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Abstract 40 

Pollinators are critical for food security; however, their contribution to the pollination 41 

of locally important crops is still unclear, especially for non-bee pollinators. We 42 

reviewed the diversity, conservation status, and role of bee and non-bee pollinators 43 

in 83 different crops described either as important for the global food market or of 44 

local importance. Bees are the most commonly recorded crop floral visitors. 45 

However, non-bee pollinators are frequently recorded visitors to crops of local 46 

importance. Non-bee pollinators in tropical ecosystems include nocturnal insects, 47 

bats and birds. Importantly, nocturnal pollinators are neglected in current diurnal-48 

oriented research and are experiencing declines. Integrating non-bee pollinators into 49 

scientific studies and conservation agenda is urgently required for more sustainable 50 

agriculture and safeguarding food security for both globally and locally important 51 

crops. 52 

 53 
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Contribution of bee and non-bee pollination service for human well-being  57 

Worldwide, nearly 90 percent of wild flowering plant species depend to some degree 58 

on animal-mediated pollination for reproduction [1,2], including a broad range of crop 59 

species [3,4]. Crop yield (see Glossary) and crop quality of more than three 60 

quarters of the global leading crop types depend on animal pollinators to some 61 

degree [3,4], accounting for 5-8 percent of global crop production [5]. Many fruit, 62 

vegetable, seed, nut and oil crops are pollinator dependent, supplying major 63 

proportions of micronutrients, vitamins, and minerals to the human diet [4,6]. 64 

Furthermore, agriculture’s reliance on pollinator-dependent crops has increased in 65 

volume by more than 300 percent over the last five decades [5] and pollination 66 

limitation due to lack of pollinators is a common cause for lower crop yield [3,7,8]. 67 

 A diverse community of pollinators generally provides more effective and 68 

stable crop pollination than any single species [8]. Pollinator diversity, including non-69 

bee species such as flies, wasps, beetles, butterflies and moths, contributes to crop 70 

pollination even when managed species (e.g. the Western honey bee Apis mellifera) 71 

are present in high abundance [8]. Overall, it is estimated that non-bee insects 72 

perform 25–50% of the floral visits of globally-important crops [9]. Moreover, crop fruit 73 

set increased with non-bee insect visits independently of bee visits, highlighting the 74 

complementary role of non-bee pollinators in crop pollination [9,10]. In addition, the 75 

floral structure and the blooming activity (e.g. diurnal vs. nocturnal bloom) of many 76 

cultivated plants can restrict the mutualistic interaction to mostly non-bee pollinator 77 

species. This is important for some crop species with a high value for global markets 78 

[9]. However, it is especially important for other minority crops that are very valuable 79 

for local people (e.g. açai palm Euterpe oleracea, durian Durio zibethinus).  80 

 While similar stress factors are expected to impact bees and non-bee 81 

pollinators [2,11–14] alike, in the last few decades, more effort has been put into 82 

assessing global trends of increasingly decimated bee populations [4], than similar 83 

trends of declining non-bee pollinators and their association pollination services 84 

[9,10,15,16]. Here, we review the role, the diversity, and the conservation of non-bee 85 

species in crop production. In addition to assessing the broad range of crops visited 86 

by non-bee species, we evaluated their overall implication in supporting food 87 

security. 88 

 89 

Role and diversity of bee and non-bee pollinators in crop production  90 



  

  

Bees have traditionally been considered the most important group of crop pollinators 91 

worldwide [3,17]. Their pollinating efficiency is linked, among other things, to (i) their 92 

diet consisting predominantly of resources derived from flowers [18]; (ii) their bodies 93 

covered with branching hairs which allow for efficient attachment and transport of 94 

pollen grains; (iii) their floral fidelity to a given species during the same foraging trip 95 

or even during their lifetime [19,20]. Recent studies, however, highlight the important 96 

contribution of other non-bee insects in crop production, such as flies, butterflies, 97 

moths, wasps, beetles, thrips [9,21], as well as other groups, such as mammals or 98 

birds [22,23]. For example, Rader et al. [9] explicitly evaluated the role of non-bee 99 

insects on crop pollination. They found that flowers of all analyzed crops (n = 20) 100 

were visited by both bee and non-bee insect species, suggesting that the role of non-101 

bee pollinators has been overlooked. However, these studies have focused mainly 102 

on crops important for global trade, potentially excluding crops of local importance for 103 

food production.  104 

We extensively searched the published literature to gather data on bee and 105 

non-bee floral visitors considered as pollinators (while a pollinator, sensu stricto, is a 106 

floral visitor that deposits pollen and contributes to flower fertilization) in crop 107 

production using the Web of Knowledge [24] (Supporting Information, Section S1). 108 

We selected articles that published original data on the diversity of pollinators visiting 109 

crops with local importance for people (i.e. fruit and/or seeds of considerable 110 

economic, nutritional and cultural value for local communities; Box 1) or of global 111 

market importance (i.e. the crop produced is dominantly exported and thus present in 112 

the FAOSTAT database [25]), which produced 154 studies (see Section S1 for more 113 

details on the literature search methodology). For each study we recorded (i) the 114 

study country of origin, (ii) the crop species, and whether its production was of 115 

importance for the global market or for local people, and (iii) the sampling method 116 

used to estimate the abundance and diversity of floral visitors. Interestingly, we found 117 

that, depending on the sampling method used, 67 studies (44%) focused only on 118 

bees as crop pollinators, and thus did not assess the diversity of pollinators visiting 119 

crops. This can introduce a methodological bias of bees’ importance for crop 120 

pollination, which is currently questioned relative to the contribution of other insect 121 

pollinators [9,10]. Therefore, we excluded these 67 studies from the analysis.  122 

