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Prediction of fatty acid 
composition in intact and minced 
fat of European autochthonous 
pigs breeds by near infrared 
spectroscopy
Silvia Parrini 1, Francesco Sirtori 1*, Marjeta Čandek‑Potokar 2, Rui Charneca 3, 
Alessandro Crovetti 1, Ivona Djurkin Kušec 4, Elena González Sanchez 5, 
Mercedes Maria Izquierdo Cebrian 6, Ana Haro Garcia 7, Danijel Karolyi 8, Benedicte Lebret 9, 
Alberto Ortiz 6, Nuria Panella‑Riera 10, Matthias Petig 11, Preciosa Jesus da Costa Pires 12, 
David Tejerina 6, Violeta Razmaite 13, Chiara Aquilani 1 & Riccardo Bozzi 1

The fatty acids profile has been playing a decisive role in recent years, thanks to technological, sensory 
and health demands from producers and consumers. The application of NIRS technique on fat tissues, 
could lead to more efficient, practical, and economical in the quality control. The study aim was 
to assess the accuracy of Fourier Transformed Near Infrared Spectroscopy technique to determine 
fatty acids composition in fat of 12 European local pig breeds. A total of 439 spectra of backfat 
were collected both in intact and minced tissue and then were analyzed using gas chromatographic 
analysis. Predictive equations were developed using the 80% of samples for the calibration, followed 
by full cross validation, and the remaining 20% for the external validation test. NIRS analysis of 
minced samples allowed a better response for fatty acid families, n6 PUFA, it is promising both for 
n3 PUFA quantification and for the screening (high, low value) of the major fatty acids. Intact fat 
prediction, although with a lower predictive ability, seems suitable for PUFA and n6 PUFA while for 
other families allows only a discrimination between high and low values.

