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25 Abstract
26 Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a 
27 severe respiratory disease with a high case fatality rate in humans. Since its 
28 emergence in mid-2012, 2,578 laboratory-confirmed cases in 27 countries have 
29 been reported by the World Health Organization, leading to 888 known deaths 
30 due to the disease and related complications. Dromedary camels are 
31 considered the major reservoir host for this virus leading to zoonotic infection 
32 in humans. Dromedary camels, llamas and alpacas are susceptible to MERS-
33 CoV, developing a mild to moderate upper respiratory tract infection 
34 characterized by epithelial hyperplasia as well as infiltration of neutrophils, 
35 lymphocytes, and some macrophages within epithelium, lamina propria, in 
36 association with abundant viral antigen. The very mild lesions in the lower 
37 respiratory tract of these camelids correlate with absence of overt illness 
38 following MERS-CoV infection. Unfortunately, there is no approved antiviral 
39 treatment or vaccine for MERS-CoV infection in humans. Thus, there is an 
40 urgent need to develop intervention strategies in camelids, such as vaccination, 
41 to minimize virus spillover to humans. Therefore, the development of camelid 
42 models of MERS-CoV infection is key, not only to assess vaccine prototypes, 
43 but also to understand the biologic mechanisms by which the infection can be 
44 naturally controlled in these reservoir species. This review summarizes 
45 information on virus-induced pathological changes, pathogenesis, viral 
46 epidemiology and control strategies in camelids, as the intermediate hosts and 
47 primary source of MERS-CoV infection in humans.

48
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54 Severe acute respiratory syndrome (SARS) and Middle East respiratory 
55 syndrome (MERS) outbreaks have caused major public concerns in 2002-2003 
56 and since 2012, respectively. Together with the ongoing COVID-19 pandemic, 
57 they indicate the need to study, prevent, and control emerging coronaviruses 
58 (CoVs) of zoonotic origin. Among these life-threatening virus infections, MERS-
59 CoV infection has the highest case fatality rate (35%) among infected people.70 
60 Severe pathogenic features of MERS-CoV infection in humans, including 
61 diffuse alveolar damage or even death, are mainly due to complex and dynamic 
62 processes characterized by massive infiltration of inflammatory cells into the 
63 lungs and induction of an inflammatory cytokine storm.12 According to the World 
64 Health Organization, 2,578 laboratory-confirmed cases and at least 888 
65 fatalities have been reported as of December 2021.70 The Kingdom of Saudi 
66 Arabia, where MERS is endemic, is the country with the highest number of 
67 cases (specifically, 2,167 laboratory-confirmed cases). Although most cases 
68 were diagnosed in countries from the Middle East, travel-associated cases 
69 have been documented in other regions of the world.14,27,41,67,70 So far, all cases 
70 reported in North America, Europe, and Asia had a history of travel to the Middle 
71 East. Furthermore, a major outbreak occurred in South Korea in 2015 with 186 
72 cases and 38 associated deaths, highlighting the worldwide public health 
73 concern of MERS.44 Thus, MERS cases outside of the Middle East and without 
74 camel herds can also be at risk of endemic MERS-CoV.
75 Bats were initially suspected to be the hosts for MERS-CoV.48,62,63 Analysis 
76 of dipeptidyl peptidase-4 (DPP4, the MERS-CoV receptor) sequences, 
77 distribution of the DPP4 receptor in various bat species, in vitro infection studies 
78 with different bat cell lines, and in vivo data revealed that bats are potentially 
79 susceptible to MERS-CoV.17,29,53,71 Although bats are considered to be the 
80 primary host of the ancestor of MERS-CoV,26 direct transmission from bats to 
81 human has not been proven. Rather, dromedary camels are considered the 
82 major source of MERS-CoV transmission to humans. In this review, we 
83 summarize the current state of knowledge on the pathological changes 
84 associated with MERS-CoV infection in camelids, and provide an overview of 
85 the viral epidemiology and immunopathogenesis of MERS-CoV infection in 
86 these reservoir species. 
87  

