Lian et al. BVIC Plant Biology (2021) 21:126

https://doi.org/10.1186/512870-021-02904-y BMCP | antB i (@) | Ogy

RESEARCH ARTICLE Open Access

QTLs and candidate genes analyses for fruit ®
size under domestication and
differentiation in melon (Cucumis melo L.)
based on high resolution maps

Qun Lian"#", Qiushi Fu'", Yongyang Xu?, Zhicheng Hu', Jing Zheng', Aiai Zhang', Yuhua He®, Changsheng Wang®,
Chuangiang Xu’, Benxue Chen®, Jordi Garcia-Mas’®, Guangwei Zhao® and Huaisong Wang'"

Check for
updates

Abstract

Background: Melon is a very important horticultural crop produced worldwide with high phenotypic diversity.
Fruit size is among the most important domestication and differentiation traits in melon. The molecular
mechanisms of fruit size in melon are largely unknown.

Results: Two high-density genetic maps were constructed by whole-genome resequencing with two F,
segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis X wild agrestis and cultivated
melo x cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between
parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027
bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage
groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering
86.6% and 87.4% of the melon genome. Two lodi for fruit size were identified on chromosome 11 in WAP and
chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be
the candidate genes for both loci.

Conclusion: The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better
understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based
cloning and molecular marker assisted breeding.
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Background

Melon (Cucumis melo L., 2n =24) is a very important
economic crop with a diverse phenotypic variation in
fruit, and is cultivated globally with more than 32 mil-
lion tons’ yield produced in 2017 (FAOSTAT; http://
faostat.fao.org). The market value of melon is influenced
by fruit quality in terms of fruit size, fruit shape, flesh
color, skin color and flavor, which is mainly determined
by sugar content, acidity and the aroma profile [1-3].
Based on ovary pubescence, melon was classified into
two subspecies, Cucumis melo ssp. melo and Cucumis
melo ssp. agrestis, and then further divided into 16 horti-
cultural groups according to morphological variations of
fruit [1]. C. melo ssp. melo is cultivated worldwide,
whereas C. melo ssp. agrestis is concentrated in East
Asia.

A key step to detect QTLs and perform gene map-
ping is the construction of a reliable genetic map. In
the past, several genetic linkage maps from different
populations were constructed using a very limited
number of markers as simple sequence repeats (SSRs),
amplified fragment length polymorphisms (AFLPs),
and random amplified polymorphic DNA (RAPD) [4-
8]. These maps were mainly used to detect QTLs for
disease-resistance and agronomic traits [9-12]. Melon
genome was released in 2012 [13] and significantly
improved based on a high-resolution genetic map,
which employed 580 single nucleotide polymorphisms
(SNPs) anchoring 354.8 Mb sequences [14]. This laid
a foundation of high-resolution maps in melon. To
integrate information from previous research into the
melon draft genome, 836 genetic markers including
SSRs and SNPs of the consensus map were mapped
onto the improved melon genome [15]. Notably, the
rapid advance in next-generation sequencing made it
possible to use SNP markers and more accurate geno-
typing to construct ultra-high-density genetic maps.
The recent findings of independent domestication
events in melon suggested that SNP discovery in di-
verse melon botanical groups will advance our under-
standing of the genetic mechanisms of diversification
and domestication as shown in several studies [14—
17]. There were genetic maps constructed with SNP
markers by genotyping-by-sequencing (GBS) and
RNA-Seq to identify QTLs controlling fruit quality
[18, 19]. However, the high-density genetic map based
on whole-genome resequencing suitable for QTL ana-
lysis of domestication traits is unavailable to date.
Fruit size is among the most important domestication
and differentiation traits in melon. Only few known
genes associated with fruit size have been reported in
melon [16] although some genes have been identified
for disease resistance [20, 21], fruit monoecy [22, 23],
flesh color and peel color [24, 25].
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Whole-genome resequencing (WGR) is a very useful
approach for genetic map construction and fine-
mapping of genes. According to our previously research,
the two subspecies (agrestis and melo) were domesti-
cated independently and have a strong population differ-
entiation [16]. So, we constructed two F, mapping
populations derived from the crosses TL475 x ‘YS474’
(cultivated agrestis x wild agrestis, WAP for domestica-
tion analysis) and ‘HG118 x ‘SD119’ (cultivated melo x
cultivated agrestis, MAP for differentiation analysis). The
aim of this study was to construct high-density genetic
maps using WGR and explore QTLs in the process of
melon domestication and differentiation. These genetic
maps will assist future breeding programs by facilitating
the design of marker-assisted selection of melon.

