & Picard,
1665		
1666	688	B. (2015). Understanding early post-mortem biochemical processes underlying meat
1667		
1668	689	color and pH decline in the Longissimus thoracis muscle of young blond d'Aquitaine
1669		
1670	690	bulls using protein biomarkers. Journal of Agricultural and Food Chemistry, 63, 6799-
1671		
1672	691	6809.
1673 1674		
1675	692	
1676		
1677	693	Gagaoua, M., Terlouw, E. M. C., Picard, B. (2017). The study of protein biomarkers to
1678		
1679	694	understand the biochemical processes underlying beef color development in young
1680		
1681	695	bulls. <i>Meat Science</i> , 134, 18-27.
1682		
1683	696	
1684 1685		
1686	697	Gispert, M., Angels Oliver, M., Velarde, A., Suarez, P., Pérez, J., & Font i Furnols, M.
1687		
1688	698	(2010). Carcass and meat quality characteristics of immunocastrated male, surgically
1689	600	
1690	699	castrated male, entire male and female pigs. Meat Science, 85, 664-670.
1691	700	
1692	700	
1693	701	Callenia M. Danast M. Luis C. & Discud D. (2011). Franctional conducts of head
1694	701	Guillemin, N., Bonnet, M., Jurie, C., & Picard, B. (2011). Functional analysis of beef
1695	702	tondomosa low al of Ductoonier 75, 252,265
1696 1697	702	tenderness. Journal of Proteomics, 75, 352-365.
1698	702	
1699	703	
1700	704	Hambrecht, E., Eissen, J. J., Newman, D. J., Smits, C. H. M.,. den Hartog, L. A., &
1701	/04	Hambreent, E., Elssen, J. J., Newman, D. J., Shints, C. H. Wi., den Hartog, E. A., &
1702	705	Verstegen, M. W. A. (2005a). Negative effects of stress immediately before slaughter
1703	105	versiegen, w. w. m. (20050). Reguive encets of sitess minibulatery before shughter
1704	706	on pork quality are aggravated by suboptimal transport and lairage conditions. Journal
1705		r - 1
1706 1707	707	of Animal Science, 83, 440-448.
1707		29
1708		
1710		
1711		

1712		
1713		
1714	708	
1715		
1716	709	Hambrecht, E., Eissen, J. J., Newman, D. J., Smits, C. H. M., Verstegen, M. W. A., &
1717		
1718 1719	710	den Hartog, L. A. (2015b). Preslaughter handling effects on pork quality and glycolytic
1719		
1721	711	potential in two muscles differing in fiber type composition. Journal of Animal Science,
1722		
1723	712	83, 900-907.
1724		
1725	713	
1726		
1727	714	Havlis, J., Thomas, H., Sebela, M., & Shevchenko, A. (2003). Fast-response proteomics
1728 1729		
1729	715	by accelerated in-gel digestion of proteins. Analytical Chemistry, 75, 1300-1306.
1731	716	
1732	716	
1733	717	Hellung K. Vaisath E. Jia V. Emergested E. M. & Hildrum K. I. (2007)
1734	717	Hollung, K., Veiseth, E., Jia, X., Færgestad, E. M., & Hildrum, K. I. (2007).
1735	718	Application of proteomics to understand the molecular mechanisms behind meat
1736	/10	Application of proteonnes to understand the molecular meenanisms bennit meat
1737 1738	719	quality. Meat Science, 77, 97-104.
1739	,	
1740	720	
1741		
1742	721	Jami, M. S., Barreiro, C., García-Estrada, C., & Martín, J. F. (2010). Proteome analysis
1743		
1744	722	of the penicillin producer Penicillium chrysogenum: characterization of protein changes
1745 1746		
1740	723	during the industrial strain improvement. Molecular & Cellular Proteomics, 9, 1182-
1748	724	1100
1749	724	1198.
1750	725	
1751	123	
1752	726	Jia, X., Veiseth-Kent, E., Grove, H., Kuziora, P., Aass, L., Hildrum, K. I., & Hollung,
1753	/20	
1754 1755	727	K. (2009). Peroxiredoxin-6_A potential protein marker for meat tenderness in bovine
1756		
1757	728	longissimus thoracis muscle. Journal of Animal Science, 87, 2391-2399.
1758		
1759	729	
1760		
1761	730	Kazemi, S., Ngadi, M. O., & Gariépy, C. (2011). Protein Denaturation in Pork
1762 1763		
1764	731	Longissimus Muscle of Different Quality Groups. Food and Bioprocess Technology, 4,
1765	722	102 106
1766	732	102-106.
1767		30
1768		
1769		
1770		

1771		
1772 1773 1774	733	
1775 1776	734	Krischek, C., Natter, R., Wigger, R., & Wicke, M. (2011). Adenine nucleotide
1777 1778 1779	735	concentrations and glycolytic enzyme activities in longissimus muscle samples of
1779 1780 1781	736	different pig genotypes collected before and after slaughter. Meat Science, 89, 217-220.
1782 1783	737	
1784 1785	738	Lametsch, R., Karlsson, A., Rosenvold, K., Andersen, H. J., Roepstorff, P., &
1786 1787	739	Bendixen, E. (2003). Postmortem proteome changes of porcine muscle related to
1788 1789	740	tenderness. Journal of Agricultural and Food Chemistry, 51, 6992-6997.
1790 1791	741	
1792 1793	742	Laville, E., Sayd, T., Terlouw, C., Chambon, Ch., Damon, M., Larzul, C., Leroy, P.,
1794 1795 1796	743	Glénisson, J., & Chérel, P. (2007). Comparison of Sarcoplasmic Proteomes between
1797 1798	744	Two Groups of Pig Muscles Selected for Shear Force of Cooked Meat. Journal of
1799 1800 1801	745	Agricultural and Food Chemistry, 55, 5834-5841.
1802 1803	746	
1804 1805	747	Laville, E., Sayd, T., Terlouw, C., Blinet, S., Pinguet, J., Fillaut, M., Glénisson, J., &
1806 1807	748	Chérel, P. (2009). Differences in Pig Muscle Proteome According to HAL Genotype:
1808 1809	749	Implications for Meat Quality Defects. Journal of Agricultural and. Food Chemistry,
1810 1811	750	57, 4913-4923.
1812 1813	751	
1814 1815 1816	752	Leite, T. C., Da Silva, D., Coelho, R. G., Zancan, P.,& Sola-Penna, M. (2007). Lactate
1817 1818	753	favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-
1819 1820	754	regulating the enzyme and muscle glycolysis. Biochemical Journal, 408, 123-130.
1821 1822 1823 1824	755	
1825 1826 1827 1828 1829		31