The proportions of fatty acids in pork fat took on a decisive role over the years, both due to the degree of fat 
unsaturation representing a key factor in the technological quality of processed meat and to the significant influ-
ence on qualitative parameters linked to sensory and nutritional  profile1. High quality meat demand of consumers 
and processing industry is increasing, in particular meat and meat- products derived from local breeds has been 
growing interest due to the positive perception of their quality products in terms of health and animal  welfare2. 
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Fatty acids (FAs) composition of autochthonous breeds has been described as healthier and more responsive to 
the human nutritional requirements than the improved breeds by Prieto et al.2 and Lebret and Čandek-Potokar3. 
By nutritional viewpoint, individuals and classes of fatty acids are crucial in order to help consumers make 
healthy food choices as suggested by the European Parliament (EU Reg. 1169/2011) which added the obligation to 
report the total fat content and the saturated fat percentage as food information. Nevertheless, in autochthonous 
breeds the fresh and cured products mainly derived from small populations, which do not make the assurance 
of traceability and quality control technically and/or economically  feasible4. Classical analysis to evaluate FAs 
profile has usually been performed by conventional “wet chemistry” procedures, such as gas chromatography, 
that need a lot of expertise, use of toxic reagents and it is very expensive and time  consuming5. Spectroscopic 
techniques such as Near Infrared Spectroscopy (NIRS) can represent a resource for solving these problems thanks 
to its speed of analysis, simplicity, low environmental impact, and low operating cost. NIRS is based on the 
absorption of wavelengths or wavenumbers in the near infrared electromagnetic region determined by stretching 
and bending of atoms with specific chemical bonds and functional molecular groups. Fourier Transformation 
(FT-NIRS) represent a further advancement of NIRS technology improving signal-to-noise ratio in spectral 
resolution and wavenumber as well as environment  features6–8. Furthermore, Lucarini et al.9 suggested that the 
Fourier Transformed application advantages include less or no sample preparation. NIRS technology is an indi-
rect method and chemometrics analysis that include the use of multivariate  regression10 to build up and develop 
the models comparing spectral results with samples of known composition. A big data set and a large number 
of samples are necessary to represent the full range of possible variability, especially when different variability 
factors, such as animal breed, are involved. A lack of robustness could be attributed to various sources of error, 
such as temperature and humidity of both the samples and analysis environment, differences between samples 
presentation, references, modes of analysis, etc.11. Furthermore, one of the main difficulties in the application 
of NIRS is the way in which the samples are presented to obtain representative NIR spectra. Avoiding sample 
milling is an advantage recognized by the pioneers of  NIRS12. On the other hand, the possible non-homogeneity 
of the intact sample represents a limitation that directly affects the decrease in accuracy of the models compared 
to homogenized and minced samples  presentation13. Nevertheless, the number of samples and their large vari-
ability are the main influencing factors that could complicate the accuracy of the NIRS results. In pig products, 
NIRS was initially used to predict the chemical composition of  meat13,14, while more recently its application has 
led to more accurate analyses: online and offline rapid quality control of meat on a large  scale2,15,16; physical and 
sensory  characteristics14,17–19; control of the diets (growing or fattening period)16,20; prediction of defective or no 
defective classes, on the basis of pastiness and  color21 and other sensory  attributes22 in the case of Spanish ham. 
Considering that fatty acids structure could characterize fat spectral wavenumber, NIRS technology could be 
accessible for their detection. In the various studies, the characterization of the fatty acid profile, were focused 
on analysis of singular breed while few studies considered local as well as cosmopolitan breeds. Autochthonous 
breeds fatty acid determination by NIRS had been reported by González-Martín et al.1 and Caceres-Nevado 
et al.15, in fat and meat of Iberian pig respectively; Fernández-Cabanás et al.23 in Iberian pork dry-cured sausages; 
Prevolnik-Povše et al.24 in samples of meat and products originated by Krškopolje, and Turopolje breeds and 
Ortiz et al.4 in different European pig loin samples. Considering the importance of the direct application of NIRS 
to a whole slice (intact samples) instead of a minced sample, in the context of online determination, avoiding the 
destruction of product, and reducing the time required for analysis, only few studies have been carried out that 
considered different conditions for sample submission and preparation, e.g. comparing intact and minced sam-
ples. Caceres-Nevado et al.15 compared intact and minced loin samples for the prediction of chemical component 
while Zamora-Rojas et al.16 considered a classification on intact fat in the carcass and a skin-free subcutaneous 
fat sample from Iberian pigs fed with different regimes. For the studies on the prediction of FAs with NIRS, dif-
ferent methods of sample collection were considered: García-Rey et al.25 started from liquid fat, González-Martín 
et al.1 worked on intact subcutaneous fat of Iberian pigs, Pérez-Marín et al.11 applied NIRS directly on carcass, 
from subcutaneous fat sample with and without skin-free of Iberian pigs, Gjerlaug-Enger et al.26 used fat cut into 
small pieces (brick size: 3–5 mm) of Norwegian Landrace and Duroc pigs, and Zamora-Rojas et al.27 focused on 
fatty acid determination of intact adipose tissue from pure Iberian and Iberian-duroc crossbreds. Despite various 
studies, it is still difficult to characterize the fatty acid profile of pigs using NIR technology, especially when the 
samples come from local breeds that differ greatly among themselves and also within breeds. The development 
of NIRS assays for FAs monitoring could represent an interesting implementation in the quality control process, 
as well as its application on fat of different local breeds could be useful to provide a wider range of information to 
consumers interested in these niche products. In this context, the characteristics of meat and fat products from 
autochthonous pig breeds are linked to numerous factors such as rearing areas, production systems, feeding 
regimen, age of pigs but also from genetic  features28 that consequently could affect the NIRS estimation capacity. 
The present study, which is part of a larger project on meat quality of autochthonous pig breeds, aims to evaluate 
the potential of FT-NIRS to predict fatty acid composition (individual and group) in fresh backfat of different 
European local pig breeds by comparing two types of samples NIR preparation spectra (intact and minced). The 
study could represent the key to challenge in the real application of spectroscopy techniques considering the 
multifactorial influencers such as the different local breeds.

Results
NIRS spectra characteristics. For each breed considered, the mean absorbance (log 1/R) derived from 
all the spectra of individual animals’ fat samples, intact and minced, were shown in Figs. 1 and 2, respectively. 
Breeds spectra showed similar trend and absorbance value among them both in intact and minced sampling, 
except for Crna Slavonska which showed a lower value along all wavenumbers. This similarity was also con-
firmed by directly comparing the two methods of presentation as average values of spectra derived from12 
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autochthonous pig and both presentation modes (Supplementary Fig. S1). As it has been noted, the shapes of the 
spectra are homogeneous and almost overlapping. However, as expected, the absorbance of intact samples was 
slightly higher than that of minced samples for almost all the wavenumbers.