88 Epidemiological patterns and transmission of MERS-CoV 

89 among camelids
90 Serological surveys in dromedaries from the Arabian Peninsula (the 
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91 Kingdom of Saudi Arabia, Qatar, Jordan and Oman) and African countries 
92 (Tunisia, Egypt, Nigeria, Kenya, and Ethiopia) showed a high prevalence of 
93 neutralizing antibodies against MERS-CoV.24,25,33,37,54–56,58 The virus has been 
94 circulating widely in this species for a relatively long period, since MERS-CoV 
95 neutralizing antibodies have been found in retrospective studies in eastern 
96 Africa as early as 1983.52 Further evidence for the importance of dromedaries 
97 as a susceptible host came after the detection of identical viral sequences in 
98 nasal swabs of dromedaries and infected humans.13,37,40 Currently, three 
99 MERS-CoV lineages (including those that have caused human infections) have 

100 been isolated from dromedary camels in the Arabian Peninsula and several 
101 African countries.60 To date, no MERS-CoV antibodies or viral RNA have been 
102 detected in Bactrian camels.20,46,51

103 Camel-to-human transmission of MERS-CoV may occur in a variety of 
104 ways, but respiratory secretions are the most likely source of infection. Some 
105 studies have reported MERS-CoV RNA in milk and lymph nodes from infected 
106 animals, but no infectious virus was detected.9,33,55 However, fecal 
107 contamination of milk or meat during slaughter cannot be fully ruled out. Camel 
108 urine is also consumed in the Middle East for supposed health benefits, but no 
109 infectious virus has been detected in urine.35 Thus, close contact between 
110 humans and dromedaries is the most probable route of virus transmission. 
111 Close contact with dromedaries can occur through camel festivals, races, sales 
112 barns, and parades. For instance, during the Hajj pilgrimage, dromedaries are 
113 animals of ritual significance.47 Continuous and sporadic MERS outbreaks are 
114 considered a failure to control the zoonotic sources.75 Thus, gaining knowledge 
115 on the role of the reservoir host is essential for MERS prevention and global 
116 control.
117

118 Clinical and pathological manifestations of MERS-CoV in 

119 camelids

120 Old world camelids (dromedaries and Bactrian camels)

121 The clinical spectrum of MERS-CoV infection in humans ranges from mild 
122 respiratory symptoms to severe, life-threatening disease. By contrast, the viral 
123 infection merely causes mild upper respiratory tract disease in dromedaries, 
124 leading to a rapid clearance of the virus in about one or two weeks post-
125 infection.2 Clinical signs in MERS-CoV-infected Old World camelids have been 
126 described only in a few studies.2,3,36 The clinically apparent disease was 
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127 generally mild, and signs were nonspecific and typical of a viral upper 
128 respiratory tract infection. Under natural conditions, MERS-CoV infection in 
129 dromedaries was most common in animals less than four years of age, with the 
130 highest prevalence observed in calves.69 The disease was frequently 
131 asymptomatic, but some animals showed nasal discharge, lacrimation, 
132 coughing, sneezing, fever, and transient anorexia.6,7,10,40,43 
133 As in naturally occurring disease, experimental inoculation of dromedaries 
134 caused nasal discharge of serous to mucopurulent character in the first two 
135 weeks, and a mild, transient increase in body temperature during the first week 
136 after infection (Figure 1).2,36 Minor nasal hemorrhages were also infrequently 
137 observed in dromedaries and were considered to be related to sample 
138 collection in most cases.2