Results

Analysis of resequencing data and variation calling

We used two F, segregating populations to explore the
inherent biological mechanisms. One population was
generated from a cross ‘JL475" (C. melo ssp. agrestis var.
chinensis) and a wild agrestis accession ‘YS474’ (C. melo
ssp. agrestis var. agrestis) (WAP), while the other popu-
lation was generated from a cross between inbred lines
‘HG118’ (C. melo ssp. melo var. chandalak) and ‘SD119’
(C. melo ssp. agrestis var. conomon) (MAP) (Fig. S1).
Both the parents and their progenies were sequenced
with an average depth of 29.5x and 7.0x (Table S1), re-
spectively. A total of 597 Gb of clean sequencing data
was generated for analysis.

After mapping the short reads against the melon gen-
ome, we obtained a comprehensive variation set of the
whole genome and observed various distribution of vari-
ations among the four parental lines on the genome (Fig.
S2). The different genomic landscape of variations may
be due to the difference in genomes between the se-
quenced germplasm and reference genome. To explore
the loci among the progeny, we only kept the SNPs that
were bi-allelic, homozygous and polymorphic between
parents. In the end, 1,871,671 and 1,976,589 SNPs were
selected for further analysis in WAP and MAP popula-
tions, respectively.

Construction of high-resolution genetic maps

We imported the identified SNPs into a hidden Mar-
kov model (HMM) to search recombination events.
As a result, 5138 recombination events with an aver-
age of 25.7 per individual were observed in WAP
(Fig. 1a), and a slightly higher total (5839) and aver-
age number (29.2) were observed in MAP (Fig. 1b).
We obtained 954 unique bins in WAP (Fig. S3) and
1027 unique bins in MAP (Fig. S4), respectively. All
the unique bins were anchored on 12 linkage groups
corresponding to 12 chromosomes. The size of bins
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Fig. 1 High density genetic maps of WAP and MAP. a Recombination map of the cross JL475" (C. melo ssp. agrestis var. chinensis) and a wild
agrestis accession 'YS474' (C. melo ssp. agrestis var. agrestis) (WAP), which contains 200 individuals. Blue, female (JL475") allele; gray, unknown;
yellow, heterozygous; red, male ('YS474’) allele. b Recombination map of the cross between inbred lines 'HG118" (C. melo ssp. melo var. chandalak)
and 'SD119' (C. melo ssp. agrestis var. conomon) (MAP), which contains 200 individuals. Blue, female (HG118) allele; gray, unknown;yellow,
heterozygous; red, male ('SD119)) allele. ¢ Integration of physical (left) and genetic (right) maps in WAP. Black short lines represent the genetic
and physical positions of the bin markers. d Integration of physical (left) and genetic (right) maps in MAP. Black short lines represent the genetic
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ranged from 50.2 Kb to 6.3 Mb with an average of
321.3 Kb and covered 86.6% (306.5Mb) of the an-
chored melon genome in WAP. Correspondingly, the
bins’ size ranged from 30.0 Kb to 5.7 Mb with an
average of 301.4 Kb and covered 87.4% (309.6 Mb) of
the anchored melon genome in MAP. The genetic
distance covered by the unique bins is 904.4cM in
WAP and 874.5cM in MAP (Table 1). Furthermore,
the bin map was integrated with the physical map
based on the reference genome, and a high
consistency between the genetic and physical

positions was observed in both WAP and MAP
(Figs. 1c and d), indicating high accuracy of the con-
structed maps.

Identification of segregation distortion regions

Segregation distortion regions (SDRs) are frequently
found in genetic maps obtained in plants such as potato,
cotton and cucumber [26-28]. We also investigated the
SDRs of WAP and MAP, both in gametic and zygotic
stage (Figs. 2a and b), and observed 7 SDRs with a
length of 8.8 Mb in WAP, and 16 SDRs with a length of
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Table 1 Construction of high-dense genetic maps of WAP
(JL475" x 'YS474") and MAP (HG118'x 'SD119’)
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10.0 Mb in MAP, respectively. Interestingly, all the SDRs
in WAP tend to be present in the male genotype (Table