In all breeds, the absorbance peaks between 5100–5200  cm−1, referred to the combinational vibration O–H 
stretching, could be associated with  water29. Instead, N–H vibrational overtones, linked to protein content, were 
not evident at typical wavenumbers (4415, 5917, 6623, 8425  cm–1)30 probably because in the fat samples there 
was a low content of this constituent. The C–H absorption bands, characterizing the fat content, could be iden-
tified between 5700 and 5800  cm−1 which corresponds to the first overtone C–H stretching, between 8200 and 
8500  cm−1, i.e. second overtone C–H stretching. Regarding fat, spectra also showed the peaks around 7100  cm−1, 
the consequential peaks between 4200 and 4400  cm−1, linked to combination of C–H stretching and finally, it is 
evident the consequential absorption peaks in the 4500–4600  cm−1.

Figure 1.  Average NIR spectra of intact samples of 12 studied breeds.

Figure 2.  Average NIR spectra of minced samples of 12 studied breeds.
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Descriptive statistics. Descriptive statistics were reported in Table 1 as for calibration and validation set. 
Fatty acid profile of samples showed a wide variability which may be associated with genetic and production 
system diversity that characterize each autochthonous breed. This variability, highlighted in both data set, is 
important in NIRS models, especially if the assessment of reliable and reproducible predictive ability by NIRS is 
tested of the whole variability.

NIRS statistics results. The summaries of the statistics obtained from calibration, cross validation and 
external validation models in intact and minced samples were showed in Tables 2 and 3, respectively. For each 
parameter, range within NIR spectrum, optimal number of PLS factors and mathematical pre-treatment used 
was shown. Wavenumbers, selected in order to achieve best models, were reported for each parameter. Both 
for intact and minced samples a high number of PLS factors were necessary to develop the model. Standard 
normal variate followed by detrend as baseline correction resulted in the treatment that allowed to achieve the 
most accurate models. In addition, in intact samples, for some parameters it was necessary to apply a Savitzky–
Golay polynomial filter (SG) to reduce the additive and multiplicative effects on spectral  data31 even if when 
possible the lower number of pre-processing treatment were used. For almost all parameters, the best models 
were obtained taking into consideration specific regions of the near infrared spectrum. It seems that the length 
and the area of the near spectrum were linked to a group of fatty acids: individual and total SFA obtained the 
best model between 5400–7500  cm−1 region while total PUFA and relative fatty acids between 5400–6100 and 
7400–8400  cm−1. Contrary, MUFA showed the best model considering the full spectrum of near a region slightly 
restricted in which only the tails have been cut (initial and final).

Intact fat results. In intact samples,  R2 coefficients were generally lower than those obtained in minced 
samples even if the pattern was similar with minimal differences, and close values in terms of  R2 and errors for 
PUFA, SFA and MUFA families and some individual fatty acid as C18:2 n6, C18:1. Among SFA,  R2 of the calibra-
tion for C16:0 and C18:0 was about 0.73, with value slightly lower in cross validation and external validation  (R2 
between 0.66 and 0.69). Other SFA fatty acids showed modest calibration  R2 which was situated between 0.15 

Table 1.  Descriptive statistics of fatty acid profile from data set used in calibration and validation (expressed 
as % of total identified fatty acids). SD standard deviation of mean, Min minimum, Max maximum.