Overall, the dataset comprised 83 crops with 31 crops described as important 123 

for global food markets, 48 crops described as important for local people, and four 124 



  

  

crops described as globally and locally important crops (avocado Persea americana, 125 

blueberry Vaccinium sect., common bean Phaseolus vulgaris, fennel Foeniculum 126 

vulgare, Table S1). The synthesis covered 39 countries (Figure 1). We then 127 

classified the diversity of pollinators across 12 taxonomic groups, including bees and 128 

9 groups of non-bee insects: Blattodea, Diptera, Coleoptera, Hemiptera, non-bee 129 

Hymenoptera, Lepidoptera, Neuroptera, Odonata, and Orthoptera, but also two 130 

groups of vertebrates: bats and birds. Overall, bees were the most common crop 131 

floral visitors (with 91% of presence occurring in all crops), followed by other insects 132 

such as Diptera (67%), Lepidoptera (i.e., butterflies and moths, 44%), Coleoptera 133 

(33%), non-bee Hymenoptera (i.e. wasps and ants, 25%) and Hemiptera (18%). 134 

Blattodea, Neuroptera, Odonata and Orthoptera were observed less than 2% of the 135 

time overall; thus, we excluded these groups thereafter.  136 

Bees have been shown as the dominant group of pollinators visiting the vast 137 

majority of global food market crops [9,10], however, these results could be biased 138 

by the sampling methods that are commonly used. Indeed, we found that a large 139 

number of studies focused exclusively on bee sampling (44%). Moreover, only 31% 140 

of the pollination studies focusing on globally important crops had no species-specific 141 

restrictions on their sampling method. All these studies recorded non-bee and non-142 

Diptera species as floral visitors, suggesting that pollination mediated by commonly 143 

overlooked animal groups could be more frequent than previously reported. For 144 

instance, we found that non-bee pollinators routinely visit several crops of global 145 

importance, including cocoa (Theobroma cocoa), coffee (Coffea arabica), common 146 

bean, onion (Allium cepa), sunflower (Helianthus annuus), and apple (Malus 147 

domestica) (Figure 2a).  148 

Although the diversity of non-bee insects confirms the results from Rader et al. 149 

[9], we show that non-bee pollinators are also more frequent floral visitors of locally- 150 

important crops (Figure 1) and sometimes the only floral visitors (e.g. atemoya 151 

Annona squamosa × cherimola, salak Salacca edulis, pitayas Stenocereus 152 

queretaroensis, banana Musa acuminata, calabash Lagenaria siceraria, langsat 153 

Lansium domesticum, petail Parkia speciosa and snake gourd Trichosanthes 154 

anguina; Figure 2b). Hence, our results suggest that supporting the yield of locally 155 

important crops cannot rely exclusively on bee pollinators. Floral visitors of such 156 

locally important crops also included non-insect species such as bats (9%) and birds 157 

(4%), which can represent more than 30% of floral visits in tropical crops (e.g. in 158 



  

  

Malaysia and Mexico, Figure 1). Furthermore, the floral visit frequency by Diptera, 159 

Coleoptera, Lepidoptera, non-bee Hymenoptera and Hemiptera is also higher in 160 

locally important crops compared to globally important crops, while pollination from 161 

bats and birds are mainly related to locally important crops (Figure 1). For instance, 162 

bats and birds are frequent visitors of several tropical crops for which bees have 163 

never been observed (e.g. pitayas, banana, langsat, and petai; Figure 2). Therefore, 164 

despite bees being dominant as pollinators in many studies, and disregarding the 165 

bias, non-bee pollinators can play an important role in local food security. This calls 166 

for consideration of local food crops and their pollinators in developing conservation 167 

programs to enhance ecosystem services for food security. 168 

 169 

Nocturnal pollinators are neglected 170 

Bats were found as nocturnal pollinators in several tropical crops, but some insects 171 

also provide this service (Figure 1) and their contribution remains understudied on 172 

crops of local and global importance [26]. In the recent CropPol global database on 173 

crop pollination recording insect pollinators of global crops [27], we focused on night-174 

active Lepidoptera and Coleoptera [28,29] among those identified to, at least, the 175 

family level (restricted to a 77% of the records). We identified 27 coleopteran and 6 176 

lepidopteran species as potential nocturnal pollinators of oilseed rape, sunflower, 177 

ridge gourd (Luffa acutangular) and bottle gourd (Lagenaria siceraria) (Table 1). To 178 

assess the possible pollinating role of these insects, we analyzed the visitation rate of 179 

flowers by night-active Lepidoptera and Coleoptera in the CropPol database. We 180 

identified three species as potential nocturnal pollinators of sunflower: Lampyris 181 

noctiluca (Coleoptera, Lampyridae), Lagria hirta (Coleoptera, Tenebrionidae) and 182 