139 Similar to dromedaries, experimental infection of Bactrian camels led to 
140 nasal discharge and coughing in the first week after infection.3 Although some 
141 field studies reported MERS-CoV–specific antibodies in Bactrian camels of 
142 Mongolia, none of these samples turned out to be positive by virus 
143 neutralization test.15 Consistently, natural infections in Bactrian camels have 
144 not been described to date.15,20  
145 Pathologic findings occurring in naturally infected dromedaries have only 
146 been reported in two recent publications.10,11 One study investigated 
147 dromedaries under two years of age submitted for regular slaughtering 
148 procedures in the Kingdom of Saudi Arabia, some of which tested positive for 
149 MERS-CoV antigen and RNA in nasal swabs. The animals showed variable 
150 lesions in the respiratory tract and some other organs. In the nasal turbinates, 
151 infiltration of mononuclear cells, exfoliation of epithelial cells, glandular 
152 degeneration, hemorrhages, and focal areas of mild epithelial hyperplasia were 
153 detected. In the trachea, the epithelium showed a loss of ciliated cells, 
154 vacuolation, erosion, and neutrophilic exocytosis. Additionally, interstitial 
155 pneumonia with thickening of alveolar septa by mononuclear cell infiltrates, type 
156 II pneumocyte hyperplasia, and increased numbers of alveolar macrophages 
157 occurred in all animals. One animal also had bronchopneumonia with 
158 segmented neutrophils in bronchioles and alveoli. Outside the respiratory tract, 
159 glomerular and tubular degeneration was observed in the kidneys of all animals, 
160 and splenic hyperplasia of the red pulp and depletion of the white pulp were 
161 detected in one animal.10 A second study involved scanning electron 
162 microscopy of nasal, tracheal and lung samples from the same animals. There 
163 was massive ciliary loss, disordered arrangement of cilia and goblet cell 
164 hyperplasia in the respiratory epithelium.11 MERS-CoV antigen was detected in 
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165 epithelial cells of the nasal turbinates, trachea, and bronchi but also in 
166 pulmonary alveoli and in the kidneys.10 
167 In contrast to the described field cases, experimental infection of 
168 dromedaries with MERS-CoV typically produced lesions restricted to the upper 
169 respiratory tract, trachea and bronchi.2–4,36,38 These included mild to moderate 
170 rhinitis, tracheitis, and bronchitis (Figs. 2, 3). The lesions were moderate at 4 
171 and 5 days post infection (dpi), mild at 14 and 28 dpi, and resolved after 42 
172 dpi.2–4,36,38 The affected respiratory mucosa typically showed neutrophilic 
173 exocytosis, intraepithelial apoptosis or single-cell necrosis, epithelial erosions, 
174 glandular necrosis, and segmental epithelial hyperplasia or squamous 
175 metaplasia (Figs. 2,3).2,36,38 Lesions were accompanied by mononuclear 
176 infiltrates and edema of the lamina propria and submucosa (Figs. 2, 3). Similar 
177 to natural infection, a massive ciliary loss in nasal turbinates, trachea, and 
178 bronchi was characteristic of the experimental disease in dromedaries (Figs. 4, 
179 5).2,38 Importantly, the loss of cilia was not accompanied by extensive cell death 
180 or other profound alterations of ciliated cells, indicating that the virus might 
181 trigger ciliary loss or retraction in sublethally injured cells, as has been 
182 described for other respiratory viruses including coronaviruses.21,38,45 In 
183 contrast to field cases, interstitial pneumonia was not described in experimental 
184 infections. Accordingly, the viral antigen in experimentally infected dromedaries 
185 was predominantly located in epithelial cells of the upper respiratory tract with 
186 the highest antigen loads observed in the nasal turbinates (Figs. 6, 7).2,36,38 
187 Additionally, viral antigen was found in single macrophages in the submucosa 
188 of nasal tissues (Fig. 6).38 In contrast to natural infection, but in line with the 
189 lack of overt clinical disease, viral antigen was consistently absent from 
190 alveoli.2,36 Outside of the respiratory tract, histologic lesions were only detected 
191 in regional lymphoid tissues such as mandibular, retropharyngeal, and 
192 mediastinal lymph nodes or tonsils. These tissues had mild to moderate 
193 follicular hyperplasia with apoptosis of single lymphocytes.36,38 Viral antigen or 
194 RNA was documented in occasional cells within the tonsils, mediastinal, 
195 retropharyngeal, and cervical lymph nodes2,36 and in the gut-associated 
196 lymphoid tissue of the duodenum by immunohistochemistry or in situ 
197 hybridization, respectively.36 Therefore, the follicular hyperplasia observed in 
198 the lymphoid organs most resulted from local antigenic stimulation. The 
199 reported observation of single apoptotic lymphocytes was most likely a normal 
200 finding associated with lymphocyte homeostasis. However, it cannot be 
201 excluded that apoptosis of individual cells might also be triggered by virus 
202 infection. Viral antigen has not been found in other extra-respiratory tissues of 
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203 experimentally infected dromedaries.2,36

