

This is the peer reviewed version of the following article: Piles, M., Sánchez, J. P., Pascual, M., & Rodríguez-Ramilo, S. T. 2022. "Inbreeding depression on growth and prolificacy traits in two lines of rabbit". Journal of Animal Breeding and Genetics. doi. org/10.1111/jbg.12745, which has been published in final form at https://doi.org/10.1111/jbg.12745. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions http://www.wileyauthors.com/self-archiving.

Document downloaded from:

1	Inbreeding depression on growth and prolificacy traits in two lines of rabbit
2	
3	M. Piles ^{1*} , J. P. Sánchez ¹ , M. Pascual ¹ , S. T. Rodríguez-Ramilo ²
4	
5	¹ Animal Breeding and Genetics Program, Institute of Agriculture and Food Research
6	and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona,
7	Spain.
8	² GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
9	
10	E-mail addresses: miriam.piles@irta.es (corresponding author),
11	juanpablo.sanchez@irta.es, mariam.pascual@irta.es, silvia.rodriguez-ramilo@inrae.fr
12	
13	Ethical statement
14	Animal Care and Use Committee approval was not obtained for this study because data
15	come from a nucleus farm belonging to IRTA which strictly operates in line with the
16	regulations of the Spanish law on animal protection.
17	
18	Conflict of Interest
19	The authors declare no conflict of interest.
20	
21	Data availability statement

22 Data will be available upon reasonable request.

23

24 Acknowledgements

- 25 This research was supported by the Feed-a-Gene Project funded by the European's
- 26 Union H2020 Program under Grant Agreement EU 633531 and the Ministry of Science
- and Innovation. (MICIN, Spain) project RTI2018-097610-R-I00. Authors are also
- 28 grateful to the GenoToul bioinformatics platform Toulouse Midi-Pyrenees for providing
- 29 computing and storage resources.

30

- 31 **Orcid**
- 32 M. Piles: <u>https://orcid.org/0000-0001-8265-9930</u>
- 33 J. P. Sánchez: https://orcid.org/0000-0001-8639-6146
- 34 M. Pascual: <u>https://orcid.org/0000-0002-7233-2632</u>
- 35 S. T. Rodríguez-Ramilo: <u>https://orcid.org/0000-0001-7150-0692</u>

37 Summary

39	Inbreeding depression in closed populations impairs animal fitness, health, and
40	productivity. However, not all inbreeding is expected to be equally damaging. Recent
41	inbreeding is thought to be more harmful than ancient inbreeding because selection
42	decreases the frequency of unfavorable alleles with time. Accordingly, selection
43	efficiency is improved by inbreeding in a process called purging. This research aimed to
44	quantify inbreeding depression on growth and prolificacy traits in two lines of rabbit
45	selected for just one growth (Caldes line) or prolificacy (Prat line) trait, and also to find
46	some evidence of purging of deleterious alleles by selection. Caldes line comprised 51
47	generations and 124,371 animals in the pedigree. Prat line comprised 34 generations
48	and 161,039 animals in the pedigree. The effects of old, intermediate and new
49	inbreeding (Fold, Fint, Fnew), as well as total cumulated classical inbreeding (F) and 3
50	measurements of ancestral inbreeding (AHC, Fa.K and Fa.B) were estimated for
51	average daily gain (ADG), slaughter weight (SW), weaning weight (WW), born alive
52	(BA), the total number of kits (NT) and number of weaned kits (NW). There was a clear
53	inbreeding depression for all growth and prolificacy traits in Caldes line (-7.19 g/d, -
54	0.45 kg, -0.25 kg, -6 kits, -4 kits, and -4 kits per unit of increase in F for ADG, SW,
55	WW, BA, NT and NW, respectively) and also in Prat line (-7.48 g/d, -0.31 kg, -0.11 kg,
56	-4 kits, -5 kits, and -4 kits per unit of increase in F for ADG, SW, WW, BA, NT and
57	NW, respectively). The inbreeding partition appears to be a reliable alternative for
58	assessing inbreeding depression and purging. Thus, for example, in the Caldes line and
59	for ADG the regression coefficients were -7.61, -5.41 and 7.76 g/d per unit of increase
60	in Fnew, Fint and Fold, respectively. In addition, AHC and Fa.B may provide more
61	accurate evidence of purging than Fa.K. This study confirms the existence of inbreeding

- 62 depression for growth and prolificacy traits in both lines of rabbit and shows evidence
- 63 of purging of deleterious recessive alleles involved both in growth and prolificacy,
- 64 independently of the selection criteria established in the line.
- 65
- 66 **Keywords:** inbreeding depression, purging, cumulative inbreeding, ancestral
- 67 inbreeding, selection

68 Introduction

69

70	The adverse consequences of inbreeding on complex traits (i.e., the decrease in the
71	phenotypic mean because of inbreeding) are known as inbreeding depression (Falconer
72	& Mackay, 1996). This phenomenon is probably caused by increased homozygosity of
73	loci carrying partially recessive deleterious alleles, which refers to the partial dominance
74	hypothesis (Charlesworth & Charlesworth, 1999). These unfavorable alleles are
75	maintained at low frequency via mutation-selection balance. However, the alleles of
76	some loci with heterozygote advantage can be maintained at intermediate frequencies
77	by balancing selection and can also lead to inbreeding depression. This denotes the
78	overdominance hypothesis, which is less evident (Leroy, 2014). Traditionally, the
79	degree of inbreeding depression was quantified as the slope of the linear regression of
80	phenotypes on pedigree-based inbreeding coefficients (Doekes et al., 2021).