Hyles euphorbiae (Lepidoptera, Sphingidae) [27]. However, identification of nocturnal 183 

pollinators is limited as many of the coleopteran and lepidopteran pollinators listed in 184 

the CropPol database are only identified to higher taxonomic levels. Thus, CropPol 185 

potentially underestimates the contribution of nocturnal pollination. For instance, this 186 

global database does not record nocturnal pollination of apple and cucurbits; 187 

however, recent exclusion experiments showed that their contribution to pollination is 188 

significant [30–32].  189 

 The underestimation of nocturnal pollination is likely related to current 190 

diurnal-oriented research; common sampling techniques used to date are not 191 

adapted to the study of nocturnal pollinators. As an example, we analyzed the 192 



  

  

effectiveness of insect sampling techniques to record nocturnal pollinators in the 193 

CropPol database (i.e. the 27 coleopteran and 6 lepidopteran species) (Figure 3). 194 

Overall, five sampling techniques are commonly used either as passive 24h-day 195 

sampling (e.g. pitfall trap and pan trap or bee bowl) or active daytime sampling 196 

(sweep net, focal observations and transects). Pitfall traps are efficient to collect 197 

night-active coleopteran pollinators, but fail at collecting lepidopteran pollinators. 198 

Other passive 24h-day sampling techniques show few records of both coleopteran 199 

and lepidopteran pollinator species. Interestingly, the active daytime sampling 200 

techniques are able to record nocturnal pollinators, in particular those of crepuscular 201 

activities, with higher efficiency in recording lepidopteran pollinators than coleopteran 202 

pollinators (Figure 3). However, all of those common diurnal-oriented research 203 

techniques are limited in their robustness to measure pollination activity at night. The 204 

few techniques that ensure the accurate monitoring of nocturnal pollinators imply the 205 

observation of flowers at night [33]. Moreover, the use of camera traps is a promising 206 

option to collect diurnal and nocturnal information [34] to better understand and 207 

reconsider the role of nocturnal pollinators in crop production [35]. 208 

 209 

Importance of non-bee pollinators for local food security  210 

Pollinator-dependent species encompass many fruit, vegetable, seed, nut and oil 211 

crops, which supply major proportions of micronutrients, vitamins and minerals to the 212 

human diet [36–38]. Therefore, pollination directly benefits rural people who gain 213 

both their food and income from agriculture [2,39]. This is of particular importance for 214 

low-income families that lack access to marketed food, and where animal-pollinated 215 

crops contribute to a large part of their vitamin intake [40].  216 

Most food is produced at a small scale by family farmers and traded locally or 217 

regionally, whereas about 15% is traded globally [25]. Therefore, these locally 218 

produced crops can be equally, if not more, important for food security [41]. As locally 219 

produced crops can substantially contribute to food security, especially for the 220 

poorest and most rural people, there is a potential significant connection between 221 

pollination, local production and food security [38]. For example, in several countries, 222 

such as Brazil and Mexico, poor and rural people rely heavily on pollinator-dependent 223 

crops [42]. 224 

Non-bee pollinators can also be relatively more important for local livelihoods 225 

than for globally traded crops overall. Although complementary pollination systems 226 



  

  

exist, in which both bee and non-bee species simultaneously play an important role 227 

in crop production [8,9], some crops are almost exclusively pollinated by non-bee 228 

species (Figure 2b) [9,10], as is the case for atemoya, banana, calabash, langsat, 229 

petail, pitayas, salak and snake gourd, which are important crops for local production 230 

and economies. Certain non-bee pollinated crops are both globally and locally 231 

important. Cocoa is an emblematic example of a non-bee pollinator-dependent crop 232 

[43], which also requires cross-pollination to produce viable seeds [44]. The majority 233 

of cocoa pollination studies suggest that ceratopogonids (Diptera) are the most 234 

common and main pollinators [45–48]. Beyond the global importance of this crop, the 235 

World Cocoa Foundation estimated the number of people that depend on cocoa 236 

farming for their livelihood is 40-50 million worldwide [49]. Exports of cocoa products 237 

overall generated $US 20.7 billion [50] with more than 4.7 million tons produced in 238 

2017 [51]. Another example, less systematically studied, is African oil palm (Elaeis 239 

guineensis). This tropical crop is grown mainly to produce palm oil that is obtained 240 

from the seeds and fleshy pulp of palm fruits. Although it is native to West Africa, 241 

cultivation has spread throughout the tropics and it is currently the most cultivated 242 

and traded vegetable oil in the world. Its low price and the fact that it can be used for 243 

many purposes (e.g. cooking oil, cosmetic product base, conservation method for 244 

processed food or as biofuel [52]) have contributed to its popularity. Although palm oil 245 

can be pollinated by wind in dry environments, high crop yields depend almost 246 

exclusively on pollination mediated by a subfamily of weevils (Derelominae) among 247 

which the species of the genus Elaeidobius are the most efficient pollinators [53]. 248 

Crop yield has been historically higher in plantations located within the areas where 249 

the weevils are native and abundant (e.g. Cameroon).  250 

The New World leaf-nosed bats (Phyllostomidae) and the Old World fruit bats 251 

(Pteropodidae) provide unique and valuable pollination services to several crop 252 

species of local and global importance [54]. For example, most species of the genus 253 

Agave (Asparagaceae) are heavily dependent on phyllostomid bats for seed 254 

production [55], which are usually produced for selling. For their part, the pteropodid 255 

bats are critical pollinators of several important commercial food species such as the 256 

honeytree (Madhuca longifolia) in India [54], or the petai [56] and durian [57,58]. In 257 