Parameter

Calibration Validation

Mean Min Max SD Mean Min Max SD

C12:0 0.088 0.049 0.131 0.015 0.087 0.049 0.130 0.016

C13:0 0.002 0.001 0.010 0.001 0.002 0.001 0.040 0.004

C14:0 1.492 1.041 2.316 0.212 1.503 1.068 2.316 0.228

C15:0 0.054 0.023 0.165 0.014 0.051 0.025 0.095 0.012

C16:0 25.666 18.784 31.167 2.193 25.846 20.606 30.243 2.236

C17:0 0.345 0.176 0.694 0.092 0.341 0.171 0.625 0.086

C18:0 13.052 8.644 20.384 1.855 13.260 9.088 20.229 2.090

C20:0 0.216 0.116 0.387 0.043 0.217 0.126 0.356 0.045

C22:0 0.013 0.002 0.085 0.013 0.012 0.003 0.052 0.010

Total SFA 40.950 29.687 51.733 3.589 41.337 32.284 51.141 3.781

C14:1 0.015 0.006 0.042 0.006 0.016 0.006 0.034 0.006

C16:1 2.578 1.566 4.621 0.595 2.583 1.566 4.261 0.622

C17:1 0.310 0.121 0.815 0.105 0.305 0.134 0.723 0.099

C18:1 45.303 36.335 55.434 3.698 45.307 37.883 55.055 3.592

C20:1 1.038 0.837 1.603 0.227 1.030 0.684 1.312 0.173

C22:1 0.023 0.006 0.088 0.019 0.026 0.007 0.080 0.021

Total MUFA 49.275 39.403 58.949 3.931 49.287 40.844 58.709 3.819

C18:2 n6 8.335 3.232 17.236 2.920 7.989 3.463 15.182 3.177

C18:3 n3 0.617 0.200 1.549 0.261 0.587 0.211 1.310 0.224

C20:2 n6 0.421 0.148 0.933 0.163 0.409 0.154 0.844 0.163

C20:3 n3 0.127 0.041 0.381 0.055 0.124 0.041 0.379 0.048

C20:3 n6 0.045 0.008 0.093 0.015 0.044 0.009 0.094 0.012

C20:4 n6 0.108 0.028 0.210 0.036 0.106 0.033 0.191 0.035

C20:5 n3 0.004 0.001 0.017 0.003 0.004 0.001 0.012 0.002

C22:4 n6 0.048 0.014 0.106 0.017 0.047 0.019 0.100 0.019

C22:5 n3 0.037 0.008 0.115 0.016 0.036 0.008 0.086 0.012

Total PUFA 9.773 3.765 20.484 3.380 9.376 4.025 17.507 3.690

n3 PUFA 0.787 0.271 1.975 0.320 0.752 0.283 1.708 0.288

n6 PUFA 8.956 3.456 18.483 3.115 8.594 3.715 16.150 3.409
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and 0.40 and always below 0.32 in both validation models. Total SFA gave the highest  R2 which was 0.85, 0.83 
and 0.80 respectively in calibration, cross validation, and external validation, respectively. With regard to MUFA 
fatty acids, the best results in terms of  R2 was shown by C18.1 with  R2 value of 0.87, 0.85 and 0.77 in calibration, 
cross-validation and external validation, respectively. For other individual MUFA fatty acids  R2 was between 
0.31 and 0.46 in calibration and between 0.24 and 0.52 in validation, with the lowest values reported for C20:1 
indicating that the correlation was poor. Prediction model for the total MUFA content had  R2 of 0.88, 0.86 and 
0.78 in calibration, cross validation, and external validation, respectively. The best results for singular PUFA fatty 
acids in intact samples were achieved in calibration for C18:2 n6  (R2 0.95), followed by C18:3 n3  (R2 0.79) and 
C20:2 n6  (R2 0.79) which reported  R2 values in the range between 0.74 and 0.94 in cross validation and 0.77 and 
0.90 in external validation. For other long-chain fatty acids (C20:3 n3, C20:3 n6, C20:4 n6, C20:5 n3, C22:4 n6, 
C22:4 n6, C22:5 n3)  R2 reported values between 0.42 and 0.62 in calibration, and in any case values lower than 
0.58 for validation. The highest  R2 coefficients were obtained for total PUFA, 0.95, 0.94 and 0.92 in calibration, 
cross validation, and external validation, respectively. A high  R2 values were also found for n6 PUFA group that 
achieved  R2 of 0.94, 0.93 and 0.90 in calibration, cross validation, and external validation, respectively; contrary, 
the results for n3 PUFA were lower with a  R2 from 0.72 to 0.79.

As regards RPD, which represents a ratio between RMSE of cross validation and SD, in the case of intact 
samples, cross validation values were between 1.5 and 2.5 for C16:0, C18:0, SFA, C18:3 n3, C20:2 n6, C20:3 n3, 
and n3 PUFA. Values higher than 2.5 were achieved for C18:1, SFA and MUFA, whileC18:2 n6, PUFA and n6 
PUFA reached the best RPD ranging from 3.9 to 4.3. All the other fatty acids showed RPD values below 1.5 in 
cross validation. In the external validation, the RPDs were generally lower with values between 1.5 and 2.5 for 

Table 2.  Prediction statistics of fatty acid profile of intact fat. SNV standard normal variate, DT de-trending, 
SG Savitzky–Golay filter, nPLS number of partial least square terms, R2c coefficient of determination in 
calibration, RMSEC root mean square error of calibration, R2cv coefficient of determination in cross-validation, 
RMSEcv root mean square error of cross validation, RPDcv residual prediction deviation in cross validation, 
R2v coefficient of determination of external validation, RMSEv root mean square error of external validation, 
RPDv residual prediction deviation in external validation, RER range error ratio in external validation, SFA 
saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids.