Chr Number of bins Genetic length (cM) S2), but a different tendency was observed in various
WAP MAP WAP MAP SDRs in MAP (Table S3). We further performed gene
Chrl 35 86 9386 749> ontology (GO) analysis to study the functional categories
Chra 4 20 2057 7314 of genes in the SDRs. Genes in SDRs of WAP were
enriched in  UDP-3-O-[3-hydroxymyristoyl] = N-
Chr3 90 98 63.03 78.66 . .. s g
acetylglucosamine deacetylase activity, response to biotic
Chr4 94 109 9701 68.04 and abiotic stimulus (Table S4), which are associated to
Chr5 64 79 85.78 67.94 plant resistance. However, in MAP, genes located in
Chré %0 108 8861 84.08 SDRs were enriched in ‘apoplast’, ‘cell wall’, “xyloglucosyl
Chr7 79 64 8395 6644 transferase activity’ and ‘cellular glucan metabolic
Chrg 91 9 2030 7861 process’ (Table S5), which may be involved in the differ-
entiation of the agronomic traits between melo and
Chr9 65 74 67.02 61.25 ,
agrestis.
Chr10 62 73 49.89 6242
Chr1 99 9% 7376 7873 Validation of the high-resolution mapping with known
Chr12 61 78 55.65 80.26 traits
Total 954 1027 00443 87449 We identified two overlapping QTLs on chromosome 2
in WAP for fruit length and fruit shape with a pheno-
typic variance explaining of 23.5% (LOD =14.6) and
a
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Fig. 2 Genome-wide segregation distortions. The segregation distortion regions of bins at the zygotic and gametic stages in the F, populations
of WAP (JL475 X 'YS474') (@) and MAP (HG118 x'SD119) (b). The left y-axis represents the -log(P) and log(P) for the xz value of each bin at the
zygotic (red) and gametic (blue) stages, respectively. The black curves indicate the number of recombination events per 3 Mb. The dash lines
show the P=0.01 in the Chi-square test
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13.8% (LOD =8.4) (Fig. 3a), respectively. Interestingly,
we observed that CmACS7, encoding an ACC synthase
and controlling the monoecy to andromonoecy by an al-
lelic variant [22], was harbored in the overlapping re-
gion. Monforte et al. [29] reported that CmACS7 had
pleiotropic effects on fruit length and size, suggesting
CmACS7 might be the logical candidate for the two
QTLs. CmOr is responsible for the non-orange and or-
ange flesh by inducing p-carotene accumulation in
melon [24, 29]. We also identified CmOr by QTL-
mapping for flesh color with a phenotypic variance
explaining of 8.6% (LOD =5.2) on chromosome 9 in
WAP (Fig. 3b). In summary, the above QTLs were
mapped precisely or adjacent to known causative genes
influencing fruit size and flesh color, demonstrating the
reliability of our genetic maps.

Identification of candidate genes for fruit size

We analyzed some important traits (fruit weight, fruit
diameter and fruit length) related to fruit size by using
the high-resolution and reliable genetic maps. The fre-
quency distributions of fruit weight, fruit diameter and
fruit length of the two F, populations obeyed normal
distributions (Fig. S5), which indicated they were quanti-
tative traits controlled by multiple nuclear genes. We
observed a 130.8 Kb overlapping region on chromosome
11 between two QTLs for fruit diameter (LOD =6.6)
and fruit weight (LOD =5.5) in WAP, which explained
8.97% and 8.01% of phenotypic variance, respectively
(Fig. 4a). Furthermore, the nucleotide diversity of this
interval was significantly reduced in the cultivated agres-
tis group compared with wild agrestis, suggesting that it
may have been selected during melon domestication
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(Fig. 4b). MELO3C025758, encoding an auxin response
factor (ARF), was detected in the overlapping region.
We also verified this candidate gene using a new method
called GradedPool-Seq mapping (GPS-mapping) [30].
This method is modified from bulked-segregant analysis
(BSA), and can be used in QTL mapping efficiently. In
this method, the F, progenies are classified into several
graded bulks according to their phenotypic data, and
then, the individuals from each bulk are mixed to pro-
vide sufficient genomic coverage for sequencing. Using
Ridit analysis, the p value between each variation and
graded pool is calculated. After filtering and noise re-
moval, the QTLs related to the target phenotypes are
mapped. As a result, we also identified MELO3C025758
in the QTLs of both fruit weight (Fig. S6a) and fruit
diameter (Fig. S6b) with GPS-mapping analysis.