204 In experimentally infected Bactrian camels, lesions are solely observed in 
205 the upper respiratory tract and trachea at 5 dpi and included mild to moderate 
206 lymphocytic sinusitis, rhinitis, and tracheitis accompanied by epithelial necrosis 
207 and squamous metaplasia of the respiratory epithelium.3 Viral antigen was 
208 observed in the nasal turbinates, predominantly in the olfactory epithelium, and 
209 in the respiratory epithelium of the trachea, but not in any other location.3

210

211 New world camelids (llamas and alpacas)

212 Pathological features of MERS-CoV infected New World camelids have 
213 been addressed by a limited number of studies. Overall, the outcome of MERS-
214 CoV infection in New World camelids were comparable with that of infected 
215 dromedaries, indicating that the animals were mainly asymptomatic carriers of 
216 MERS-CoV.1,28,30,57,58,63,66,68

217 In the acute phase of disease induced by experimental MERS-CoV 
218 infection, histological lesions in New World camelids were mainly limited to the 
219 respiratory tract (Figs. 8, 9). Nasal turbinates showed mild to moderate 
220 lymphoplasmacytic rhinitis, characterized by segmental hyperplasia of the 
221 mucosa, epithelial vacuolation, slight intra-epithelial infiltration of lymphocytes, 
222 and rare epithelial cell necrosis (Fig. 8).1,4,65,68 Consistently, the underlying 
223 lamina propria-submucosa was moderately infiltrated by macrophages, 
224 lymphocytes and plasma cells (Fig. 8).1,4,65,68 These lesions tended to be 
225 multifocal, showing a similar degree as that in dromedaries. 
226 No remarkable findings were observed in the trachea. Some bronchi 
227 showed mild epithelial hyperplasia, admixed with few lymphocytes that 
228 aggregated in the lamina propria (data not shown).65 The lungs had slight 
229 thickening of the alveolar septa with infiltration of few mononuclear 
230 inflammatory cells (Fig. 9).65 Such lesions were evident in the acute phase of 
231 the infection (2-3 days post inoculation, dpi) and gradually resolved.65 
232 Of note, New World camelids experimentally infected with MERS-CoV 
233 showed almost no significant ciliary loss across the respiratory mucosa, except 
234 for one single animal with moderate deciliation in the nasal mucosa on day 4 
235 post-inoculation 66. Extra-respiratory organs had no significant lesions. 
236 Consistent with the histopathological findings, the nasal mucosa of the New 
237 World camelids displayed the highest amount of MERS-CoV antigen (Fig. 
238 10).1,4,65,68 The trachea contained few viral antigen-positive cells mainly in areas 
239 displaying lesions (Fig. 11).4,65 MERS-CoV antigen was also multifocally 
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240 distributed in bronchial and bronchiolar epithelial cells but not in type I or II 
241 pneumocytes (Figs. 12, 13).65 Thus, New World camelids animal models 
242 develop similar subclinical disease and histopathological findings as seen in 
243 dromedaries in response to experimental MERS-CoV infection.
244