Southeast Asia other locally-consumed food and fiber plants depend on non-bee 258 

pollinators [59]. Vertebrates such as birds, and especially bats, play an important, 259 

and often overlooked, role in tropical crop pollination [60–62]. Bats may be the main 260 



  

  

pollinators for up to 1,000 species of plants across the tropics, including many of 261 

socio-economic importance such as durian, mango and pitayas [60,63,64].  262 

Additionally, wild plants sometimes play an important role in guaranteeing food 263 

security, especially in times of crop failure. For instance, the miombo ecosystem of 264 

southern Africa contains over 150 species of edible plants, which contribute to both 265 

nutrition and income [65], and several of which (e.g. Kigelia africana) rely greatly on 266 

bats for pollination [66,67]. 267 

If estimations of the importance of pollination services have mainly focused on 268 

globally-traded crops, the importance of pollinators for local food security has likely 269 

been underestimated, especially the contributions of non-bee pollinators. Therefore, 270 

it is important to make sure that locally-produced, non-commodity crops are not 271 

overlooked when estimating pollination dependence for food and nutritional security. 272 

This is also applicable for orphan crops and underutilized crops, many of which are 273 

thought to depend on animal-mediated pollination [65,68] and are recognized as 274 

important for food security [65,69,70]. The lack of knowledge as to what extent, not 275 

only non-bee pollinators, but pollinators in general, contribute to local and regional 276 

crops, important for food security, is per se a call for future studies on these issues. 277 

 278 

Conservation status of non-bee pollinators 279 

Due to the expansion of anthropogenic activities, animal-plant interactions, including 280 

pollination, are in decline globally. IUCN Red List assessments indicate that many of 281 

the non-bee pollinator species are threatened, including 16.5% of vertebrate 282 

pollinators, which increases to 30% for island species, [57]. Regan et al. [58] 283 

calculated that 10% and 6% of the described birds and mammal species, 284 

respectively, (1089 birds and 343 mammals) act as pollinators. In general, pollinating 285 

birds and mammals are slightly less threatened than non-pollinator birds and 286 

mammals, except for bats. Pollinating bat species are more threatened than non-287 

pollinating species. In particular, bat populations are severely threatened in many 288 

parts of the world – 80% of bat species require conservation actions [71]. Abundance 289 

and diversity of butterflies have also declined in northwest Europe and North America 290 

[2] and general insect declines have been widely reported [72]. Overall, the lack of 291 

information on population trends of many pollinators is especially worrying [73].  292 

 293 

Concluding remarks and future perspectives 294 



  

  

Non-bee species are common floral visitors to crops of global and local importance. 295 

For certain crops non-bee species are the primary, often specialized, pollinators (e.g. 296 

banana, calabash, langsat, petai, and snake gourd). For example, bats and birds are 297 

common pollinators of tropical crops for which bees have never been observed 298 

visiting flowers. For other crops, non-bee species contribute by enhancing the 299 

abundance and diversity of floral visitors. Pollination provided by a wide range of taxa 300 

is expected to confer crop stability in the short and long term, as they are functionally 301 

complementary (e.g. different floral visitors might be active under different weather 302 

conditions).  303 

 Non-bee species are critical contributors to food production as pollinators, 304 

especially for locally important crops, but also for other ecosystem services. Given 305 

their particular life history traits, many non-bee pollinator species provide seed 306 

dispersal, pest control, or nutrient cycling (see Outstanding questions). Moreover, 307 

in local cultures, non-bee species act as sources of inspiration for art, music, 308 

literature, religion, traditions, technology and education. Despite their importance, we 309 

found that non-bee pollinators are less studied than bee pollinators because 310 

sampling methods for floral visitors focus mostly on bees. In particular, the absence 311 

of sampling schemes for nocturnal pollinators is noteworthy [35]. Also, most habitat 312 

restoration studies focus on bee species, while their impact on many non-bee floral 313 

visitors is unclear. 314 

 Non-bee floral visitors might respond differently to land-use change than 315 

bee species (see Outstanding questions). Certain groups of non-bee floral visitors 316 

such as some Diptera species (e.g. hoverflies) seem to be more tolerant to 317 

anthropogenic pressures than bees, providing crop insurance in places where bee 318 

populations have declined [74]. Overall, however, non-bee species are not the 319 

exception to current biodiversity declines and are threatened all over the world. To 320 

revert the loss of non-bee contributions, current management of agricultural and 321 

forest landscapes needs to transition to systems that conserve both bee and non-bee 322 

pollinators [16]. Alternatives to conventional production systems, such as ecological 323 

intensification, exist already with successful examples of applications found 324 

throughout the world [75]. 325 
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Figure Legends 537 

 538 

Figure 1. Global synthesis of crop pollinators reveals shared high-level diversity of 539 

non-bee species including Diptera, Coleoptera, Lepidoptera, non-bee Hymenoptera, 540 

Hemiptera, but also non-insect pollinators such as bats and birds, with differences 541 

between species group for crops with global food market importance and those of 542 

importance for local people. N represents the number of monitoring studies per 543 

country. Countries are colored according to the density of globally vs. locally 544 

important crops (e.g. countries in blue whenever two third of the crops studied are of 545 

global importance). Acronyms show the country names following the abbreviation 546 