To further exploit the function of this gene, we
searched the orthologs of MELO3C025758 in other spe-
cies as orthologous genes are generally assumed to retain
equivalent functions in different organisms [31]. As a
consequent, we selected the best hits for ortholog genes
from seven plant species to construct a phylogenetic tree
(Fig. 4c). We found that the orthologs AT5G60450 in
Arabidopsis, Solyc11g069190 in tomato and Cla000557
in watermelon were involved in the regulation of fruit
development [32-34].

With the resequencing data, we also found two adjoint
SNPs (Chr11:25,735,961 and Chrl1:25,735,962) that
showed polymorphism between ‘JL475’ (cultivated agres-
tis) and ‘YS474’ (wild agrestis) (Fig. 4d) and totally linked
in F, progenies, that located in the tenth exon of
MELO3C025758. The former SNP (Chrl1:25,735,961)
leads to a non-synonymous mutation from Gln (Q) to
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Fig. 3 Validation of QTL mapping with known genes (CmACS-7 and CmOr) in WAP (JL475' x 'YS474). a A multiple-effect QTL was identified for
fruit length and fruit shape. CmACS-7 gene was harbored in the overlapping region (shown with a green arrow). b A candidate QTL was
identified for flesh color in chromosome 9. The position of the CmOr gene was shown with a green arrow
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and interquartile range. P-value was marked (T-test, two tail)

Fig. 4 The identification and analysis of MELO3C025758. a The multiple-effect QTL for fruit weight and fruit diameter in WAP (JL475' X 'YS474). b
Distribution of nucleotide diversity (rm) of wild and cultivated agrestis around the bin855. ¢ Phylogenetic tree of MELO3C025758 and its
orthologues in rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), potato (Solanu tuberosum), pumpkin
(Cucurbita moschata), watermelon (Citrullus lanatus) and cucumber (Cucumis sativus). The bootstrap value (100 replications) was listed on the
main clades. d Gene structure of MELO3C025758, line means intron, rectangle means exon and the short red line indicates the position of two
adjoint SNPs. Genotyping of the non-synonymous substitution of MELO3C025758 in six dicots. The genes listed out are all the best hit genes of
MELO3C025758 (Cucumis sativus: CsaV3_6G021720, Citrullus lanatus: Cla000557, Cucurbita moschata: CmoCh20G005090, Cucurbita moschata:
CmoCh02G008800, Arabidopsis thaliana: AT5G60450, Solanum lycopersicum: Solyc11g069190, Solanum tuberosum: PGSCO003DMC400014194, Solanum
tuberosum: PGSCO003DMC400014193). e gRT-PCR analysis of MELO3C025758 in flesh tissue (15 days after pollination), C1-C6 and W1-W3 represent
the cultivated and wild accessions, respectively. The distribution of fruit weight (f) and fruit diameter (g) with three different genotypes that
composed by two adjoint SNPs (CA, GC and SM, in which SM means both two SNPs are heterozygous) in WAP, each box represents the mean

Glu (E), which located in a conserved domain in dicoty-
ledon that we selected to construct the phylogenetic
tree. So, we think this mutation in a conserved domain
may affect the function of MELO3C025758; nevertheless,
we recognize that further experiments are required to
verify such assumption. Besides the non-synonymous
mutation in a conserved domain, we hypothesize that
these two adjoint SNPs may affect the expression of
MELO3C025758. To verify this hypothesis, we analyzed
the expression pattern of this gene in flesh tissue (15
days after pollination) in 9 diverse melon accessions in-
cluding 6 cultivated agrestis (Chinese landraces from the
group C. melo ssp. agrestis var. chinensis) and 3 wild
agrestis accessions (PI 532829, PI 406737, PI 536473). As
a result, MELO3C025758 exhibited a higher expression
in wild agrestis than that in cultivated agrestis (Fig. 4e),
and the expression levels had a significant negative cor-
relation with fruit weight (R*=0.92) (Fig. S7a) and fruit
diameter (R° = 0.71) (Fig. S7b). Furthermore, the individ-
uals in F, population with cultivated type in the adjoint
SNPs showed significantly higher phenotype values than
those individuals with wild type both in fruit weight and

MELO3C025758 may be a candidate gene that play a
key role in melon fruit size and further investigation is
required to understand its function.