81

82 Initially, it has been suggested stronger inbreeding depression for fitness traits than for morphometric and physiological traits. However, recent analyses do not necessarily 83 84 support this hypothesis (Doekes et al., 2019). In addition, not all inbreeding is expected 85 to be equally harmful. Recent inbreeding (i.e. inbreeding coming from recent common 86 ancestors) is expected to have a greater impact than ancient inbreeding (i.e. inbreeding 87 arising from more distant common ancestors). This theory is based on the expected decrease in the frequency of deleterious alleles over time because of natural and/or 88 89 artificial selection (Templeton & Read, 1984; Lacy & Ballou, 1998; Hedrick & Garcia-90 Dorado, 2016). Because most harmful alleles are recessive, inbreeding improves the 91 efficiency of selection against them by increasing homozygosity, a process known as

purging, which limitates the degree of inbreeding depression (Gulisija & Crow, 2007;
Hinrichs et al., 2007; Parland et al., 2009). The process of purging is more likely to
occur when there is strong selection pressure and when inbreeding accumulates slowly
over many generations (Boakes & Wang, 2005; Sumreddee et al., 2021). Accordingly,
the effectiveness of purging in removing the harmful effects of inbreeding also depends
on the environmental conditions and the purging process (nonrandom mating or genetic
drift), among others (Sumreddee et al., 2021).

99

100 Rabbit lines used in meat production crossbreeding systems are small, closed 101 populations subjected to generations of within-line selection (Piles et al., 2017). 102 Inbreeding accumulates over generations due to their finite population size and 103 selection, and it is typical to take efforts to control its increase. Prior research assessing 104 the rate of genetic purging in rabbit lines selected for prolificacy traits showed that inbreeding depression was reduced over time and that this reduction was continuous, 105 106 implying that it depended more on recently generated inbreeding than older, 107 accumulated inbreeding (Ragab et al., 2015). The new inbreeding may account for the 108 effects of new mutations, whereas previous unfavorable alleles may have decreased in 109 frequency or possibly disappeared from the population completely (Ragab et al., 2015).

110

This research aimed to quantify inbreeding depression on growth and prolificacy traits in two lines of rabbits selected either for growth (Caldes) or prolificacy (Prat), and also to find some evidence of purging of deleterious alleles, derived from the selection conducted on each one of them.

115

116 Material and Methods

117

118 Data

119	Two data sets were used in this research corresponding to two rabbit lines, belonging to
120	IRTA, selected for growth and prolificacy traits. The first one corresponds to the Caldes
121	line, founded in 1983 crossing individuals from five New Zealand White lines and a
122	California \times New Zealand synthetic line. It has been selected for litter weight and
123	individual growth rate until 1992, and for growth rate until 2011. From 2011 to 2016 no
124	selection was performed on these animals, and currently is being selected for feed
125	efficiency (see Piles et al., 2017 for more details). Reproductive management was made
126	by avoiding matings between animals with common grandparents. The pedigree
127	comprised 124,371 animals, with 2,948 sires and 8,345 dams, from the foundation of
128	the line (1983) to generation 51. It was complete and only individuals from the base
129	generation had unknown parents. The average number of animals per generation was
130	2,438 with a minimum of 1,285 and a maximum of 3,633 individuals. The average
131	number of does per generation was 164 ranging from 120 to 219 dams. The average
132	number of sires per generation was 58, ranging from 37 to 70 sires. The mean
133	generation interval was 294 d and the 0.05 and 0.95 quartiles of the absolute value of
134	the age difference of dam and sire were 1 and 310 days, respectively.

135

The second data set included animals that belong to a rabbit line named Prat and selected for litter size at weaning (Piles et al., 2006). Reproductive management of rabbits was also performed avoiding matings between animals with common grandparents. The pedigree comprised 161,039 animals, with 1,240 sires and 5,924

140 dams from generation 1 (in 1992) to generation 34 (in 2012). It was complete and only 141 individuals from the base generation had unknown parents. The average number of 142 animals per generation was 4,715 with a minimum of 1,202 and a maximum of 6,321 143 individuals. The average number of does per generation was 241 ranging from 141 to 144 306 dams. The average number of sires per generation was 60, ranging from 32 to 77 145 sires. The mean generation interval was 280 d and the 0.05 and 0.95 quartiles of the 146 absolute value of the age difference of dam and sire was 1 to 211 days, respectively. 147 For each generation and line, the weighted selection intensity for growth was computed

148 as the standardized selection differential (i.e., the difference between the individual 149 phenotype and the population mean divided by the standard deviation of the population) 150 of ADG (i.e., the selection criterion) weighted by the ratio of the number of offspring of 151 the selected individual to the mean of the total number of offspring. For prolificacy, the 152 EBV of NW was used instead of the phenotype.