245 Pathogenesis of MERS-CoV in camelids
246 The severe outcome of MERS-CoV infection is driven by dysregulated 
247 immune responses in humans, characterized by excessive production of 
248 various inflammatory cytokines and chemokines, leading to focal hemorrhagic 
249 and necrotizing pneumonia with extrapulmonary manifestations.8,12 In contrast, 
250 camelids show minimal or no clinical signs.1,2,68 Furthermore, experimentally 
251 inoculated alpacas and llamas could transmit infectious MERS-CoV to other 
252 non-inoculated, naïve animals via close contact,1,59 indicating that these New 
253 World camelids species might be useful surrogates for dromedaries in 
254 experimental studies.
255 Different clinical outcomes of MERS-CoV infection in humans and camelids 
256 could be partially due to differences in the spatial and cellular distribution of 
257 DPP4, the main cellular receptor of MERS-CoV (Figure 14). In humans, DPP4 
258 protein was mostly found in the lower respiratory tract. The highest and most 
259 consistent expression was reported in type I and II pneumocytes and alveolar 
260 macrophages.50,74 Additionally, DPP4 can be found in vascular endothelium 
261 and pleural mesothelium.50 Interestingly, the expression of DPP4 was 
262 increased in the lungs of patients with chronic obstructive pulmonary disease 
263 and cystic fibrosis, which may explain the increased disease severity in patients 
264 with chronic pulmonary diseases.50 DPP4 was absent or rare in the surface 
265 epithelium of the nasal cavity, trachea and bronchi of humans, but it could be 
266 detected in subepithelial glands and mononuclear cells in these tissues.50,74 In 
267 contrast to humans, the receptor protein in dromedaries was mainly expressed 
268 in ciliated epithelia of the nasal cavity, trachea and bronchi, while alveolar 
269 epithelial and endothelia were rarely positive.38,74 MERS-CoV antigen and 
270 mRNA generally co-localized with DPP4, and in vitro experiments showed that 
271 DPP4 was essential for virus entry, highlighting the determining role of the 
272 receptor in tissue and host tropism of the virus.32,39,66,72 Nevertheless, other 
273 factors besides DPP4 contribute to efficient virus entry and replication and 
274 potentially also to disease severity. For instance, certain glycotopes of α2,3-
275 sialic acids, which act as attachment factors for MERS-CoV, show a similar 
276 tissue distribution as DPP4 in humans and camelids. Interestingly, these 
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277 glycotopes were absent from the surface epithelia of the respiratory tract of pigs 
278 and rabbits, and these animals did not shed virus efficiently despite robust 
279 DPP4 expression.72,73 Another attachment factor, CEACAM5, was also shown 
280 to facilitate MERS-CoV entry in conjunction with DPP4, and this protein was 
281 expressed on cell types susceptible to MERS-CoV infection in the human 
282 lung.18 The distribution of CEACAM5 has not been investigated in camelids. 
283 In addition to entry factors, local innate immune responses influence the 
284 outcome of MERS-CoV infection, as demonstrated in an alpaca model.65 These 
285 animals developed early and transient type I and III interferon responses 
286 concomitant with the peak of viral (MERS-CoV Qatar-15/2015 strain) infection. 
287 Cytokine profiling showed that MERS-CoV-infected nasal epithelial cells 
288 produced interferons but distant uninfected cells did not, while interferon-
289 stimulated genes were simultaneously upregulated in both types of cells. 
290 Moreover, interferon-stimulated genes were moderate to highly induced in the 
291 lamina propria of nasal turbinates as well as in trachea and lungs, but without 
292 any detectable interferon mRNA in these tissues.65 These findings indicate that 
293 type I/III interferons produced by infected nasal epithelial cells seem to act in a 
294 paracrine/endocrine manner to induce interferon-stimulated gene expression 
295 along the whole respiratory tract, which may facilitate rapid virus clearance. 
296 Concomitant to the mild and focal infiltration of some leukocytes in the nasal 
297 mucosa and submucosa, the IL10 expression was upregulated along with 
298 dampened transcription of pro-inflammatory cytokines and NLRP3 
299 inflammasome components under NF-κB control, restricting a potential 
300 cytokine storm. Moreover, induction of chemokines (CCL2 and CCL3) in the 
301 lungs of MERS-CoV-infected animals correlated with a transient accumulation 
302 of leukocytes in the absence of IRF5 transcription, suggesting low abundance 
303 of M1 macrophages and, thus, controlled inflammation.65 Therefore, robust and 
304 well-timed type I/III interferon mucosal responses (prior or concomitant to 
305 maximal viral replication) and dampened inflammation in nasal epithelia may 
306 be key features for effectively controlling MERS-CoV infection in camelids that 
307 might limit it to a subclinical infection. Of note, low levels of infectious virus were 
308 observed in lungs of some alpacas at the peak of infection. In alpacas, DPP4 
309 was abundantly expressed in lungs, strengthening the hypothesis that type I/III 
310 interferons produced in the nasal epithelia may act in an endocrine manner in 
311 lung cells to limit virus spread.
312 A comparative pathogenesis study of MERS-CoV in an alpaca model 
313 showed that clade B strains (Qatar-15/2015 and Jordan-1/2015) had higher 
314 viral replication in respiratory tissues and higher viral shedding than did the 
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315 clade A EMC/2012 strain, confirming an enhanced replication fitness of MERS-
316 CoV clade B strains in a camelid host. Such characteristics provide a rationale 
317 for the dominance of clade B strains in the Arabian Peninsula. Nevertheless, all 
318 three MERS-CoV strains led to very similar histopathological changes and 
319 innate immune gene profiles, highlighting that the same host mechanisms are 
320 responsible for counteracting the different strains of MERS-CoV that infect 
321 alpacas.64