In addition, we identified a QTL for fruit weight
(LOD =3.06) and fruit length (LOD =4.30), covering a
region of 115.9 Kb on chromosome 5 in MAP, which ex-
plained 6.01% and 8.01% of phenotypic variance, respect-
ively. In this region, MELO3C004493 encoded a YABBY
transcription  factor  (Fig. 5a). Its orthologues
AT2G26580 in Arabidopsis, Solyc07g008180.2.1 in to-
mato, and LOC Os12¢g42610.1 (OsYABBY®6) in rice were
previously reported to be involved in the regulation of
plant growth [35-37] (Fig. 5b). Additionally, YABBY
transcription factors have been reported to be associated
with  tomato fruit size [36, 38]. Therefore,
MELO3C004493 might be a candidate gene for the fruit
size in chromosome 5.

Discussion

Genetic linkage maps are important tools for studying
the genetic regularity of agronomic traits and the gen-
ome structure. The first molecular marker linkage map

fruit diameter (Figs. 4f and g). To summarize, of melon was reported in 1996 mainly using of random
a b
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Fig. 5 The identification and analysis of MELO3C004493. a The multiple-effect QTL for fruit weight and fruit length in MAP (HG118'x'SD119). b
Phylogenetic tree of MELO3C004493 (black dot) and its orthologues in rice (dark green dot), Arabidopsis (purple dot), tomato (yellow dot), potato
(orange dot), pumpkin (blue dot), watermelon (red dot) and cucumber (green dot)
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amplified polymorphic DNA (RAPD) and restriction
fragment length polymorphism (RFLP) markers, but the
markers did not cover the 12 melon chromosomes [39].
In the past, a number of molecular genetic maps were
constructed [11, 15, 17, 19, 29, 40, 41]. The rapid devel-
opment of molecular biology techniques and next-
generation sequencing have accelerated the construction
of genetic maps in melon. WGR is a genotyping method
based on sequencing that was used to detect recombin-
ation breakpoints and construct genetic maps, which is
more accurate compared with marker-based genotyping
methods [42-44]. In this study, we constructed two
high-density genetic maps based on WGR with millions
of SNPs that show differences between parents of
JLA75 x ‘YSA74' (WAP) and ‘HG118 x ‘SD119’ (MAP).
A high consistency between the genetic and physical po-
sitions was observed in both WAP and MAP. Further-
more, two reported genes CmACS7 for monoecy and
CmOr for flesh color were located in or adjacent to the
regions of QTLs we mapped [22, 24, 29], suggesting that
the high-density markers in the genetic maps using
WGR could be efficient in QTL mapping.

Segregation distortion violates the classic separation of
Mendelian law, showing a deviation between genotypic
frequencies and their expected values [45]. It is a quite
common phenomenon in nature and was identified as a
powerful evolutional force [46]. Some factors including
mapping population, relationships between the parents,
and marker types could positively influence the segrega-
tion distortion [47]. Segregation distorted loci tend to be
clustered and form SDRs. Next-generation sequencing
provided a huge number of SNPs to construct ultra-
high-density genetic maps, which make it possible to
scan SDRs with high resolution. In the present study, we
found that 7 SDRs contained 14 bins in WAP and
chromosome 10 contained the highest proportion of
bins with SDRs (1 SDR in chr 2, 1 SDR in chr 7, 5 SDRs
in chr 10) (Table S2). Meanwhile, we observed 16 SDRs
with 41 bins in MAP, and most of the SDRs existed on
chromosome 2 (6 SDRs in chr 2, 1 SDR in chr 3, 1 SDR
in chr 5, 3 SDRs in chr 8, 1 SDR in chr 9, 2 SDR in chr
10, 1 SDR in chr 11, 1 SDR in chr 12) (Table S3). Inter-
estingly, all the SDRs in WAP tend to the male geno-
type, but a different trend was observed in various SDRs
in MAP. We further performed gene ontology (GO) ana-
lysis to study the functional categories of the genes
within the SDRs. Genes in SDRs of WAP were associ-
ated with plant resistance to environmental stresses,
which may provide clues for further exploring related re-
sistant genes. However, in MAP, genes located in SDRs
were involved in plant growth and development, which
might contribute to the determination of diverse agro-
nomic traits between melo and agrestis. Ren et al. [47]
also reported that all markers within the SDRs on
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chromosomes 1, 2, 3, 4, 5, 7, 8 and 9 were related to the
cultivated parent and markers within the SDRs on
chromosome 10 were tend to the wild parent. The gen-
omic differences between cultivated and wild types may
cause the severe segregation distortion. Segregation dis-
tortion in plants may be connected with the genetic
background of parental lines used for population con-
struction. Some researchers have suggested that segrega-
tion distortion is related with genetic hitch-hiking effect,
which means that the frequencies of genes closely linked
with the selected genes [48, 49]. The evolution of segre-
gation distortion changes the allele frequency and geno-
type frequency from generation to generation, which
would ultimately lead to reproductive isolation and spe-
ciation. The genes located in segregation distortion re-
gions can contribute to improve the adaptation to the
environment during the evolution [49].