1830	
1831	
1832 1833 756	Marco-Ramell, A., Pato, R., Peña, R., Saco, Y., Manteca, X., Ruiz de la Torre, J. L.,
1834 1835 757	Bassols, A. (2011). Identification of serum stress biomarkers in pigs housed at different
1836 1837 758	stocking densities. Veterinary Journal, 190, 66-71.
1838 1839 759 1840	
1841 760 1842	Marco-Ramell, A., Arroyo, L., Peña, R., Pato, R., Saco, Y., Fraile, L., Bendixen, E., &
1843 761 1844	Bassols, A. (2016). Biochemical and proteomic analyses of the physiological response
1845 762 1846	induced by individual housing in gilts provide new potential stress markers. BMC
1847 763 1848	Veterinary Research, 12, 265.
1849 1850 1851	
1851 765 1852 765 1853	Mota-Rojas, D., Herrera, M. B., Trujillo-Ortega, M. E., Alonso-Spilsbury, M., Flores-
1854 766 1855	Peinado, S. C., & Guerrero-Legarreta, I. (2009). Effects of pre-slaughter transport,
1856 767 1857	lairage and sex on pig chemical serologic profiles. Journal of Animal Veterinary
1858 768 1859 760	Advances, 8, 246-250.
1860 769 1861	
1862 770 1863	Mota-Rojas, D., Becerril-Herrera, M., Roldan-Santiago, P., Alonso-Spilsbury, M.,
1864 771 1865	Flores-Peinado, S., Ramírez-Necoechea, R., Ramírez-Telles, J. A., Mora-Medina, P.,
1866 772 1867	Pérez, M., Molina, E. Soní, E., & Trujillo-Ortega, M. E. (2012). Effects of long distance
1868 1869 1870	transportation and CO ₂ stunning on critical blood values in pigs. <i>Meat Science</i> , 90, 893-
1871 774 1872	898.
1873 775 1874	
1875 776 1876	Murata, H. (2007). Stress and acute phase protein response: An inconspicuous but
1877 777 1878 1879 778	essential linkage. Veterinary Journal, 173, 473-474
1879 778 1880 1881 1881 779	Naylor, S. (2003). Biomarkers: current perspectives and future prospects. <i>Expert Review</i>
1882 1883 780	of Molecular Diagnostics, 3, 525-529.
1884 1885 1886 1887 1888	32

1889		
1890		
1891 1892	781	Oakley, C., Hambly, B. D., Curmi, P. M. G., & Brown, L. J. (2004). Myosin binding
1893 1894 1895	782	protein C: Structural abnormalities in familial hypertrophic cardiomyopathy. Cell
1896 1897	783	<i>Research, 14</i> , 95-110.
1898 1899	784	
1900 1901	785	Oliván, M., Fernández-Suárez, V., Díaz-Martínez, F., Sierra, V., Coto-Montes, A., de
1902 1903	786	Luxán-Delgado, B., Peña, R., Bassols, A., Fàbrega, E., Dalmau, A., & Velarde, A.
1904 1905	787	(2016). Identification of Biomarkers of Stress in Meat of Pigs Managed under Different
1906 1907 1908	788	Mixing Treatments. British Biotechnology Journal, 11, 1-13.
1909 1910	789	
1911 1912	790	Ouali, A., Gagaoua, M., Boudida, Y., Becila, S., Boudjellal, A., Herrera-Mendez, C., &
1913 1914	791	Sentandreu, M. A. (2013). Biomarkers of meat tenderness: Present knowledge and
1915 1916	792	perspectives in regards to our current understanding of the mechanisms involved. Meat
1917 1918	793	<i>Science</i> , <i>95</i> , 854-870.
1919 1920	794	
1921 1922	795	Pancholi, V. (2001). Multifunctional alpha-enolase: its role in diseases. Cellular and
1923 1924 1925	796	Molecular Life Sciences, 58, 902-920.
1925 1926 1927	797	
1928 1929	798	Picard, B., & Gagaoua, M. (2017). Chapter 11: Proteomic Investigations of Beef
1930 1931	799	Tenderness. In: M. Colgrave (Ed.), Proteomics in Food Science: from farm to fork (pp.
1932 1933	800	177-197). Academic Press.
1934 1935	801	
1936 1937	802	Picard, B., Gagaoua, M., & Hollung, K. (2017). Chapter 12: Gene and Protein
1938 1939 1940	803	Expression as a Tool to Explain/Predict Meat (and Fish) Quality. In P. Purslow (Ed.),
1940 1941 1942	804	New Aspects of Meat Quality: from Genes to Ethics (pp.321-354). Netherlands: Elsevier
1942 1943 1944 1945 1946 1947	805	Science. 33