ISO 3166 ALPHA-3. Icons: www.freepik.com 547 

 548 

Figure 2. List of crops with (a) global food market importance or (b) importance for 549 

local people, and their observed species group of floral visitors including Diptera, 550 

Coleoptera, Lepidoptera, non-bee Hymenoptera, Hemiptera, bats and birds. 551 

Pollinator symbols follow Figure 1. Color gradient in the pie charts represents the 552 

density of floral visitors for which several studies were available. Icons: 553 

www.freepik.com 554 

 555 

Figure 3. Methodological bias of common sampling techniques for monitoring 556 

crepuscular or nocturnal pollinators based on the pollinator CropPol global database 557 

[27]. Bars represent the proportion of crepuscular or nocturnal pollinators recorded 558 

among the total lepidopteran and coleopteran pollinators depending on the sampling 559 

methods. Numbers in the bar chart represent the total number of combinations (study 560 

× monitoring site × pollinator) for which we were able to determine that the species or 561 

family exhibited diurnal, crepuscular or nocturnal activities. Icons: www.freepik.com 562 

 563 

Table 1. List of pollinators with crepuscular or nocturnal activities in crops based on 564 

the pollinator CropPol global database [27]. 565 
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Table 1. List of pollinators with crepuscular or nocturnal activities in crops based on 1 

the pollinator CropPol global database [27]. * Species with a potential role of 2 

pollinator of the crop since they were collected in sessions where the visitation rate of 3 

their order was strictly greater than zero. 4 

 5 

Guild Crop Species or family References 

Coleoptera Brassica napus Abax parallelepipedus Nebria brevicollis [33,78–81] 

Agonum muelleri Nebria salina 

Amara similata Notiophilus aestuans 

Anchmenus dorsalis Notiophilus palustris 

Bembidion obtusum Platynus assimilis 

Bembidion tetracolum Poecilus cupreus 

Carabus granulatus Pterostichus anthracinus 

Carabus monilis Pterostichus melanarius 

Carabus nemoralis Pterostichus nigrita 

Clivina fossor Pterostichus vernalis 

Harpalus affinis Stomis pumicatus 

Harpalus rufipes Trechus quadristriatus 

Loricara pilicornis Elateridae spp 

Helianthus annuus Lagria hirta * Lathrididae spp [81] 

Lampyris noctiluca *  

Lepidoptera Brassica napus Pieris brassicae Pieridae spp [28,82,83] 

Plutella xylostella Sphingidae spp 

Noctuidae spp  

Helianthus annuus Eudalaca exul Utetheisa pulchella [28,84,85] 

Hyles euphorbiae * Noctuidae spp  

Lagenaria siceraria Noctuidae spp Sphingidae spp [28,83] 

Luffa acutangula Melanitis leda Sphingidae spp [28,83,86] 

 6 

 7 

Table 1

https://www.editorialmanager.com/tree/download.aspx?id=117962&guid=0a0f1504-a52f-431a-aa7f-0aeded663571&scheme=1
https://www.editorialmanager.com/tree/download.aspx?id=117962&guid=0a0f1504-a52f-431a-aa7f-0aeded663571&scheme=1


Box 1. Global and locally important crops 1 

 2 

Crops of global importance are defined as those crop species that were mainly 3 

produced for exportation in the global market. The trade of these crops is regulated 4 

by stock exchanges and international organizations such as the World Trade 5 

Organization. These crops are therefore listed in the FAOSTAT database (e.g., 6 

coffee Coffea arabica, oilseed rape Brassica napus, strawberry Fragaria x ananassa) 7 

[25]. Conversely, crops of local importance to people are defined as fruits and seeds 8 

of considerable economic, nutritional and cultural value for communities. For 9 

instance, production is consumed directly by these communities, or has high cultural 10 

value due to the perpetuation of traditional agronomic practices. Specifically, we 11 

categorized crops as of local importance when meeting one of the two following 12 

criteria: i) crop species that do not appear in the FAOSTAT database (e.g., acai palm 13 

Euterpe oleracea, durian Durio zibethinus, petai Parkia speciosa) or ii) crop species 14 

that appear in the FAOSTAT database but authors of the original papers from which 15 

pollinator information was gathered, explicitly considered the target crop species as 16 

important for local people (e.g., papaya Carica papaya in Thailand [63], banana 17 

Musa acuminata in Thailand [59] and common bean Phaseolus vulgaris in Tanzania 18 

[76], Table S1).  19 

 20 

Box 1
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Highlights 1 

 One third of pollination studies focus exclusively on bees, introducing a 2 

potential bias in their importance for crop yield 3 

 Non-bee pollinators can have relatively high importance for local crops with 4 

cultural and food values 5 

 Nocturnal pollinators were commonly cited as critical pollinators of locally 6 

important tropical crops, however, their contribution is currently neglected in 7 

crop pollination studies 8 

 The general decline of non-bee pollinators calls for an urgent conservation 9 

agenda not only for buffering the alarming global loss of biodiversity but also 10 

for safeguarding food security and local livelihoods. 11 



 

 