Fruit size is one of the most important domestication
and differentiation traits in melon, and seems to be a
more complex controlling by polygenes. Pan et al. [50]
summarized 105 fruit size (FS), 103 fruit shape index
(FSI), and 57 fruit weight (FW) QTLs in melon from 19
previous studies. The QTLs were distributed across all
12 chromosomes (the most in Chr6 and Chr8), which
seems consistent with the higher genetic diversity of
melon fruits [11, 17, 19, 29, 50]. However, many of these
QTLs were detected in a few studies, and the physical
intervals for most QTLs are still very large. The popula-
tions in previous studies were commonly originated
from the crosses between members of cultivated melo
and agrestis [10, 11, 19, 29]. Though, Diaz et al. [17]
used a F, segregating population derived from a cross of
wild agrestis and cultivated melo for QTL-mapping of
domestication-related traits with 128 SNP-based
markers. Given the independent domestication in sub-
species agrestis and melo, it is meaningful to perform
QTLs using the population derived from the wild and
cultivated in the same subspecies. A higher resolution
QTL analysis map is still needed, and the genetic re-
search of domestication and differentiation still needs to
reach the gene level.

In our study, we performed QTL analysis for fruit size
with two F, populations derived from two crosses (culti-
vated agrestis x wild agrestis and cultivated melo x culti-
vated agrestis). These two crosses are good choice for
studying the genetics of melon domestication and differ-
entiation. We identified a major QTL for fruit size on
chromosome 11 in WAP, a gene MELO3C025758 (en-
codes an auxin response factor) was located in the over-
lapping region for fruit weight and fruit diameter (Fig.
4a). Auxin is essential in determining final fruit size
through the control of cell division and cell enlargement
[32, 51, 52]. The most rapid period of cell enlargement
in melon is 10-15days after pollination. So, we chose
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15days after pollination to perform qRT-PCR of
MELO3C025758 under our cultivated environment. We
found that MELO3C025758 exhibited a higher expres-
sion in wild accessions than in cultivated accessions, and
a negative correlation with fruit diameter and fruit
weight (Fig. S7), suggesting it might have been selected
during melon domestication. A number of researches
have demonstrated the role of specific auxin response
factors in early stages of fruit development [53-55]. We
also identified a candidate gene encoding a YABBY tran-
scription factor (MELO3C004493) in a 1159 Kb QTL
interval for fruit size on chromosome 5 in the MAP
population (Fig. 5a). The YABBY-like transcription fac-
tor has been reported to be related to the evolution of
tomato fruit size during domestication, suggesting it
may play an important role in fruit size of melon [29, 36,
38]. Therefore, the identified gene MELO3C004493 is a
good candidate gene for fruit size in melon. In addition,
the same candidate gene was identified with ‘Graded-
Pool-Seq mapping analysis’ [30] in this study, suggesting
that ‘GradedPool-Seq mapping analysis’ could be used as
an alternative strategy for QTL analysis and gene discov-
ery. Further studies are nevertheless necessary to corrob-
orate our hypotheses on the importance of both genes to
melon domestication and differentiation. Taken to-
gether, our study presents a reliable genetic map, which
will ultimately support future melon breeding projects
using marker-assisted selection.

Conclusions

In this study, we constructed two high-density genetic
maps (WAP and MAP) using whole-genome resequen-
cing. 1,871,671 and 1,976,589 high quality SNPs with a
total of 5138 and 5839 recombination events were ob-
tained in WAP and MAP respectively. The total lengths
of two linkage maps were 904.4cM (WAP) and 874.5
cM (MAP), covering 86.6 and 87.4% of the melon gen-
ome. Two loci for fruit size were identified on chromo-
some 11 in WAP and chromosome 5 in MAP.
MELO3C025758 and MELO3C004493 were inferred to
be the candidate genes for both loci. The QTLs analyses
of fruit size-related traits will provide further insights into
the genetic mechanisms of melon.