153

154 Inbreeding computation from pedigree

155

Following Ragab et al. (2015), we defined F_u^t as the inbreeding of an animal from 156 generation u considering generation t as the base generation, being t < u. For t = 0, F_u^0 157 represents the inbreeding accumulated since the foundation of the line, which is divided 158 159 into several components that account for the inbreeding accumulated during different 160 periods. Thus, for two given generations t_1 and t_2 , being $0 < t_1 < t_2 < u$, we defined the inbreeding accumulated until the generation t_1 as $F_{0,t1}^0$, the inbreeding accumulated 161 from generation t_1 to generation t_2 as $F_{t1,t2}^0$ and the inbreeding accumulated from 162 generation t_2 to generation u as $F_{t2,u}^0$. These components are computed from the 163

following formulas derived from the equation for inbreeding in hierarchically structuredpopulations (Wright, 1922):

166

$$1 - F_u^0 = (1 - F_{0,ti}^0)(1 - F_u^{ti})$$
 for $i = 1,2$

167 Thus,

$$1 - F_{u}^{0} = 1 - F_{u}^{ti} - F_{0,ti}^{0} + F_{0,ti}^{0} F_{u}^{ti}$$

$$F_{u}^{0} = F_{u}^{ti} + F_{0,ti}^{0} (1 - F_{u}^{ti})$$

$$F_{0,ti}^{0} = \frac{(F_{u}^{0} - F_{u}^{ti})}{(1 - F_{u}^{ti})}$$
{Formula 1}

168 The part of F_u^0 accumulated between generations t_1 and t_2 corresponds to:

$$F_{t1,t2}^{0} = F_{0,t2}^{0} - F_{0,t1}^{0}$$
 {Formula 2}

169 F_u^0, F_u^{t1} and F_u^{t2} were computed using the program inbupgf90 that implements the 170 algorithm developed by Aguilar & Misztal (2008). $F_{0,t1}^0$ and $F_{0,t2}^0$ were computed from 171 Formula 1 and $F_{t1,t2}^0$ was computed from formula 2. Finally,

172
$$F_{t1,u}^0 = F_u^0 - F_{0,t1}^0$$
 and,

173
$$F_{t2,u}^0 = F_u^0 - F_{0,t2}^0.$$

Three periods of 20 generations were considered in the Caldes line, and $t_1 = 20$ and $t_2 =$ 40. For each individual, the recent pedigree-based inbreeding coefficient (Fnew) is the

inbreeding accumulated in the period just before individual birth; the intermediate 176 177 pedigree-based inbreeding coefficient (Fint) is the inbreeding accumulated during the 20 178 generations period before this, and the ancient pedigree-based inbreeding coefficient 179 (Fold) is the inbreeding accumulated during the first 20 generations period. An animal born before generation 20 has only accumulated Fnew, calculated as F_u^0 , whereas Fint 180 181 and Fold are set to 0. An animal born between generations 20 and 40 has accumulated Fnew, calculated as $F_{20,u}^0 = F_u^0 - F_{0,20}^0$, and Fint, calculated as $F_{0,20}^0$, whereas Fold is set 182 to 0. An individual born after generation 40 has accumulated Fnew calculated as $F_{40,u}^0 =$ 183 $F_u^0 - F_{0,40}^0$, Fint calculated as $F_{20,40}^0 = F_{0,40}^0 - F_{0,20}^0$, and Fold calculated as $F_{0,20}^0$. A 184 similar partition was performed for Prat line considering three periods of 12 185 generations, where $t_1 = 12$ and $t_2 = 24$. In addition, the classical (i.e. total cumulated) 186 inbreeding (F) was also calculated both for Caldes and Prat lines. 187

188

189 The ancestral inbreeding coefficients and the ancestral history coefficient were 190 calculated with the software "Grain" (Baumung et al., 2015) version 2.2 (Doekes et al., 191 2020). The ancestral inbreeding coefficient defined by Ballou (1997) was also 192 calculated (Fa.B), which represents the probability that an allele in an individual has 193 been at least once identical by descent (IBD) in previous generations. Alternatively, the 194 ancestral inbreeding coefficient according to Kalinowski et al. (2000) (Fa.K) represents the probability that an allele in an individual is currently IBD and has been IBD in 195 196 previous generations at least once. Finally, we computed the ancestral history 197 coefficient (AHC) defined as the number of times that a random allele in an individual 198 has been IBD in the individual's pedigree. Alleles which have experienced inbreeding 199 more often in the past are less likely to be deleterious than alleles that have undergone 200 IBD less often because those alleles have survived to purging and therefore, it is

201	probably	y that they	y have a	a neutral	or even	positive	effect	on th	e selected	traits.	Thus,
-----	----------	-------------	----------	-----------	---------	----------	--------	-------	------------	---------	-------

202 high values of Fa.B or AHC are expected to have a positive effect on the phenotype.

203

204 Statistical analyses

205

Data were analysed for each line separately using a 3-trait model. The effect of the three components of inbreeding on growth traits at fattening (i.e., ADG: average daily gain in g/d, SW: slaughter weight in kg, and WW: weaning weight in kg) was estimated using the following model for each trait:

210

211
$$y_{ijklmno} = YOB_i + Batch_j + P_k + LS_l + \beta_1 Fold_m + \beta_2 Fint_m + \beta_3 Fnew_m + a_m + c_n + e_{ijklmno}$$

212

213 where $y_{ijklmno}$ is the ADG, SW or WW of an individual m; YOB_i , $Batch_j$, P_k and LS_l 214 are the systematic effects of year of birth i (32 and 22 levels for Caldes and Prat line, 215 respectively), batch j (defined by 3-month periods: 265 and 79 levels for Caldes and Prat line, respectively), parity order k (4 levels: 1^{st} , 2^{nd} , 3^{rd} , 4^{th} and posterior) and litter size l 216 217 (7 levels: <6, 6, 7, 8, 9, 10, >10 kits), respectively; $Fold_m$, $Fint_m$ and $Fnew_m$ are the three components of F_u^0 for animal m and β_1 , β_2 and β_3 the corresponding regression 218 219 coefficients; a_m is the additive genetic effect; c_n is the litter effect *n* (19,744 and 20,851) levels for Caldes and Prat line, respectively); eijklmno is the residual. Random effects 220 were assumed to be independent of each other and come from multivariate normal 221 222 distributions with a mean of zero and variances:

223
$$\operatorname{var}\begin{pmatrix} \boldsymbol{e}_{ADG} \\ \boldsymbol{e}_{SW} \\ \boldsymbol{e}_{WW} \end{pmatrix} = \boldsymbol{I} \otimes \boldsymbol{R}_{0}, \operatorname{var}\begin{pmatrix} \boldsymbol{a}_{ADG} \\ \boldsymbol{a}_{SW} \\ \boldsymbol{a}_{WW} \end{pmatrix} = \boldsymbol{A} \otimes \boldsymbol{G}_{0} \text{ and } \operatorname{var}\begin{pmatrix} \boldsymbol{c}_{ADG} \\ \boldsymbol{c}_{SW} \\ \boldsymbol{c}_{WW} \end{pmatrix} = \boldsymbol{I} \otimes \boldsymbol{C}_{0}$$

224	being \mathbf{R}_0 , \mathbf{G}_0 and \mathbf{C}_0 3 x 3 variance-covariance matrices of residual, additive genetic
225	and environmental litter effects; I is the identity matrix and A is the additive genetic
226	relationship matrix. A total of 125,334 and 160,836 records from Caldes and Prat lines,
227	respectively were used for the analysis.
228	
229	The model for prolificacy traits (i. e. BA: born alive, NT: total number of kits, and NW:
230	number of weaned kits) was:
231	
232	$y_{ijklmn} = YOB_i + Batch_j + PS_k + \beta_1 Fold_l + \beta_2 Fint_l + \beta_3 Fnew_l + a_l + p_m + e_{ijklmn}$
233	
234	where y_{ijklmn} is the BA, NT or NW of the female <i>m</i> (<i>l</i> in the pedigree file); PS_k is its
235	physiological status k at matting (5 levels: 1, for nulliparous does; 2, and 3 for primiparous
236	does in or not in lactation at mating, respectively; 4 and 5 for multiparous does in or not
237	in lactation at mating); p_m is the permanent effect of female m and all the other terms are
238	as defined above for growth traits. For prolificacy traits, random effects were also
239	assumed to be independent of each other and come from multivariate normal distributions
240	with a mean of zero and variances:
241	$var\begin{pmatrix} \boldsymbol{e}_{BA} \\ \boldsymbol{e}_{NT} \\ \boldsymbol{e}_{NW} \end{pmatrix} = \boldsymbol{I} \otimes \boldsymbol{R}_{0}, var\begin{pmatrix} \boldsymbol{a}_{BA} \\ \boldsymbol{a}_{NT} \\ \boldsymbol{a}_{NW} \end{pmatrix} = \boldsymbol{A} \otimes \boldsymbol{G}_{0} \text{ and } var\begin{pmatrix} \boldsymbol{p}_{BA} \\ \boldsymbol{p}_{NT} \\ \boldsymbol{p}_{NW} \end{pmatrix} = \boldsymbol{I} \otimes \boldsymbol{P}_{0}$

being R_0 , G_0 and P_0 3 x 3 matrices of residual, additive genetic and permanent environmental effects of the female. As for growth traits, values for these matrices were EM-REML estimates. There were 22,796 prolificacy data from 7,379 does, and the pedigree has 8,877 individuals in the Caldes line. For the Prat line, there were 23,128

246	prolificacy data from 6,134 does, and the pedigree has 7,355 individuals. For prolificacy
247	traits, only the inbreeding coefficient of the doe was included in the model.

249	The aforementioned models include Fold, Fint and Fnew in the same model. These
250	three inbreeding coefficients were replaced by F, AHC, Fa.K or Fa.B to obtain the
251	corresponding regression coefficients for each inbreeding coefficient, separately. A total
252	of 5 models (Fold+Find+Fnew, F, AHC, Fa.K and Fa.B) were fitted for each trait. A
253	positive regression coefficient significantly different from zero suggests the occurrence
254	of purging of inbreeding depression for the trait under investigation, while a negative
255	regression coefficient statistically different from zero indicates inbreeding depression of
256	the trait (Parland et al., 2009). Analyses were performed using airemlf90 from BLUPf90
257	family programs (Misztal et al., 2002).
258	
259	Results
260	
261	The number of analysed data, the mean and the standard deviation for each of the six
262	evaluated traits in both lines are shown in Table 1. They agree with previously
263	published results in the same populations (Piles et al. 2006; Piles and Tusell, 2012).
264	
265	- Table 1 -
266	

267	Figure 1 shows the evolution of the inbreeding measurements over the 51 (for Caldes
268	line) or 34 (for Prat line) generations. For both lines, the highest values were observed
269	for the AHC, followed by Fa.B. The lowest values were observed for classical
270	inbreeding (F) and Fa.K.
271	
272	- Figure 1 -
273	
274	The cumulated inbreeding coefficient was 0.07 on average in the Caldes line (mean in
275	generation $51^{\text{th}} = 0.15$) which represents an increase of 0.3% per generation and 0.5%
276	per year. Regarding the Prat line, the cumulated inbreeding coefficient was 0.06 on
277	average (mean in generation $34^{th} = 0.12$) which represents an increase of 0.4% per
278	generation and 0.6% per year.
279	
280	Figure 2 shows the Pearson correlation between all inbreeding measurements calculated
281	in the Caldes line. Close values were obtained for the Prat line (results not shown). It is
282	worth noting that the magnitude of the correlation between the three components of
283	inbreeding (i.e. Fold, Fint and Fnew) is small (equal or lower than 0.3). This indicates
284	that no problems due to colineality are expected in the regression analyses when all
285	three variables are included in the model. All measurements of ancestral inbreeding
286	(i.e., Fa.B, Fa,K and AHC) were highly correlated between them and with F.