1948		
1949		
1950	806	
1951	000	
1952	807	Picard, B., Kammoun, M., Gagaoua, M., Barboiron, Ch., Meunier, B., Cambon, Ch., &
1953	007	r leard, D., Kammoun, M., Gagaoua, M., Darbonon, Ch., Mediner, D., Cambon, Ch., &
1954	808	Cassar-Malek, I. (2016). Calcium Homeostasis and Muscle Energy Metabolism Are
1955	000	Cassar-Malek, I. (2010). Calcium Homeostasis and Musele Energy Metabolism Are
1956	809	Modified in HspB1-Null Mice. Proteomes, 4, 17.
1957	807	Mounted in http://www.intec. 170/eomes, 4, 17.
1958 1959	810	
1959	010	
1961	811	Piñeiro, M., Piñeiro, C., Carpintero, R., Morales, J., Campbell, F. M., Eckersall, P. D.,
1962	011	There, W., There, C., Carpinero, K., Woracs, J., Campben, T. W., Eckersan, T. D.,
1963	812	Toussaint, M. J. M., & Lampreave, F. (2007a). Characterisation of the pig acute phase
1964	012	Toussaint, M. J. M., & Lampreave, T. (2007a). Characterisation of the pig acute phase
1965	813	protein response to road transport. The Veterinary Journal, 173, 669-674.
1966	015	protein response to road transport. The veter thary sournal, 175, 007-074.
1967	814	
1968	014	
1969	815	Piñeiro, C., Piñeiro, M., Morales, J., Carpintero, C., Campbell, F. M., Eckersall, P. D.,
1970	015	There, C., There, M., Morales, J., Carpinero, C., Campben, F. M., Eckersan, T. D.,
1971	816	Toussaint, M. J. M., Alava, M. A., & Lampreave, F. (2007b). Pig acute-phase protein
1972	010	Toussaint, W. J. W., Alava, W. A., & Lampreave, T. (20070). The acute-phase protein
1973	817	levels after stress induced by changes in the pattern of food administration. Animal, 1,
1974	017	levels alter stress induced by changes in the pattern of food administration. Animal, 1,
1975 1976	818	133-139.
1970	010	155-157.
1978	819	
1979	017	
1980		
1981	820	Polati, R., Menini, M., Robotti, E., Millioni, R., Marengo, E., Novelli, E., Balzan, S.,
1982	020	Tolati, K., Mehini, M., Kobotti, L., Minioni, K., Marengo, L., Noveni, E., Daizan, S.,
1983	821	Cecconi, D. (2012). Proteomic changes involved in tenderization of bovine Longissimus
1984	021	Ceccom, D. (2012). I folcomic enanges involved in enderization of bovine Longissinius
1985	822	dorsi muscle during prolonged ageing. Food Chemistry, 135, 2052-69.
1986	022	dorst musere during protonged ageing. I ood Chemistry, 155, 2052 07.
1987		
1988	823	
1989	025	
1990 1991	824	Rasmussen, A., & Andersson, M. (1996). New method for determination of drip loss in
1991	024	Rushussen, M., & Andersson, M. (1990). New method for determination of drip 1055 m
1992	825	pork muscles. Paper presented at the Proceedings of the 42th International Congress of
1993	025	pork muscles. I uper presented at the Troceedings of the 12th International Congress of
1995	826	Meat Science and Technology, pp. 286-287. Lillehammer, Norway 1-6/09/1996.
1996	020	inear service and reemotogy, pp. 200 207. Emenaniner, retway 1 0/07/1990.
1997	827	
1998	027	
1999		
2000		
2001		
2002		24
2003		34
2004		
2005		
2006		

2007		
2008 2009		
2010	828	Roberts, S. A., Schaefer, A. L., Murray, A. C., & Thibault, L. (1998). Fall and winter
2011	829	hormone concentrations related to stress in pigs identified as normal and carrier for
2012 2013		r of a state of the state of th
2014	830	stress susceptibility. Chronobioly International Journal, 15,275-281.
2015	021	
2016 2017	831	
2017	832	Salamano, G., Mellia, E., Candiani, E., Ingravalle, F., Bruno, R., Ru, G. & Doglione, L.
2019		
2020	833	(2008). Changes in haptoglobin, C-reactive protein and pig-MAP during a housing
2021 2022	834	naried following long distance transport in awing The Veteringry Journal 177, 110
2022	834	period following long distance transport in swine. The Veterinary Journal, 177, 110-
2024	835	115.
2025 2026		
2020 2027	836	
2028	837	Saco, Y., Docampo, M. J., Fàbrega, E., Manteca, X., Diestre, A., Lampreave, F., &
2029	857	Saco, T., Docampo, M. J., Fablega, E., Manteca, A., Diestre, A., Lampreave, F., &
2030 2031	838	Bassols, A. (2003). Effect of transport stress on serum haptoglobin and Pig-MAP in
2032		
2033	839	pigs. Animal Welfare, 12, 403-409.
2034 2035	840	
2035	0-10	
2037	841	Sedoris, K. C., Thomas, S. D., & Miller, D. M. (2010). Hypoxia induces differential
2038	0.40	
2039 2040	842	translation of enolase/MBP-1. BMC Cancer, 10, 157.
2041	843	
2042		
2043 2044	844	Shen, Q. W., Underwood, K. R., Means, W. J., McCormick, R. J., & Du, M. (2007).
2045	015	The help there are an end to be line and an end of the manual sector of the sector of a matrix
2046	845	The halothane gene, energy metabolism, adenosine monophosphate-activated protein
2047 2048	846	kinase, and glycolysis in postmortem pig longissimus dorsi muscle. Journal of Animal
2048		
2050	847	<i>Science</i> , <i>85</i> ,1054-1061.
2051	848	
2052 2053	040	
2054	849	Sierra, V., Fernández-Suárez, V., Castro, P., Osoro, K., Vega-Naredo, I., García-Macia,
2055		
2056 2057	850	M., Rodríguez-Colunga, M. J., Coto-Montes, A. & Oliván, M. (2012). Identification of
2058	851	biomarkers of meat tenderisation and its use for early classification of Asturian beef into
2059	0.51	biomarkers of meat tendensation and its use for early classification of Asturian beer into
2060		
2061 2062		35
2063		
2064		
2065		