322

323 Control of MERS-CoV infection in camelids
324 Vaccination may be an effective strategy to disrupt camel-to-camel, camel-
325 to-human, and subsequent human-to-human transmission of MERS-CoV. 
326 Multiple platforms have been used for MERS-CoV vaccine candidates, 
327 including inactivated whole virus, live attenuated virus, protein-based vaccines, 
328 vector-based vaccines and DNA vaccines.49,61 However, only few vaccine 
329 candidates, encompassing two platforms (replication-deficient viral vector and 
330 recombinant protein), have been tested for efficacy in camelids infected with 
331 MERS-CoV (Table 1).4,7,36,59

332 A modified vaccinia virus Ankara (MVA) vaccine expressing the MERS-CoV 
333 spike protein induced a high-level specific neutralizing antibody response, and 
334 reduced excretion of infectious virus and viral RNA in vaccinated dromedaries 
335 after MERS-CoV challenge. 36 Here, animals were vaccinated via intramuscular 
336 and nasal routes.36 Of note, protection from clinical signs and reduced lesions 
337 correlated with the presence of serum neutralizing antibodies to MERS-CoV.36 
338 In another study, MERS-CoV seronegative and seropositive dromedaries were 
339 vaccinated intramuscularly with a replication-deficient adenoviral-vectored 
340 vaccine (ChAdOx1) expressing the MERS-CoV spike protein.7 After receiving 
341 a single intramuscular dose of ChAdOx1 MERS, seropositive dromedaries 
342 showed reduced MERS-CoV shedding as well as rhinorrhea and enhanced 
343 antibody response.7 By contrast, at least two doses of vaccine were required to 
344 induce antibodies in young seronegative camels under 1 year of age.7 Also, 
345 older animals that were previously seronegative responded more strongly to 
346 vaccination than younger animals.7

347 Recombinant proteins are another potential vaccination strategy for 
348 camelids. In a recent study, llamas were either non-immunized (naïve) or 
349 immunized with a recombinant S1 protein. Each group was later co-housed with 
350 nonvaccinated llamas that were experimentally infected with MERS-CoV.59 
351 While virus was transmitted to all in-contact naïve animals, none of the in-
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352 contact vaccinated llamas shed infectious MERS-CoV. Notably, the induction 
353 of strong virus neutralizing antibody responses correlated with protection, 
354 demonstrating the high efficacy of the S1 subunit vaccine in blocking MERS-
355 CoV infection in llamas.59 Similarly, another study showed that a recombinant 
356 MERS-CoV S1 protein subunit vaccine completely protected alpacas against 
357 experimental MERS-CoV infection and reduced and delayed viral shedding in 
358 dromedaries.4 
359 Despite the promising results of MERS vaccine trails in experimental 
360 studies, the lack of licensed vaccines hinders the possibility of vaccinating 
361 dromedaries from the Arabian Peninsula, where MERS-CoV circulation is 
362 endemic. Thus, extensive implementation of precautionary measures are 
363 required to prevent camel-to-camel and camel-to-human transmission , 
364 including the use of personal protective equipment, improved infection control 
365 awareness, and education of farm and healthcare workers.34 People who live 
366 in the Middle East should avoid contact with sick camels, drinking raw camel 
367 milk or camel urine, or eating raw camel meat, and follow general hygiene 
368 measures such as regular hand washing and disinfection of their clothes after 
369 contact with dromedaries.34 Fortunately, as the above-mentioned precautionary 
370 measures have been applied in the Arabian Peninsula where the virus is known 
371 to be endemic, MERS cases and deaths have been decreasing since 2016.31 
372 Nevertheless, increased surveillance of camel populations and workers in 
373 direct contact with infected herds are required to prevent MERS spillover from 
374 dromedaries to humans.5 
375