288 - Figure 2 -

Regression coefficients for growth traits in Caldes and Prat lines are shown in Table 2.
An increased trend from negative to null in the regression coefficients from Fnew to
Fold was observed for all traits in both lines indicating that this partition of inbreeding
could provide evidence of the possibility of purging.

294

295 - Table 2 -

296

297	Inbreeding depression was observed for F and Fa.K for all three traits in both lines. For
298	example, inbreeding depression estimates were -7.19 g/d, -0.45 kg, and -0.25 kg per unit
299	of increase in F for ADG, SW and WW, respectively in the Caldes line. Results for
300	growth traits in the Prat line followed the same behaviour as in the Caldes line (-7.48
301	g/d, -0.31 kg, and -0.11 kg per unit of increase of F for ADG, SW and WW,
302	respectively). However, results were not so consistent for Fa.B and AHC. Thus, In the
303	Caldes line there was no effect of Fa.B and AHC except for SW (-0.26 kg per unit of
304	increase in Fa.B) whereas in the Prat line Fa.B had a negative effect on ADG and SW
305	but not on WW, and AHC had a negative effect only on SW.

306

307 Similar results were obtained for prolificacy traits both in Caldes and in Prat Lines

308 (Table 3). Thus, the effect of F and FaK was always negative suggesting the existence

309 of inbreeding depression (in Caldes line: -6 kits, -4 kits, and -4 kits per unit of increase

310 in F for BA, NT and NW, respectively; in Prat line: -4 kits, -5 kits, and -4 kits per unit

of increase in F for BA, NT and NW, respectively). On the other hand, Fnew, but not

312 Fint and Fold, had a negative effect on all traits in both lines indicating the possibility of

313 purging of deleterious alleles also for prolificacy traits. Fa.B only affected negatively

314 NW in both lines whereas AHC just impaired NW in the Prat line.

315

316 - Table 3 -

318	For all the evaluated traits, evidence of inbreeding depression and purging of deleterious
319	alleles because of selection were found in Caldes and Prat lines It happened for growth
320	and prolificacy traits despite the lines being only selected for growth (in the case of
321	Caldes line) or prolificacy (in the case of Prat line) which suggests that some
322	unperceived selection for prolificacy and growth traits, respectively for Caldes and Prat
323	lines, is being performed (see Figure 3). In fact, the weighted selection intensity was
324	above zero in all evaluated cases, except, as expected, for sires and prolificacy traits.
325	However, selection intensity was higher for growth in the Caldes line than in the Prat
326	line whereas it was higher for prolificacy in the Prat line than in the Caldes line as
327	expected according to their selection criterion.
328	
329	- Figure 3 -
330	
331	Discussion
332	
333	The goals of this research were to quantify the inbreeding depression in both growth
334	and prolificacy-related traits and to determine whether new inbreeding is more harmful

than ancient inbreeding. This idea was supported by the process of purging, which
caused a decrease in the frequency of deleterious alleles over time as a result of
selection.

338

339	In the two studied rabbit lines, a negative effect of inbreeding was observed on both
340	prolificacy traits (fitness-related traits) and growth-related traits. The idea that fitness
341	traits are more susceptible to inbreeding depression is largely based on findings from
342	wildlife and laboratory populations (Doekes et al., 2021). Theoretically, fitness-related
343	traits should show more inbreeding depression than traits not related to fitness.
344	Directional dominance and/or epistasis cause inbreeding depression. Directional
345	dominance should be less prominent for traits that are less related to fitness and for
346	traits that are under stabilizing selection (Doekes et al., 2021). A combination of
347	production, conformation, growth, reproduction, survival, behavioral, and health traits
348	are often directionally selected in farm populations, in addition to natural selection on
349	fitness traits (Doekes et al., 2021). In fact, selection processes both in Caldes and Prat
350	lines are not so different. Caldes line is being unintentionally selected for prolificacy as
351	well as Prat line is being selected for growth, despite the selection intensity was higher
352	for their corresponding selection criterion (i.e, ADG for the Caldes line and NW for the
353	Prat line).

354

355 Despite the huge research works on pedigree-based inbreeding in farm animals, only a 356 few studies have looked at the impacts of new and ancient inbreeding. Their consistent 357 conclusion was that inbreeding that occurred in recent generations had more negative 358 consequences than inbreeding that occurred in ancient generations (Doekes et al., 2020;

359	Hinrichs et al., 2007). This is in line with the hypothesis that deleterious allele
360	frequencies will decrease over time as a result of selection and purging, both of which
361	influence the extent of inbreeding depression.