Methods

Plant materials management

The mapping populations were developed from a cross
between ‘JL475" (C. melo ssp. agrestis var. chinensis) and
wild melon ‘YS474’ (C. melo ssp. agrestis var. agrestis)
(WAP), and a cross between ‘HG118 (Cucumis melo
ssp. melo var. chandalak) and ‘SD119" (C. melo ssp.
agrestis var. conomon) (MAP). The parental lines, F; and
two F, populations were grown in the spring—summer
season of 2017 under greenhouse conditions in the
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Institute of Vegetables and Flowers, Chinese Academy of
Agricultural Sciences, Beijing. Plants were grown under
natural light conditions. The green-house was main-
tained at daily temperatures between 17 and 33°C, the
relative humidity of day/night was about 55/85%.
Flowers were artificial pollinated and tagged at anthesis
to register the total days of fruit ripening. Two fruits
were allowed to develop per plant in WAP, and one fruit
was allowed to develop per plant in MAP. Two hundred
individuals in each segregating F, population were used
for mapping.

‘JLA75  is a Chinese cultivated agestis melon accession
with white peel and light orange flesh. ‘YS474’ is an In-
dian wild agestis genotype with small fruit (about 30 g).
‘HG118’ is a Chinese inbred line from the group chan-
dalak, with round fruits, yellow peel, light green flesh
and pleasant fruit aroma. ‘SD119” is a Chinese landrace
from the group conomon, with elongated fruits, with
non-sweet, white peel and fruit flesh. (Fig. S1).

Phenotypic and genetic analysis

Mature fruits were weighed with a balance (0.1 g) and
cut longitudinally in the middle for measuring fruit
diameter (mm) and fruit length (mm) with a ruler. Flesh
color were evaluated visually following a technical speci-
fication for evaluating melon [16]. Frequency distribu-
tion analysis and graphic representations were
performed using SPSS (24.0) software and R program
v3.1.2, respectively.

Genome sequencing

Genomic DNA was extracted from young leaves based
on the CTAB procedure [56]. Whole-genome paired-
end sequencing was performed on the Illumina HiSeq X
Ten platform, with a library insert size of 250-300 bp
and a read length of 150 bp.

Recombination map construction

After removing the adapter and filter out low quality
reads, we mapped the short reads against the reference
genome [14] with BWA-aln, using the default parame-
ters [57]. The samtools and bcftools programs were ap-
plied to generate the genotype of all the loci on the
genome, with the default settings [58].

Firstly, we detected loci showing bi-allelic, homozy-
gous and polymorphic between parents, then, we filtered
out the loci with the following criteria: quality =20,
MQ = 20. Secondly, the genotypes of above-mentioned
loci were extracted from F, individuals. To avoid the
bias that may be brought by gene conversion or sequen-
cing error, a hidden Markov model was used to impute
genotypes of recombinant chromosome fragments for all
the F, individuals based on observed genotypes of SNPs
as described previously [59]. A region located between
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two adjacent blocks with different genotypes was defined
as a crossover. Finally, the bin map was constructed
based on the boundary of all recombinant chromosome
fragments and the bins with length below 30 Kb were
excluded to avoid false recombination [28].

Genetic map construction

The software MSTMap was used for constructing a link-
age map with the parameters “p value = 0.0000001,
missing threshold = 0.2, distance function = kosambi,
objective function = ML” [60].

QTL analysis

QTL analysis was performed using R/qtl, a software
package for mapping quantitative trait loci [58]. We se-
lected the composite interval mapping with the cim
function. LOD thresholds determined based on the 1000
permutations (P < 0.05) for every trait with the function
of permutation in R/qtl. The support interval of a QTL
was defined by the region of peak LOD bin and the bi-
lateral bins. The variation explained and the additive ef-
fect of each QTL detected from the data set was
estimated using the fitqtl function. QTLs with overlap-
ping support intervals for the same trait were considered
as a single QTL.