2067		
2068 2069	852	fast and late tenderizing meat. Journal of the Science of Food and Agriculture, 92,
2070 2071	853	2727-2740.
2072 2073	854	
2074 2075 2076	855	Sola-Penna, M., Da Silva, D., Coelho, W. S., Marinho-Carvalho, M. M., & Zancan, P.
2077 2078	856	(2010). Regulation of Mammalian Muscle Type 6-Phosphofructo-1-kinase and Its
2079 2080	857	Implication for the Control of the Metabolism. IUBMB Life, 62, 791-796.
2081 2082	858	
2083 2084	859	Tarrant, P. V. (1990). Transportation of cattle by road. Applied Animal Behaviour
2085 2086	860	Science, 28, 153-170.
2087 2088	861	
2089 2090 2091	862	Tarze, A., Deniaud, A., Le Bras, M., Maillier, E., Molle, D., Larochette, N., Zamzami,
2091 2092 2093	863	N., Jan, G., Kroemer, G., & Brenner, C. (2007). GAPDH, a novel regulator of the pro-
2093 2094 2095	864	apoptotic mitochondrial membrane permeabilization. Oncogene, 26, 2606-2620.
2096 2097	865	
2098 2099	866	Terlouw, C. (2005). Stress reactions at slaughter and meat quality in pigs: Genetic
2100 2101	867	background and prior experience: A brief review of recent findings. Livestock
2102 2103	868	Production Science, 94, 125-135.
2104 2105	869	
2106 2107 2108	870	Terlouw, C., & Rybarczyk, P. (2008). Explaining and predicting differences in meat
2109 2110	871	quality through stress reactions at slaughter: The case of Large White and Duroc pigs.
2111 2112	872	Meat Science, 79, 795-805.
2113 2114 2115	873	tePas M. F. W., Hoekman, A. J. W., & Smits, M. A. (2011). Biomarkers as management
2115 2116 2117	874	tools for industries in the pork production chain. Journal on Chain and Network
2118 2119	875	Science, 11, 155-166.
2120 2121 2122 2123 2123		36

2125		
2126		
2127 2128	876	tePas, M. F. W., Lebret, B., & Oksbjerg, N. (2017). Measurable biomarkers linked to
2129 2130	877	meat quality from different pig production systems. Archives Animal Breeding, 60, 271-
2131 2132 2133	878	283.
2133 2134 2135	879	
2136 2137	880	Treves, S., Anderson, A. A., Ducreux, S., Divet, A., Bleunven, Ch., Grasso, C., Paesant,
2138 2139	881	S., & Zorzato, F. (2005). Ryanodine receptor 1 mutations, dysregulation of calcium
2140 2141	882	homeostasis and neuromuscular disorders. Neuromuscular Disorders, 15, 577-587.
2142 2143	883	
2144 2145	884	Van den Maagdenberg, K., Stinckens, A., Lefaucheur, L., Buys, N., & De Smet, S.
2146 2147	885	(2008). The effect of mutations in the insulin-like growth factor-II and ryanodine
2148 2149 2150	886	receptor-1 genes on biochemical and histochemical muscle fibre characteristics in pigs.
2151 2152	887	Meat Science, 79, 757-766.
2153 2154	888	
2155 2156	889	Wulff, T., Jokumsen, A., Højrup, P., & Jessen, F. (2012). Time-dependent changes in
2157 2158	890	protein expression in rainbow trout muscle following hypoxia. Journal of Proteomics,
2159 2160	891	75, 2342-2351.
2161		
2162 2163		
2164		
2165		
2166		
2167		
2168		
2169		
2170		
2171		
2172 2173		
2173		
2175		
2176		
2177		
2178		
2179		27
2180		37
2181		
2182 2183		

Table 1 Least squares means and the effect of sex (S) and RYR1 genotype (G) and its

interaction (S*G) on carcass and meat quality traits.

2192	
2193	

Sex	Male		Female			<i>P</i> -value		
Genotype	NN	Nn	NN	Nn	SEM ¹	S	G	S*G
Temperature (°C)	37.37	37.38	37.10	39.47	1.386	0.7173	0.1332	0.222
Skin lesions	0.33	0.67	0.5	0.33	0.552	0.6034	0.6034	1.000
pH45	6.57	6.32	6.42	6.13	0.171	0.0021	<.0001	0.331
pH24	5.50	5.50	5.44	5.43	0.070	0.2909	0.2558	0.6532
pH amplitude (pH45-pH24)	1.075	0.820	0.987	0.703	0.094	0.2881	0.0102	0.8824
EC^{2} (mS)	4.11	6.12	5.94	7.20	2.099	0.1088	0.0144	0.321
Drip loss (%)	4.48	5.48	4.92	7.21	1.679	0.1887	<.0001	0.982
L*	50.54	49.16	49.47	50.92	2.044	0.5354	0.553	0.075
a*	6.97°	6.33 ^a	6.77 ^b	6.56 ^b	0.692	0.8748	0.0064	0.040
b*	2.18 ^b	1.54ª	2.05 ^b	2.24 ^b	0.734	0.7904	0.109	0.015
WBSF ³ -1d	4.91	5.10	4.17	5.19	0.920	0.3216	0.0326	0.937
WBSF ³ -3d	4.22	4.22	3.72	4.54	0.706	0.655	0.0029	0.8014
WBSF ³ -5d	3.80	4.01	3.60	4.70	0.598	0.5445	0.0005	0.5598

897 898 Means in the same row followed by different superscripts are significantly different at P < 0.05.