363 The evolution of positive values for the regression coefficients of old inbreeding to 364 negative values for the equivalent estimations of new inbreeding can be explained by 365 purging deleterious alleles affecting the measured traits, aided by artificial selection (Hinrichs et al., 2007; Ragab et al., 2015). Ragab et al. (2015) observed the same results 366 367 as those obtained in the present study for prolificacy traits in four lines of rabbits selected for prolificacy. This means that the partition of inbreeding seems a reliable 368 369 alternative to evaluate inbreeding depression and purging. Accordingly, AHC and Fa.B 370 may provide a better representation of the evidence of purging than Fa.K because the last parameter represents the probability that any allele in an individual is currently IBD 371 372 and has been IBD in previous generations at least once which could be considered 373 somehow like a mix of recent and old inbreeding. However, in the partition of the 374 inbreeding approach, as a consequence of varied mating systems, pedigree depths, and 375 generation intervals, the number of generations that determined new inbreeding do not 376 allow fair and straight comparisons between studies (Sumreddee et al., 2021). Same happens in the comparison of results of our two lines for a specific trait which are not 377 378 totally comparable because of the different definition of the periods.

Despite this lack of a common base for comparisons, the effectiveness of the purging process may explain some of the heterogeneity in inbreeding depression across studies (Sumreddee et al., 2021). If a large amount of inbreeding depression is attributable to rare and very detrimental recessive mutations present in homozygous form, inbreeding

383 should promptly purge deleterious alleles from a population (Charlesworth & Willis, 384 2009). This means that if the partial dominance theory is a key contributor to inbreeding depression, purging is more likely to eliminate detrimental alleles from a population 385 386 over time. Additional factors such as the rate of inbreeding (a low rate of inbreeding promotes purging), the genetic architecture of the trait (purging is more effective for 387 388 large effect alleles), selection pressure (high selection pressure promotes purging), and 389 population size (purging is more likely with small population sizes) could all influence 390 the effectiveness of purging (Wang et al., 1999).

391

This study confirms the existence of inbreeding depression for growth and prolificacy traits in two rabbit lines and shows evidence of purging of deleterious recessive alleles involved both in growth and prolificacy, independently of the formally declared selection criteria established in the selected lines. It has to be noted, however, that both populations have been in practice selected for growth.

397

398 **References**

399

400	Aguilar, I., & Misztal, I. (2008). Recursive algorithm for inbreeding coefficients
401	assuming non-zero inbreeding of unknown parents. Journal of Dairy Science,
402	91, 1669-1672. https://doi.org/10.3168/jds.2007-0575
403	Ballou, J. D. (1997). Ancestral inbreeding only minimally affects inbreeding depression
404	in mammalian populations. Journal of Heredity, 88, 169-178.
405	https://doi.org/10.1093/oxfordjournals.jhered.a023085

406	Baumung, R., Farkas, J., Boichard, D., Mészáros, G., Sölkner, J., & Curik, I. (2015).
407	GRAIN: a computer program to calculate ancestral and partial inbreeding
408	coefficeints using a gene dropping approach. Journal of Animal Breeeding and
409	Genetics, 132, 100-108. https://doi.org/10.1111/jbg.12145
410	Boakes, E., & Wang, J. (2005). A simulation study on detecting purging of inbreeding
411	depression in captive populations. Genetical Research, 86, 139-148.
412	https://doi:10.1017/S001667230500772X
413	Charlesworth, B., & Charlesworth, D. (1999). The genetic basis of inbreeding
414	depression. Genetical Research, 74, 329-340.
415	https://doi.org/10.1017/s0016672399004152
416	Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature
417	Reviews Genetics, 10, 783-796. https://doi.org/10.1038/nrg2664
418	Doekes, H. P., Bijma, P., & Windig, J. J. (2021). How depressing is inbreeding? A
419	meta-analysis of 30 years of research on the effects of inbreeding in livestock.
420	Genes, 12, 926. https://doi.org/10.3390/genes12060926
421	Doekes, H. P., Curik, I., Nagy, I., Farkas, J., Kövér, G., & Windig, J. J. (2020). Revised
422	calculation of Kalinowski's ancestral and new inbreeding coefficients. Diversity
423	12, 155. https://doi.org/10.3390/d12040155
424	Doekes, H. P., Veerkamp, R. F., Bijma, P., de Jong, G., Hiemstra, S. J., & Windig, J. J.
425	(2019). Inbreeding depression due to recent and ancient inbreeding in Dutch
426	Holstein–Friesian dairy cattle. Genetics Selection Evolution, 51, 54.
427	https://doi.org/10.1186/s12711-019-0497-z

428	Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. 4th
429	edn. Longman Scientific & Technical, Burnt Mill, Harlow, England
430	Gulisija, D., & Crow, J.F. (2007). Inferring purging from pedigree data. Evolution, 61,
431	1043-1051. https://doi.org/10.1111/j.1558-5646.2007.00088.x
432	Hedrick, P. W., & Garcia-Dorado, A. (2016). Understanding inbreeding depression,
433	purging, and genetic rescue. Trends in Ecology & Evolution, 31, 940-952.
434	https://doi.org/10.1016/j.tree.2016.09.005
435	Hinrichs, D., Meuwissen, T. H., Odegard, J., Holt, M., Vangen, O., & Woolliams, J. A.
436	(2007). Analysis of inbreeding depression in the first litter size of mice in a
437	long-term selection experiment with respect to the age of the inbreeding.
438	Heredity, 99, 81-88. https://doi.org/10.1038/sj.hdy.6800968
439	Kalinowski, S. T., Hedrick, P. W., & Miller, P. S. (2000). Inbreeding depression in the
440	Speke's Gazelle captive breeding program. Conservation Biology, 14, 1375-
441	1384. https://doi.org/10.1046/j.1523-1739.2000.98209.x
442	Lacy, R. C., & Ballou, J. D. (1998). Effectiveness of selection in reducing the genetic
443	load in populations of <i>Peromyscus polionotus</i> during generations of inbreeding.
444	Evolution, 52, 900-909. https://doi.org/10.1111/j.1558-5646.1998.tb03715.x
445	Leroy G. (2014). Inbreeding depression in livestock species: review and meta-analysis.
446	Animal Genetics, 45, 618-628. https://doi.org/10.1111/age.12178
447	Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., & Lee, D. H. (2002).
448	BLUPF90 and related programs (BGF90). Institut National de la Recherche
449	Agronomique (INRA), Montpellier. p. 1-2.