GradedPool-Seq mapping analysis

According to the recommendation from Wang et al.
[30], it is appropriate to select 20-30% total individuals
as a bulk. Firstly, we ranked the phenotype values from
high to low. Then, we divided all the ranked individuals
into four pools with the criteria that about a quarter of
total individuals in each pool. According to this criter-
ion, the F, populations were pooled based on the pheno-
type values from low to high both in WAP (Fruit weight:
25-85g, 86-126¢g, 127-160 g, 162-353 g. Diameter: 3.0—
4.9 cm, 5.0-5.5cm, 5.6-6.0cm, 6.1-7.8cm) and MAP
(Fruit weight: 300-628¢g, 630-777 g, 782-1059g, 1060-
1942 g. Fruit length: 7.9-14.5 cm, 14.6-16.7 cm, 16.8—
189 cm, 19-28 cm). Next, we merged their sequencing
data for every mixed pool, in this way, we aligned the
merged reads to reference genome and calculated the
depth for each variant. After filtering the variants with
low quality and depth using default parameters, we cal-
culated the p-values with Ridit analysis for each variant.
At last, to reduce the background noise, we set the slid-
ing window size to 400 Kb and the candidate region was
set as the peak interval and the 200 Kb region extant
from both sides as reported by Wang et al. [30]. All the
codes and parameters about GPS-mapping analysis are
available in GitHub (https://github.com/sctang1991/
GPS-pipeline).
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Table 2 Primers used to amplify the target genes for gRT-PCR

analysis

Gene Forward primer Reverse primer

MELO3C025758 ATGTTCACCTACTCGCCA CTCCATTCAACGC CAATTC
ATAAG cT

Actin TTACGGAAACATCGTCCT GAATAGACCCTCCAATCC
CAG AAAC

Phylogenetic tree construction

We selected the best hit genes amino acid sequence in
Arabidopsis, rice, potato, tomato, pumpkin, watermelon
and cucumber using blast with default settings. The
multiple sequence alignment was obtained using clus-
talW in MEGA 6.0 software [61]. Next, the maximum
likelihood algorithm was used to construct the phylo-
genetic tree with 100 of bootstrap value in MEGA [62].

Nucleotide diversity analysis

Taking advantage of the whole genome result of nucleo-
tide diversity analysis from Zhao et al. [16], we selected
the target region around our candidate genes and
graphed it with R script.

Quantitative real-time PCR analysis (qQRT-PCR)

Fruit flesh samples (about 0.2 g) were collected 15 days
after pollination, frozen immediately in liquid nitrogen
and stored at — 80 °C until use for RNA extraction. Total
RNA was extracted from the flesh as described in the
TRI reagent protocol (Takara Bio Inc., Japan). For all
samples, total RNA (1 pg) was converted to cDNA using
PrimeScript™ 1st Strand ¢cDNA Synthesis Kits (Takara)
according to the manufacturer’s instructions. Specific
primers were designed using Primer Premier 6.0 (http://
www.premierbiosoft.com/primerdesign/index.html).
Gene-specific primers used for qRT-PCR were shown in
Table 2. All reactions were performed with SYBR Prime-
Script™ RT-PCR Kits (Takara Bio Inc., Shiga, Japan) ac-
cording to the manufacturer’s instructions. Quantitative
RT-PCR was conducted with a LightCycler® 96 Instru-
ment (Roche, Mannheim, Germany).
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'HG118" (Cucumis melo ssp. melo var. chandalak) and 'SD119" (C. melo ssp.
agrestis var. conomon) (MAP), and a cross between ‘JL475" (C. melo ssp.
agrestis var. chinensis) and wild melon 'YS474" (C. melo ssp. agrestis var.
agrestis) (WAP). The scale bar means 1 cm. Figure S2. The genome
landscape of variations in the parental lines. Figure $3. The distribution
of bins in WAP (JL475' X "YS474’). Figure S4. The distribution of bins in
MAP (HG118 x 'SD119’). Figure S5. Frequency distributions of fruit
weight, fruit length, and fruit diameter in two F, populations. Figure S6.
GPS-mapping of MELO3C025758 in WAP. Figure S7. The correlation be-
tween gene expression (MELO3C025758) and fruit weight (A) and fruit
diameter (B) in 9 diverse melon accessions including 6 cultivated agrestis
(Chinese landraces from the group C. melo ssp. agrestis var. chinensis) (or-
ange dot) and 3 wild agrestis accessions (green dot). Table S1. The sum-
mary of sequencing statistics. Table S2. The SDRs in WAP

(JL475' x 'YS474'). Table S3. The SDRs in MAP (HG118 x'SD119). Table
S4. The result of GO enriches of genes in SDRs in WAP (JL475" x 'YS474')
Table S5. The result of GO enriches of genes in SDRs in MAP

(HG118 x'SD119).
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