Outstanding Questions 1 

 What is the contribution of nocturnal pollination provided by non-bee animals 2 

to crop production? The role of nocturnal pollinators is often overlooked in 3 

pollination studies, in particular for global food market crops. However, certain 4 

nocturnal pollinators, in particular bats, are known to contribute to pollination 5 

of crops such as banana and mango. 6 

 Is the demand for pollination services provided by non-bee species 7 

increasing? The global increase in the production of pollinator-dependent 8 

crops raises the question of the identity of the pollinators able to provide 9 

pollination services to these crops, since managed honey bees are not always 10 

the optimal solution. Indeed, pollinators vary in pollination efficiency and more 11 

diverse pollinator assemblages are known to provide better crop pollination 12 

services than single-species assemblages. 13 

 Are non-bee pollinators more resilient to anthropogenic disturbances than bee 14 

pollinators? Bee pollinators are the focus of many studies, and thus their 15 

responses to anthropogenic disturbances are relatively well understood, in 16 

particular in agricultural landscapes. However, as non-bee pollinators have not 17 

received the same attention, their resilience to these disturbances is not so 18 

well established.  19 

 What is the contribution of non-bee pollinators to the provisioning of additional 20 

ecosystem services (regulatory, material and non-material) when compared to 21 

bee pollinators? Beyond bees that exclusively feed on pollen and nectar 22 

during all their adult life stages, numerous non-bee pollinators such as 23 

vertebrates or other insect taxa (e.g. beetles, ants) can be considered as 24 

potential biocontrol agents or seed dispersers as well as a source of 25 

inspiration for art, literature, religion, traditions, technology an education. 26 

However, few studies focus on documenting the whole range of potential 27 

positive side effects of non-bee conservation in agricultural landscapes. 28 

 How much do locally important crops depend on different pollinator species, 29 

especially in the global south? Little is known about the species of pollinators 30 

that visit crops which benefit local communities, particularly in the global 31 

south. However, some of these crops are known to attract interesting non-bee 32 



 

 

pollinator assemblages (e.g. bats, flies) which provide essential pollination 33 

services.  34 

 35 



 

 

Glossary 1 

 2 

Crop yield: Defined by the FAO as a numerical measure of a harvested crop per unit 3 

area of land on which it is grown. 4 

 5 

Ecosystem services: Term popularized by the Millennium Ecosystem Assessment, 6 

refers to the ecological processes which benefit human societies. Ecosystem 7 

services are divided into four categories: provisioning services (e.g. crop pollination), 8 

regulatory services (e.g. climate regulation), cultural services (e.g. recreational 9 

interactions with nature), and supporting services (e.g. nutrient cycling). 10 

 11 

Food security: According to FAO, food security exists when [… all people, at all 12 

times, have physical and economic access to sufficient, safe and nutritious food that 13 

meets their dietary needs and food preferences for an active and healthy life] [77]. 14 

 15 

Orphan crops: Underused, lost, indigenous, minor, promising, or future crops in a 16 

state of neglect and abandonment despite their grossly underexploited food and 17 

nutritional potential that can contribute to food and nutrition security.  18 

 19 

 20 
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Supporting Information 1 

 2 

Section S1. Literature synthesis of bee and non-bee pollinators in crop production.  3 

We extensively searched the published literature to gather data on non-bee 4 

pollinators in crop production using the Web of Knowledge [S1]. We configured the 5 

search string with “[TS=Crop pollination]”, with TS meaning “Topic”, to collect 6 

information on both globally important crops and other crops of more local 7 

importance. We included all literature from January 1975 until September 2022 and 8 

we focused on Articles as “Document types”. The initial search identified 827 papers 9 

worldwide. Based on title and abstract, we then restricted our search to empirical 10 

studies with original data, excluding opinion papers, reviews, meta-analyses, and 11 

theoretical works. We also restricted the data synthesis to crops –excluding 12 

pollination studies on flowering plants without link to food production– and to “in-crop” 13 

census of pollinators –excluding landscape-scale inventories of pollinators. We finally 14 

selected studies that recorded free-ranging flower visitors of crops, and thus we 15 

excluded greenhouse, lab works, and all studies for which the diversity of pollinators 16 

is controlled or artificially restricted (e.g. using trap nests or managed pollinators). 17 

The data synthesis produced 154 references for which we recorded the location of 18 

the study (at country scale), the name of the crop and whether the production is 19 

rather of global food market importance or of importance for local people (food 20 

security and local livelihoods), the method of flower visitor monitoring and their 21 

diversity. We excluded 67 studies (44%) that focused only on bees as crop 22 

pollinators, and thus did not assess the diversity of pollinators visiting crops. 23 

Therefore, the review considered 87 references. We then classified the diversity of 24 

pollinators among 12 groups, including Bees, and 11 non-bee pollinators: bats, birds, 25 

Blattodea, Diptera, Coleoptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera, 26 

Odonata, Orthoptera.  27 

 28 



 

 

Table S1. Crops of global and local importance from our global synthesis of crop 29 

flower visitors. Given that the trade of global important crops is regulated by stock 30 

exchanges and international organizations such as the World Trade Organization, we 31 

categorized these crops as listed in the FAOSTAT database [S2]. We present the 32 

mean cultivated area of global important crops, and the proportion that represents 33 

this crop for the total cultivated area based on the FAOSTAT data from 2011 to 2020. 34 

Conversely, we categorized crops as of local importance when they met any of the 35 

two following criteria: i) crop species that do not appear in the FAOSTAT database or 36 

ii) crop species that appear in the FAOSTAT database but authors of the original 37 

papers from which pollinator information was gathered, explicitly considered the 38 

target crop species as important for local people.  39 

 40 

Country Crop (Latin name) Importance  
Crop 
cultivated 
area (ha) 