¹SEM: standard error of means

²EC: electrical conductivity

³WBSF: Warner-Braztler shear force at 1, 3 or 5 days *post mortem*

Table 2. Least squares means and the effect of sex (S) and RYR1 genotype (G) and its

interaction (S*G) on serum biochemical variables at slaughter.

2252	904									
2253		Sex	Male		Female		<i>P</i> -value			
2254		Genotype	NN	Nn	NN	Nn	SEM ¹	S	G	S*G
2255		Glucose, mg/dL	286.25	330.51	366.91	349.62	14.676	0.019	0.523	0.138
2256		Lactate, mmol/L	10.61	10.37	8.53	9.35	0.432	0.013	0.622	0.377
2257		Creatinine, mg/dL	1.88	2.03	2.00	2.06	0.034	0.123	0.035	0.329
2258		Urea, mg/dL	27.08	25.31	37.90	32.69	1.473	< 0.001	0.097	0.409
2259		Total proteins, g/dL	6.84	6.66	6.85	6.82	0.066	0.396	0.258	0.434
2260		Triglycerids, mg/dL	47.92	51.75	49.64	55.25	2.283	0.401	0.155	0.806
2261		Cholesterol, mg/dL	90.33	87.43	92.15	95.64	1.811	0.053	0.919	0.219
2262		HDL-chol ² , mmol/L	1.14	1.14	1.16	1.21	0.017	0.072	0.238	0.238
2263		LDL-chol ³ , mmol/L	1.35	1.26	1.32	1.33	0.031	0.602	0.304	0.288
2264		NEFAs ⁴ , mmol/L	0.080	0.082	0.085	0.067	0.008	0.657	0.426	0.342
2265		BHB ⁵ , mmol/L	0.072	0.085	0.081	0.077	0.005	0.933	0.511	0.279
2266		Haptoglobin, mg/mL	0.174	0.408	0.523	0.474	0.085	0.091	0.437	0.245
2267		CRP ⁶ , µg/mL	4.35	10.05	10.56	12.35	1.246	0.018	0.039	0.261
2268		Pig-MAP, mg/mL	0.62	0.58	0.96	0.72	0.049	0.001	0.050	0.163
2269		CK ⁷ , U/L	1844.58	3024.42	1920.36	4368.08	277.388	0.065	< 0.001	0.125
2270		GPx ⁸ , U/L	8321.42 ^a	8855.58 ^a	14481.55 ^b	8670.33ª	683.073	0.003	0.009	0.002
2271		Cortisol, ng/mL	39.03	38.95	30.92	43.37	2.869	0.670	0.139	0.134
	005	More in the same 0.11 ± 11.0100 and 1.000 and 1.000 and 1.000 and 1.000								

Means in the same row followed by different superscripts are significantly different at P < 0.05.

907 ¹SEM: standard error of means

² HDL-chol: High density lipoproteins-cholesterol

³ LDL-chol: High density lipoproteins-cholesterol

⁴ NEFAs: non-esterified fatty acids ⁵ BHB: β-hydroxybutyrate

⁶ CRP: C-reactive protein

⁷ CK: creatine kinase

⁸ GPx: glutathione peroxidase

Table 3: Protein identification in noticeable bands of sarcoplasmic extracts separated by

SDS-PAGE acrilamide gels

Sequence **MOWSE³** Coverage Matched Identification Accession no.² (%) Queries MWt⁴ 2313 Band [MWe¹] scores Myosin-binding protein C, fast-S2 (175.6 kDa) gi|335290041 128.4 type [Sus scrofa]: FastMyBP-C Muscle 6-phosphofructokinase S6 (86.8 kDa) 82.4 gi|95117652 [Sus scrofa]: PFK-M 2318 S9 (61.7 kDa) Albumin [Sus scrofa] gi|833798 71.4 Glyceraldehyde-3-phosphate dehydrogenase S18 (32.5 kDa) 35.9 gi|65987 (phosphorylating): (EC 1.2.1.12)- pig: GAPDH 2323 S23 (26.3 kDa) β-enolase [Bos taurus]: ENO3 gi|77736349 47.4 Carbonic anhydrase 3 [Sus gi|56711366 29.7 scrofa]: CAIII 2325 S24 (25.3 kDa) Phosphoglycerate mutase-2 gi|201066358 28.8 [Sus scrofa]: PGM2 Adenylate kinase isoenzyme 1 2328 S26 (20.5 kDa) gi|350579686 21.7 [Sus scrofa]: AK1

¹MWe is the experimental molecular weight (kDa)

921 ²Accession number correspond to NCBInr database

³The MOWSE score is a numeric descriptor of the likelihood that the identification is correct. Protein scores greater

 $9\overline{2}\overline{2}$ than 69 are significant (P < 0.05)

⁴ MWt is the theoretical molecular weight (kDa)

Table 4. Least squares means and the effect of sex (S), RYR1 genotype (G) and its
interaction (S*G) on the expression of noticeable proteins of the muscle sarcoplasmic
extracts (optical density, in arbitrary units).

932 Sex Male Female P-value NN Nn NN SEM¹ S G Genotype Nn S*G Fast MyBP-C 0.217 0.168 0.370 0.223 0.034 0.048 0.044 0.272 PFK-M 0.790 0.466 1.328 1.498 0.854 0.144 0.911 0.006 Albumin 2.329^b 2.441^b 0.006 2.688^b 1.881^a 0.119 0.081 0.385 GAPDH 13.109 12.235 0.367 0.710 0.313 14.065 14.398 0.009 0.934 0.124 0.211 ENO3 0.379 1.049 0.667 0.704 0.017 0.870 CAIII/PGM2 7.967 7.140 7.907 7.111 0.204 0.963 0.012 AK-1 2.085^a 1.985^a 1.979^a 2.160^b 0.046 0.658 0.591 0.046

Means in the same row followed by different superscripts are significantly different at P < 0.05.