376 Conclusions and future directions
377 Camelids consistently develop minor clinical disease or asymptomatic 
378 infection upon MERS-CoV exposure. These species rapidly clear the virus from 
379 the upper respiratory tract and subsequently mount a robust adaptive immune 
380 response against the virus. Thus, camelids may not be a suitable animal model 
381 to recapitulate the severe disease that occurs in humans, but they may be 
382 useful as a model to develop effective vaccines for other camelids, to prevent 
383 future endemic in humans. Given that dromedaries are reservoir hosts of the 
384 virus, studies using MERS-CoV-infected camelids as challenge models have 
385 helped to fill critical knowledge gaps regarding zoonotic coronaviruses. Indeed, 
386 further detailed understanding on how camelids effectively control the virus 
387 without disease progression should aid the development of anti-MERS-CoV 
388 therapeutics and vaccines.
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389 Due to the very high MERS-CoV prevalence in dromedaries as well as the 
390 continued zoonotic transmission to humans across the Arabian Peninsula, the 
391 MERS-CoV epidemic will most likely continue for years to come.16,49 Of note, 
392 MERS-CoV clade C strains, which form a separate group from those currently 
393 circulating in the Arabian Peninsula,19,22–24 are endemic in dromedaries across 
394 Africa. However, locally acquired zoonotic MERS-CoV infections have not been 
395 reported so far in Africa.42 Thus, one could speculate that genetic or phenotypic 
396 differences in clade A/B versus clade C might be responsible for the observed 
397 differences in zoonotic potential. To shed light on potential evolutionary and 
398 molecular mechanisms for the restricted geographic circulation of different viral 
399 strains, it would be of interest to compare the pathogenesis and transmission 
400 capabilities of clade C African strains with Arabian strains in a camelid model. 
401 Such a study could address the question of how MERS-CoV is evolving and 
402 acquiring transmissibility and virulence.
403 Although some camel vaccine candidates were effective against MERS-
404 CoV, there are still numerous knowledge gaps about the correlates of protection 
405 including the duration of neutralizing antibodies and the role of T cell-mediated 
406 immunity for viral clearance. Looking ahead, the development of effective 
407 human and camelid vaccines that elicit long-lasting humoral and cellular 
408 immune responses appear to be an ideal way to limit the continuous 
409 transmission of MERS-CoV to naive animals and to humans. Besides testing 
410 vaccine efficacy, personal issues including the reticence of farmers to pay for a 
411 vaccine against MERS-CoV due to the absence of clinical signs in their camels. 
412 This may be tackled by education of camel owners. Moreover, compliance with 
413 infection control measures and continued surveillance of MERS-CoV among 
414 dromedaries with frequent close contact to humans is critical. Adoption of the 
415 ‘One Health’ approach to improve preparedness and to mitigate the effects of 
416 the MERS epidemic is of paramount importance. 
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676 Figure 1. MERS-CoV experimental challenge, dromedary camel, 8 days post-
677 infection. Mucoid discharge from the nostril.
678
679 Figures 2-7. MERS-CoV-experimental challenge, dromedary camel. Figure 2. 
680 Nasal mucosa, 4 dpi. Respiratory epithelium shows exocytosis of inflammatory 
681 cells (arrows), cell death, microcystic cavities (arrowheads), and loss of cilia. 
682 The lamina propria is infiltrated by moderate numbers of mononuclear cells and 
683 neutrophils (asterisks). Hematoxylin and eosin (HE). Figure 3. Trachea, 4 dpi. 