Crop 
proportion 
area (%) 

References 

Argentina Soybean (Glycine max) Global 18086507 51.60 [S3] 

Sunflower (Helianthus 
annuus) 

Global 1608995 4.59 [S4,S5] 

Australia Apple (Malus domestica) Global 17805 0.08 [S6] 

Atemoya (Annona squamosa 
x cherimola) 

Local NA NA [S7] 

Blueberry (Vaccinium sect.) Global 1452 < 0.01 [S8] 

Raspberry (Rubus idaeus) Global 243 < 0.01 [S8] 

Sunflower (Helianthus 
annuus) 

Global 22682 0.10 [S9] 

Sweet cherry orchards 
(Prunus avium) 

Global 2219 < 0.01 [S6] 

Bangladesh Pak Choi (Brassica rapa) Local NA NA [S10] 

Belgium Sweet cherry orchards 
(Prunus avium) 

Global 1144 0.20 [S11,S12] 

Brazil Acai palm (Euterpe oleracea) Local NA NA [S13–S15] 

Coffee (Coffea arabica, C. 
canephora) 

Global 1988747 2.65 [S16] 

Common bean (Phaseolus 
vulgaris) 

Global 2926563 3.90 [S17] 

Mango (Mangifera indica) Global 85883 0.11 [S18,S19] 

Star fruit (Averrhoa 
carambola) 

Local NA NA [S20] 

Burkina 
Faso 

Cotton (Gossypium hirsutum) Local NA NA [S21] 

Sesame (Sesamum indicum) Global 327445 4.67 [S21] 

Shea (Vitellaria paradoxa) Local NA NA [S22] 

Canada Blueberry (Vaccinium sect.) Global 39493 0.14 [S23] 

Strawberry (Fragaria x 
ananassa) 

Global 3146 0.01 [S24] 

Chile Blueberry (Vaccinium sect.) Local NA NA [S25] 

China Angled luffa (Luffa 
acutangula) 

Local NA NA [S26] 

Calabash (Lagenaria 
siceraria) 

Local NA NA [S26] 



 

 

Chinese cucumber 
(Trichosanthes kirilowii) 

Local NA NA [S26] 

Deodeok (Codonopsis 
subglobosa) 

Local NA NA [S27] 

Snake gourd (Trichosanthes 
anguina) 

Local NA NA [S26] 

Costa Rica Mango (Mangifera indica) Global 5677 1.10 [S19] 

England Apple (Malus domestica) Global 16032 0.36 [S28] 

Oilseed rape (Brassica 
napus) 

Global 616149 13.95 [S29] 

Strawberry (Fragaria x 
ananassa) 

Global 4714 0.11 [S30] 

Ethiopia Coffee (Coffea arabica, C. 
canephora) 

Global 645784 4.13 [S31] 

Field pea (Pisum sativum) Global 239996 1.54 [S31] 

Horse bean (Vicia faba) Global 478375 3.06 [S31] 

Mango (Mangifera indica) Global 15361 0.10 [S31] 

Finland Caraway (Carum carvi) Local NA NA [S32] 

France Fennel (Foeniculum vulgare) Local NA NA [S33] 

Germany Camelina (Camelina sativa) Local NA NA [S34] 

Field bean (Vicia faba) Local NA NA [S35] 

Pennycress (Thlaspi 
arvense) 

Local NA NA [S34] 

Strawberry (Fragaria x 
ananassa) 

Global 14242 0.16 [S36–S38] 

Sunflower (Helianthus 
annuus) 

Global 22125 0.25 [S39] 

Greece Tomato (Solanum 
lycopersicum) 

Global 20543 0.78 [S40] 

India Abyssinian mustard 
(Brassica carinata) 

Local NA NA [S41,S42] 

Berseem (Trifolium 
alexandrinum) 

Local NA NA [S42] 

Carrot (Daucus carota) Global 34492 0.02 [S41] 

Cauliflower (Brassica 
oleracea) 

Global 419161 0.21 [S41,S42] 

Chick pea (Cicer ariecinum) Global 9223773 4.62 [S42] 

Chinese cabbage (Brassica 
chinensis) Local NA NA 

[S42] 

Coffee (Coffea arabica, C. 
canephora) Global 411245 0.21 

[S43] 

Corriander (Coriander 
sativum) Global 1018358 0.51 

[S41] 

Cumin (Cuminum cyminum) Global 1018358 0.51 [S41] 

Edible leaf mustard (Brassica 
juncea) Local NA NA 

[S41,S42] 

Fennel (Foeniculum vulgare) Global 1018358 0.51 [S41] 

Lentil (Lens esculenta) Global 1443162 0.72 [S42] 

Mango (Mangifera indica) Global 2411297 1.21 [S19] 

Oilseed rape (Brassica 
napus) Global 6450875 3.23 

[S41,S42] 

Pigeon pea (Cajanus cajan) Global 4259446 2.14 [S42] 

Radish (Raphanus sativus) Local NA NA [S41,S42] 

Rocket cress (Eruca sativa) Local NA NA [S41,S42] 

Toria (Brassica campestris) Local NA NA [S41,S42,S44] 

Turnip (Brassica rapa) Local NA NA [S41,S42] 

White mustard (Brassica 
hirta) Local NA NA 

[S41,S42] 

Indonesia Cocoa (Theobroma cacao) Global 1687280 3.85 [S45] 



 