933 Means in the same row followe
934 ¹SEM: standard error of means
935

2361 2362 2363

2364

2365 2366

2367 2368

2369 2370

2371

2372

2373 2374

2375

2376

2377

2378

2379

2380

2381

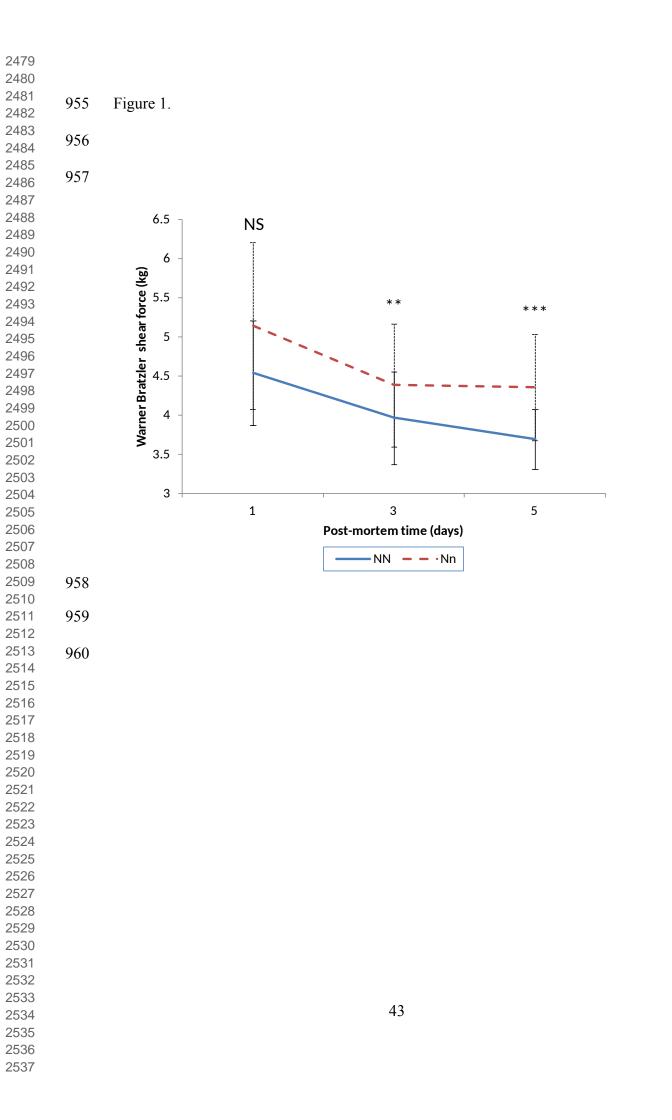
2382

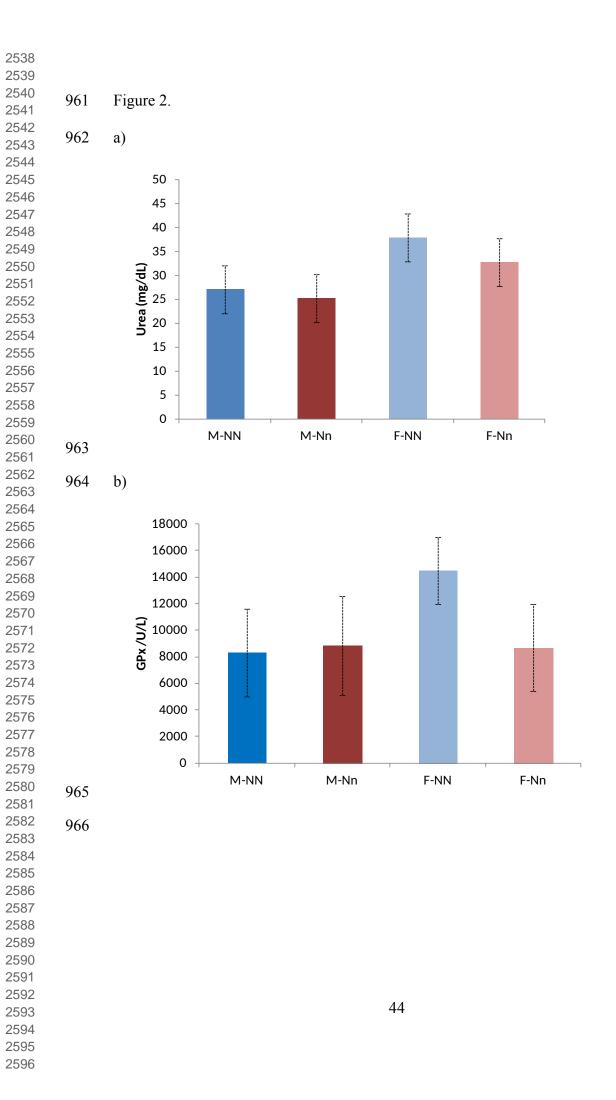
2383

2384

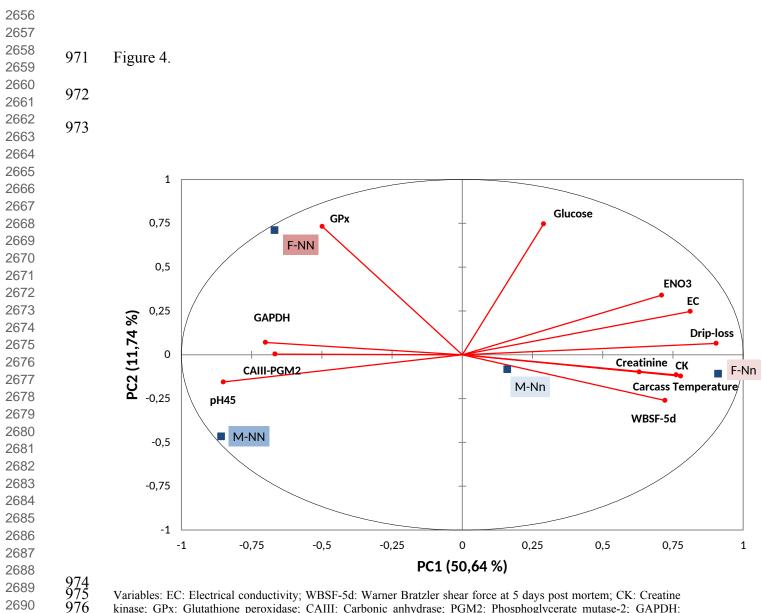
2385

2386


930


931

936


937

2420		
2421		
2422 2423	938	Figure captions:
2424 2425 2426	939	
2420 2427 2428	940	Figure 1. Effect of RYR1 mutation (NN: halothane free, Nn: gene mutation carrier) on
2429 2430	941	the post mortem evolution of meat toughness, measured as maximum Warner Bratzler
2431 2432	942	shear force (means \pm S.E.). Significances: **: $P < 0.01$, ***: $P < 0.001$, NS: $P > 0.05$.
2433 2434	943	
2435 2436	944	Figure 2. Urea (a) and GPx (b) levels in serum (means \pm S.E.) in the four studied
2437 2438 2439	945	treatments (M: male, F: female, NN: halothane free, Nn: gene mutation carrier).
2440 2441	946	
2442 2443	947	Figure 3. SDS-PAGE gel image of sarcoplasmic extracts of the LD muscle in the four
2444 2445	948 949	treatments (M-NN, M-Nn, F-NN, F-Nn). Band names are denoted by S (sarcoplasmic protein) followed by a number.
2446 2447 2448	949 950	protein) tonowed by a number.
2449 2450	951	Figure 4. PCA biplot of meat quality traits and stress biomarkers. Mean scores for animal
2451 2452	952	treatments (M-NN, M-Nn, F-NN, F-Nn) are shown in squares.
2453 2454	953	
2455 2456	954	
2457 2458 2459		
2460 2461		
2462 2463		
2464 2465		