450	Parland, S. M., Kearney, F., & Berry, D. P. (2009). Purging of inbreeding depression
451	within the Irish Holstein-Friesian population. Genetics Selection Evolution, 41,
452	16. https://doi.org/10.1186/1297-9686-41-16
453	Piles, M., David, I., Ramon, J., Canario, L., Rafel, O., Pascual, M., Ragab, M., &
454	Sánchez J. P. (2017). Interaction of direct and social genetic effects with feeding
455	regime in growing rabbits. Genetics Selection Evolution, 49, 58.
456	https://doi.org/10.1186/s12711-017-0333-2
457	Piles, M., Garcia, M. L., Rafel, O., Ramon, J., & Baselga M. (2006). Genetics of litter
458	size in three maternal lines of rabbits: repeatability versus multiple-trait models.
459	Journal of animal science 84(9):2309-2315. doi: 10.2527/jas.2005-622
460	Piles, M., Garreau, H., Rafel, O., Larzul, C., Ramon, J., & Ducrocq, V. (2006). Survival
461	analysis in two lines of rabbits selected for reproductive traits. Journal of Animal
462	Science, 84, 1658-1665. https://doi.org/10.2527/jas.2005-678
463	Piles, M., & Tusell, L. (2012). Genetic correlation between growth and female and male
464	contributions to fertility in rabbit. Journal of Animal Breeding and Genetics
465	129(4):298-305. doi: 10.1111/j.1439-0388.2011.00975.x
466	Ragab, M., Sánchez, J. P., & Baselga, M. (2015). Effective population size and
467	inbreeding depression on litter size in rabits. A case study. Journal of Animal
468	Breeding and Genetics, 132, 68-73. https://doi.org/10.1111/jbg.12110
469	Sumreddee, P., Hay, E. H., Toghiani, S., Roberts, A., Aggrey, S. E., & Rekaya, R.
470	(2021). Grid search approach to discriminate between old and recent inbreeding
471	using phenotypic, pedigree and genomic information. BMC Genomics, 22, 538.
472	https://doi.org/10.1186/s12864-021-07872-z

473	Templeton, A.R., & Read, B. (1984). Factors eliminating inbreeding depression in a
474	captive herd of speke's gazelle (Gazella spekei). Zoo Biology, 3, 177-199.
475	https://doi.org/10.1002/zoo.1430030302
476	Wang, J., Hill, W. G., Charlesworth, D., & Charlesworth, B. (1999). Dynamics of
477	inbreeding depression due to deleterious mutations in small populations:
478	mutation parameters and inbreeding rate. Genetical Research, 74, 165-178.
479	https://doi.org/10.1017/s0016672399003900
480	Wright, S. (1922). Coefficients of inbreeding and relationship. American Naturalist, 56,

481 330-338. https://www.jstor.org/stable/2456273

483	Table 1. Descriptive statistics (N: number of analysed data, Mean: average phenotypic
484	value, and SD: standard deviation) of the evaluated traits in both rabbit lines (Caldes
485	and Prat). ADG: average daily gain (g/d), SW: slaughter weight (kg), WW: weaning
486	weight (kg), BA: born alive, NT: total number of kits, and NW: number of weaned kits.

Line	Parameter	ADG	SW	WW	BA	NT	NW
	Ν	125,334	125,334	125,334	22,796	22,796	22,796
Caldes	Mean	46.27	2.03	0.75	8.07	8.80	7.42
	SD	8.48	0.33	0.18	3.26	2.99	3.12
	Ν	160,836	160,836	160,836	23,127	23,127	23,127
Prat	Mean	38.77	1.75	0.67	9.37	9.91	7.88
	SD	7.81	0.28	0.15	3.26	2.99	3.21

490	Table 2. Posterior median [HPD95%] of the regression coefficients for growth traits in
491	Caldes line. ADG: average daily gain (g/d), SW: slaughter weight (kg), and WW:
492	weaning weight (kg). New (Fnew), intermediate (Fint), and old (Fold) inbreeding
493	coefficients, classical (F) inbreeding coefficient, ancestral inbreeding coefficient as
494	defined by Ballou (Fa.B) or Kalinowski et al. (Fa.K), and ancestral history coefficient
495	(AHC). Significant inbreeding depression estimates are in bold . In italics are significant
496	inbreeding depression coefficients indicating purging of deleterious alleles.