684 The epithelium shows exocytosis of inflammatory cells (arrows), occasional cell 
685 death (arrowhead), and squamous metaplasia. The lamina propria is infiltrated 
686 by small numbers of mononuclear cells (asterisks). HE. Figure 4. Nasal 
687 mucosa, 4 dpi. Scanning electron microscopy (SEM) of the respiratory 
688 epithelium of a vaccinated, MERS-CoV-challenged dromedary. The epithelium 
689 is intact with dense ciliation. Scale bar: 10 µm. Figure 5. Nasal mucosa, 4 dpi. 
690 SEM of the respiratory epithelium collected from the same region as in Figure 
691 5, from a non-vaccinated, MERS-CoV-challenged dromedary. There is a 
692 marked loss of cilia on cells that appear intact. Scale bar: 10 µm. Figure 6. 
693 Nasal mucosa, 4 dpi. MERS-CoV antigen is present in numerous epithelial cells 
694 and rare subepithelial cells (arrow). Immunohistochemistry. Figure 7. Nasal 
695 mucosa, 4 dpi. MERS-CoV antigen (green signal) is abundant in epithelial cells. 
696 Immunofluorescence. 
697
698 Figures 8-13. MERS-CoV experimental challenge, alpaca. Figure 8. Nasal 
699 mucosa, 2 dpi. Respiratory epithelium and lamina propria (asterisks) are 
700 infiltrated by small numbers of mononuclear inflammatory cells, accompanied 
701 by epithelial vacuolation and rare epithelial cell necrosis (arrows). Hematoxylin 
702 and eosin (HE). Figure 9. Lung, 2 dpi. There is slight thickening of alveolar 
703 septa with infiltration of few mononuclear inflammatory cells. HE. Figure 10. 
704 Nasal mucosa, 2 dpi. Viral antigen is abundant within nasal epithelial cells. 
705 Immunohistochemistry (IHC). Figure 11. Trachea, 2 dpi. Viral nucleocapsid 
706 antigen is scarce (arrow). IHC. Figure 12. Bronchus, 2 dpi. Epithelial cells have 
707 cytoplasmic immunolabelling for MERS-CoV antigen. IHC. Figure 13. Lung, 2 
708 dpi. MERS-CoV- antigen was not detected in alveoli. IHC. 
709 Figure 14. Differences in distribution of dipeptidyl peptidase 4 (DPP4), the 
710 cellular receptor for MERS-CoV, in the respiratory tract of humans and 
711 dromedaries. In humans, DPP4 is predominantly expressed in the lower 
712 respiratory tract, mainly in type II pneumocytes, while it is largely absent in the 
713 nasal cavity and trachea. In contrast, the receptor is predominantly expressed 
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714 in the nasal epithelium, trachea, and bronchi in dromedaries. The distribution 
715 of DPP4 corresponds to the distribution of virus following infection. Accordingly, 
716 human infection can result in fatal lower respiratory tract disease, while 
717 dromedaries usually only display mild and transient clinical signs of upper 
718 respiratory tract infection. Besides the differences in DPP4 distribution, other 
719 host factors potentially contribute to the different outcome of MERS-CoV 
720 infection in humans and camelids, including the distribution of attachment 
721 factors such as α2,3-sialic acids and CEACAM5, or differences in innate local 
722 immune responses (see main text).
723
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Table 1. Platforms and candidates of vaccines developed for camelids in 

response to MERS-CoV.

Platform Replication-

deficient Viral 

vector

Replication-

deficient Viral 

vector

Recombinant 

protein 

vaccine

Recombinant 

protein 

vaccine

Type of 

vaccine

MVA ChAdOx1 S1+ 

Montanide™ 

ISA adjuvant

S1+ Advax 

adjuvant

Target 

antigen

S S S1 S1

Immune 

response

Humoral Humoral Humoral Humoral

Single/multi

ple dose

Double Single or 

double

Double Triple

Vaccination 

route

i.m. and i.n. i.m. i.m. i.m.

Animal 

model

DCs DCs Llamas DCs and 

alpacas

References 36 7 59 4

Abbreviations: DCs, dromedary camels; i,m., intramuscularly; i,n., intranasally; 

MVA, Modified Vaccinia virus Ankara; S, spike protein; S1, subunit 1.
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