2466 2467 2468		
2469 2470		
2471 2472		
2473 2474		42
2475 2476		42
2477 2478		

2597 2598		
2599 2600	967	Figure 3.
2601 2602 2603	968	
2604		MW (kDa) M-NN M-Nn F-NN F-Nn
2605		250
2606		150 S1 S2 S4 S2
2607		100 \$5
2608		S6
2609 2610		75 S7 S8
2611		S8 S9
2612		57 \$10
2613		
2614		50 \$13 \$14
2615		S15
2616		
2617 2618		S16
2619		37 <u>517</u>
2620		S18
2621		
2622		\$19 \$20
2623		S21
2624 2625		S22
2625		\$23 \$24
2627		25 <u>\$25</u>
2628		THE REAL PROPERTY AND
2629		526
2630	969	20
2631 2632		
2633	970	
2634		
2635		
2636		
2637		
2638 2639		
2640		
2641		
2642		
2643		
2644		
2645 2646		
2647		
2648		
2649		
2650		
2651		45
2652 2653		5
2654		
2655		

kinase; GPx: Glutathione peroxidase; CAIII: Carbonic anhydrase; PGM2: Phosphoglycerate mutase-2; GAPDH:
 Glyceraldehyde-3-phosphate dehydrogenase; ENO3: β-enolase

978
 979
 979
 979
 970
 970
 971
 971
 972
 973
 974
 975
 975
 976
 977
 978
 978
 979
 979
 979
 970
 970
 971
 971
 971
 972
 973
 974
 975
 975
 976
 976
 977
 978
 978
 978
 979
 979
 979
 970
 970
 970
 971
 971
 971
 972
 973
 974
 974
 974
 975
 974
 974
 975
 975
 976
 976
 976
 977
 978
 978
 978
 978
 978
 979
 979
 979
 970
 970
 970
 971
 971
 972
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 974
 975
 975
 975
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976
 976

TABLES FOR ON-LINE SUPPLEMENTARY MATERIAL

Table: Protein expressions for the whole set of protein bands separated by SDS-PAGE acrilamide gels (optical density, in arbitrary units).