Line		Caldes		Prat	
Trait	Inbreeding coefficient	Median	HPD95%	Median	HPD95%
ADG	Fnew	-7.61	[-11.71, -3.73]	-17.24	[-30.49, -4.15]
	Fint	-5.34	[-13.43, 2.88]	-18.49	[-32.49, -6.22]
	Fold	7.76	[-3.60, 19.77]	10.45	[-2.22, 23.86]
	F	-7.19	[-11.01, -3.35]	-7.48	[-10.72, -4.47]
	Fa.B	-0.90	[-5.04, 5.34]	-8.05	[-11.63, -2.04]
	Fa.K	-10.54	[-17.05, -3.83]	-15.57	[-21.93, -9.80]
	AHC	-0.21	[-2.06, 2.40]	0.87	[-1.21, 3.78]
SW	Fnew	-0.48	[-0.64, -0.33]	-0.83	[-1.35, -0.28]
	Fint	-0.24	[-0.57, 0.11]	-1.15	[-1.65, -0.58]
	Fold	0.34	[-0.10, 0.77]	0.79	[0.21, 1.31]
	F	-0.45	[-0.60 , -0.30]	-0.31	[-0.43 , -0.18]
	Fa.B	-0.26	[-0.52, -0.14]	-0.49	[-0.64, -0.36]
	Fa.K	-0.73	[-0.98 , -0.48]	-0.58	[-0.85, -0.33]
	AHC	-0.001	[-0.08, 0.06]	-0.16	[-0.24, -0.10]
WW	Fnew	-0.28	[-0.37 , -0.17]	-0.39	[-0.65, -0.13]
	Fint	-0.10	[-0.31, 0.12]	-0.67	[-0.90 , -0.42]
	Fold	0.02	[-0.22, 0.30]	0.50	[0.27, 0.75]
	F	-0.25	[-0.34, -0.15]	-0.11	[-0.18 , -0.04]
	Fa.B	-0.04	[-0.11, 0.04]	-0.004	[-0.13, 0.07]
	Fa.K	-0.42	[-0.58, -0.24]	-0.17	[-0.30, -0.03]
	AHC	0.06	[0.03, 0.10]	-0.03	[-0.09, 0.02]

499 **Table 3.** Posterior median [HPD95%] for prolificacy traits in Caldes line. BA: born

500 alive, NT: total number of kits, and NW: number of weaned kits. New (Fnew),

501 intermediate (Fint), and old (Fold) inbreeding coefficients, classical (F) inbreeding

- 502 coefficient, ancestral inbreeding coefficient as defined by Ballou (Fa.B) or Kalinowski
- 503 et al. (Fa.K), and ancestral history coefficient (AHC). Significant inbreeding depression
- 504 estimates are in bold. In italics are significant inbreeding depression coefficients
- 505 indicating purging of deleterious alleles.

Line			Caldes		Prat
Trait	Inbreeding coefficient	Median	HPD95%	Median	HPD95%
BA	Fnew	-6.56	[-10.30, -2.79]	-6.21	[-9.37 , -2.97]
	Fint	-2.44	[-9.02, 4.08]	0.91	[-4.55, 6.40]
	Fold	2.52	[-6.93, 11.35]	15.08	[4.94, 24.52]
	F	-5.93	[-9.70, -2.52]	-4.33	[-7.26 , -1.45]
	Fa.B	0.46	[-2.47, 3.75]	-2.56	[-5.84, 1.08]
	Fa.K	-9.05	[-15.18, -3.36]	-6.94	[-12.31 , -1.16]
	AHC	-0.10	[-1.24, 1.08]	-1.44	[-3.08, 0.37]
NT	Fnew	-4.62	[-8.19 , -1.19]	-6.14	[-9.20 , -3.10]
	Fint	-3.19	[-9.35, 2.58]	-1.34	[-6.43, 3.88]
	Fold	5.39	[-2.63, 13.99]	8.14	[-0.35, 17.05]
	F	-4.46	[-7.73, -1.17]	-4.94	[-7.75 , -2.36]
	Fa.B	3.39	[-0.70, 7.38]	-2.44	[-5.83, 0.67]
	Fa.K	-5.65	[-11.24, -0.15]	-9.11	[-14.21, -4.13]
	AHC	1.43	[0.12, 2.75]	-1.35	[-3.08, 0.13]
NW	Fnew	-4.07	[-7.63, -0.50]	-5.92	[-8.98 , -3.03]
	Fint	-1.72	[-8.04, 4.71]	1.88	[-3.26, 6.93]
	Fold	5.12	[-4.19, 14.45]	17.24	[8.09, 25.59]
	F	-3.79	[-7.01 , -0.43]	-3.89	[-6.49 , -1.34]
	Fa.B	-4.12	[-7.01 , -0.96]	-3.34	[-6.48 , -0.64]
	Fa.K	-7.02	[-12.21, -1.55]	-5.35	[-10.05, -0.43]
	AHC	-1.09	[-2.09, 0.01]	-1.71	[-3.13 , -0.37]

508	Figure legends
509	Figure 1. Measurements of inbreeding in Caldes and Prat lines. AHC: ancestral history
510	coefficient, F: classical inbreeding coefficient, Fa.B: ancestral inbreeding coefficient as
511	defined by Ballou, and Fa.K: ancestral inbreeding coefficient as defined by Kalinowski
512	et al.
513	
514	Figure 2. Perason correlations between measurements of inbreeding in Caldes line.
515	AHC: ancestral history coefficient, F: classical inbreeding coefficient, Fa.B: ancestral
516	inbreeding coefficient as defined by Ballou, and Fa.K: ancestral inbreeding coefficient
517	as defined by Kalinowski et al.
518	
519	Figure 3. Weighted selection intensity in Caldes and Prat lines for growth and
520	prolificacy traits.
521	

Figure 2