 

Ireland Apple (Malus domestica) Global 660 0.21 [S46] 

Miscanthus (Miscanthus x 
giganteus) Local NA NA 

[S47] 

Oilseed rape (Brassica 
napus) Global 10917 3.39 

[S47,S48] 

Israel Cactus (Cereus peruvianus) Local NA NA [S49] 

Curcas (Jatropha curcas) Local NA NA [S50] 

Mango (Mangifera indica) Global 1797 0.61 [S19] 

Italy Leek (Allium porrum) Global 400 0.01 [S51] 

Oilseed rape (Brassica 
napus) Global 15641 0.23 

[S52] 

Japan 
Buckwheat (Fagopyrum 
esculentum) Global 60364 2.05 

[S53,S54] 

Kenya Avocado (Persea americana) Global 13513 0.24 [S55] 

Malaysia Durian (Durio zibethinus) Local NA NA [S56] 

Mexico Avocado (Persea americana) Global 169207 1.06 [S19] 

Papaya (Carica papaya) Local 16103 0.10 [S57] 

Pitayas (Stenocereus 
queretaroensis) Local NA NA 

[S58] 

Nepal Toria (Brassica campestris) Local NA NA [S59] 

New 
Zealand 

Avocado (Persea americana) Global 4250 1.55 [S19] 

Onion (Allium cepa) Local NA NA [S60] 

Pak Choi (Brassica rapa) Local NA NA [S61–S64] 

Norway Raspberry (Rubus idaeus) Global 367 0.12 [S65] 

Philippines Mango (Mangifera indica) Global 195860 1.37 [S19] 

Poland Buckwheat (Fagopyrum 
esculentum) Global 73264 0.74 

[S37] 

Sunflower (Helianthus 
annuus) Global 3154 0.03 

[S66] 

Scotland Raspberry (Rubus idaeus) Global 1543 0.04 [S67] 

Strawberry (Fragaria x 
ananassa) Global 4714 0.11 

[S67,S68] 

South 
Africa 

Apple (Malus domestica) Global 22758 0.42 [S69] 

Avocado (Persea americana) Global 17211 0.32 [S19] 

Mango (Mangifera indica) Global 4063 0.08 [S19,S70] 

Spain Almond (Prunus dulcis) Global 591194 4.68 [S71] 

Sweden 
Oilseed rape (Brassica 
napus) Global 102433 8.46 

[S37,S72] 

Taiwan Mango (Mangifera indica) Global 15898 2.32 [S19] 

Tanzania Avocado (Persea americana) Local NA NA [S55] 

Common bean (Phaseolus 
vulgaris) Local 1045014 6.68 

[S73] 

Thailand Banana (Musa acuminata) Local 63958 0.31 [S74] 

Banana (Musa sapientum) Local 63958 0.31 [S75] 

Bitter beans (Parkia 
speciosa) Local NA NA 

[S75] 

Cassia (Cassia Siamea) Local NA NA [S75] 

Coconut (Cocos nucifera) Local 177096 0.85 [S75] 

Domestic jackfruit 
(Arthocarpus integer) Local NA NA 

[S75] 

Durian (Durio zibethinus) Local NA NA [S74–S76] 

Galanga (Alpinia galanga) Local NA NA [S75] 

Ginger torch (Etlingera 
elatior) Local 9774 0.05 

[S75] 

Guava (Psidium guajava) Local NA NA [S75,S77] 

Langsat (Lansium 
domesticum) Local NA NA 

[S74] 

Lime (Citrus aurantifolia) Local 16078 0.08 [S75] 



 

 

Longon (Lansium 
domesticum) Local NA NA 

[S75] 

Mango (Mangifera indica) Global 335712 1.60 [S75] 

Mangosteen (Garcinia 
mangostana) Local NA NA 

[S74,S75] 

Oroxylum (Oroxylum 
indicum) Local NA NA 

[S75] 

Papaya (Carica papaya) Local 5602 0.03 [S75] 

Petai (Parkia speciosa) Local NA NA [S74] 

Rambutan (Nephelium 
lappaceum) Local NA NA 

[S74,S75] 

Salak Palm (Zalacca edulis) Local NA NA [S75] 

Santol (Sandoricum 
koetjape) Local NA NA 

[S75] 

UK Field bean (Vicia faba) Local NA NA [S37,S78] 

Gooseberry (Ribes uva-
crispa) Global 276 < 0.01 

[S79] 

Oilseed rape (Brassica 
napus) Global 616149 13.95 

[S78] 

Sugar beet (Beta vulgaris) Global 109535 2.48 [S80] 

USA Blueberry (Vaccinium sect.) Global 34495 0.03 [S81] 

Camelina (Camelina sativa) Local NA NA [S82] 

Cowpea (Vigna unguiculata) Global 11735 0.01 [S83] 

Kiwifruit (Actinidia chinensis) Global 1619 < 0.01 [S84] 

Mango (Mangifera indica) Global 42 < 0.01 [S85] 

Oilseed rape (Brassica 
napus) Global 666027 0.66 

[S82] 

Pennycress (Thlaspi 
arvense) Local NA NA 

[S82] 

Pumpkin (Cucurbita spp.) Global 35431 0.04 [S86,S87] 

Radish (Raphanus sativus) Local NA NA [S88] 

Watermelon (Citrullus 
lanatus) Global 45502 0.05 

[S89] 
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