Sex	Ν	Male	Fe	emale	S	Significance		
Genotype	NN	Nn	NN	Nn	S	G	S*G	
B1 (210.6 kDa)	0.539	0.717	0.485	0.613	NS	NS	NS	
B2 (175.6 kDa)	0.217	0.169	0.370	0.223	*	*	NS	
B3 (145.1 kDa)	0.226	0.225	0.126	0.158	NS	NS	NS	
B4 (114.1 kDa)	0.209	0.322	0.257	0.325	NS	NS	NS	
B5 (97.8 kDa)	4.925	6.376	5.756	5.847	NS	NS	NS	
B6 (86.8 kDa)	1.328	1.498	0.854	0.789	**	NS	NS	
B7 (73.8 kDa)	0.460	0.443	0.383	0.546	NS	NS	NS	
B8 (70.5 kDa)	0.309	0.369	0.370	0.372	NS	NS	NS	
B9 (61.7 kDa)	2.688	2.330	1.881	2.441	NS	NS	**	
B10-11-12 ¹ (56.8-53.5 kDa)	11.038	10.999	11.782	11.287	NS	NS	NS	
B13 (49.9 kDa)	0.617	0.403	0.476	0.501	NS	NS	NS	
B14 (48.2 kDa)	0.082	0.326	0.092	0.934	NS	NS	NS	
B15 (43.5 kDa)	12.837	12.766	13.381	13.490	NS	NS	NS	
B16 (38.9 kDa)	16.113	16.271	16.575	16.391	NS	NS	NS	
B17 (35.2 kDa)	11.439	10.637	8.743	10.533	NS	NS	NS	
B18 (32.5 kDa)	14.065	13.109	14.398	12.235	NS	**	NS	
B19 (31.1 kDa)	6.493	6.631	6.686	6.365	NS	NS	NS	
B20-21 ² (30.3-29.0 kDa)	1.027	1.044	0.752	0.893	NS	NS	NS	
B22 (27.7 kDa)	1.023	1.032	1.105	1.078	NS	NS	NS	
B23 (26.3 kDa)	0.379	1.049	0.667	0.934	NS	*	NS	
B24 (25.3 kDa)	7.968	7.139	7.907	7.111	NS	*	NS	
B25 (24.2 kDa)	3.411	3.291	3.968	3.903	NS	NS	NS	
B26 (20.5 kDa)	2.085	1.985	1.978	2.161	NS	NS	*	

¹Bands 10,11 and 12 co-migrate in some SDS-PAGE gels, then they were quantified together ²Bands 20 and 21 co-migrate in some SDS-PAGE gels, then they were quantified together

Band [MWe ¹]	Identification	Accession no. ²	MOWSE ³ scores	Sequence Coverage (%)	Matched Queries	MWt ⁴
B1 (210.6 kDa)	Glycogen debranching enzyme [Bos	gi 300794727	491	14	21	176.2
DI (210.0 KDa)	Taurus]	gi 300794727	491	14	21	1/0.2
B2 (175.6 kDa)	Myosin-binding protein C, fast-type [Sus scrofa]	gi 335290041	111	14	13	128.4
B3 (145.1 kDa)	Muscle glycogen phosphorylase [Sus scrofa]	gi 300119711	243	32	24	97.6
B4 (114.1 kDa)	Muscle glycogen phosphorylase [Sus scrofa]	gi 106073338	688	41	27	84.4
B5 (97.8 kDa)	Glycogen phosphorylase, muscle form isoform 1 [Sus scrofa]	gi 335281566	707	35	25	97.7
B6 (86.8 kDa)	Muscle 6-phosphofructokinase [Sus scrofa]	gi 95117652	524	35	22	82.4
B7 (73.8 kDa)	heat shock 70kDa protein 8 [Sus scrofa]	gi 345441750	645	35	16	71.1
B8 (70.5 kDa)	Muscle glycogen phosphorylase [Sus scrofa]	gi 106073338	560	37	23	84.4
B9 (61.7 kDa)	Albumin, partial [Sus scrofa]	gi 164318	808	38	20	71.3
B10 (56.8 kDa)	Phosphoglucomutase-1 [Sus scrofa]	gi 350538593	721	37	17	62.0
B11 (54.7 kDa)	Pyruvate kinase isozymes M1/M2 "PK" [Sus scrofa]	gi 335292434	592	28	17	68.5
B12 (53.5 kDa)	Glucose-6-phosphate isomerase [Sus scrofa]	gi 47523720	509	25	15	63.1
B13 (49.9 kDa)	UTP-glucose-1-phosphate uridylyltransferase [Sus scrofa]	gi 47522786	218	36	12	57.1
B14 (48.2 kDa)	β-enolase "ENO3" [Sus scrofa]	gi 113205498	264	46	14	47.4
B15 (43.5 kDa)	β-enolase"ENO3" [Sus scrofa]	gi 113205498	786	66	22	47.4
B16 (38.9 kDa)	Creatine kinase M-type [Sus scrofa]	gi 184018722	688	40	12	43.3
B17 (35.2 kDa)	Fructose-bisphosphate aldolase A [Bos taurus]	gi 156120479	704	53	14	39.9
B18 (32.5 kDa)	Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) "GAPDH" (EC 1.2.1.12)- pig	gi 65987	767	55	14	35.9
B19 (31.1 kDa)	L-lactate dehydrogenase A chain [Sus scrofa]	gi 288860136	124	34	10	36.9
B20 (30.3 kDa)	creatine kinase M chain [Bos taurus]	gi 4838363	219	22	4	43.2
B21 (29.0 kDa)	Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) "GAPDH" (EC 1.2.1.12)- pig	gi 65987	403	45	9	35.9
B22 (27.7 kDa)	Creatine kinase M-type [Sus strofa]	gi 194018722	462	27	12	43.3
B23 (26.3 kDa)	β-enolase "ENO3" [Bos taurus]	gi 77736349	282	32	9	47.4
	Carbonic anhydrase 3 "CAIII" [Sus scrofa]	gi 56711366	858	76	21	29.7
B24 (25.3 kDa)	Phosphoglycerate mutase-2 "PGM2" [Sus scrofa]	gi 201066358	400	56	13	28.8
B25 (24.2 kDa)	Triosephosphate isomerase 1 [Sus scrofa]	gi 262263205	441	71	14	26.9
B26 (20.5 kDa)	Adenylate kinase isoenzyme 1 "AK-1" [Sus scrofa]	gi 350579686	539	65	15	21.7

Table: Protein identification for the whole set of protein bands separated by SDS-PAGE acrilamide gels

 ¹ MWe is the experimental molecular weight (kDa)
 ²Accession number correspond to NCBInr database
 ³ The MOWSE score is a numeric descriptor of the likelihood that the identification is correct. Protein scores greater than 69 are significant (P < 0.05)

⁴ MWt is the theoretical molecular weight (kDa)