Parameter Spectrum range  (cm−1) Math. treat nPLS

Calibration Cross validation External validation

R2 RMSE R2cv RMSEcv RPDcv R2v RMSEv RPDv RER

C12:0 7500–5400 SNV; DT; SG 14 0.3262 0.0121 0.2402 0.0129 1.16 0.2150 0.0133 1.18 6.97

C13:0 7500–5400 SNV; DT 13 0.1505 0.0010 0.1042 0.0010 1.06 0.1040 0.0045 1.02 9.76

C14:0 7500–5400 SNV; DT; SG 13 0.3573 0.1683 0.2648 0.1806 1.18 0.1704 0.2059 1.11 6.53

C15:0 7500–5400 SNV; DT; SG 15 0.1501 0.0136 0.1170 0.0143 1.02 0.2167 0.0107 1.10 7.18

C16:0 7500–5400 SNV; DT 15 0.7204 1.1640 0.6617 1.2840 1.72 0.6820 1.2327 1.78 9.05

C17:0 7500–5400 SNV; DT 15 0.1970 0.0816 0.1080 0.0860 1.06 0.1014 0.0827 1.03 5.81

C18:0 7500–5400 SNV; DT 14 0.7351 0.9458 0.6927 1.0210 1.80 0.6970 1.0080 2.10 14.25

C20:0 7500–5400 SNV; DT 13 0.3013 0.0359 0.2332 0.0380 1.13 0.2622 0.0369 1.19 7.24

C22:0 7500–5400 SNV; DT 14 0.1590 0.0114 0.1500 0.0121 1.03 0.1490 0.0109 0.92 4.56

Total SFA 7500–5400 SNV; DT 15 0.8586 1.3512 0.8356 1.4610 2.46 0.8081 1.6320 2.29 14.24

C14:1 4500–9500 SNV; DT 13 0.3963 0.0045 0.3208 0.0047 1.24 0.3142 0.0040 1.46 6.79

C16:1 4500–9500 SNV; DT; SG 14 0.4649 0.4306 0.4018 0.4567 1.29 0.5258 0.4177 1.46 5.93

C17:1 4500–9500 SNV; DT; SG 15 0.3070 0.0881 0.2382 0.0927 1.14 0.3327 0.0825 1.23 7.38

C18:1 4500–9500 SNV; DT; SG 14 0.8744 1.3190 0.8517 1.4374 2.59 0.7714 1.6598 2.10 11.95

C20:1 4500–9500 SNV; DT; SG 14 0.3171 0.1710 0.2452 0.1807 1.15 0.2657 0.1747 1.17 6.71

C22:1 n9 4500–9500 SNV; DT; SG 14 0.3405 0.0153 0.2821 0.0160 1.18 0.3241 0.0181 1.20 4.34

Total MUFA 4500–9500 SNV; DT; SG 14 0.8853 1.3406 0.8660 1.4535 2.73 0.7812 1.7164 2.15 12.24

C18:2 n6 5400–6100/7400–8400 SNV; DT 13 0.9581 0.5963 0.9444 0.6892 4.23 0.9054 0.8876 3.26 14.63

C18:3 n3 5400–6100 SNV; DT 13 0.7988 0.1169 0.7411 0.1324 1.97 0.7988 0.1224 1.92 9.22

C20:2 n6 5400–6100/7400–8400 SNV; DT 14 0.7905 0.0740 0.7671 0.0790 2.07 0.7773 0.0808 2.13 8.74

C20:3 n3 5400–6100 SNV; DT 14 0.6257 0.3390 0.5553 0.0370 1.50 0.5441 0.0368 1.49 9.70

C20:3 n6 5400–6100/7400–8400 SNV; DT 14 0.5163 0.0104 0.4702 0.0109 1.38 0.5505 0.0101 1.51 8.37

C20:4 n6 5400–6100/7400–8400 SNV; DT 14 0.5752 0.0233 0.5364 0.0244 1.47 0.5817 0.0233 1.56 7.56

C20:5 n3 5400–6100 SNV; DT 14 0.4999 0.0017 0.4029 0.0018 1.35 0.3666 0.0019 1.26 7.46

C22:4 n6 5400–6100/7400–8400 SNV; DT 14 0.4262 0.0130 0.3782 0.0136 1.27 0.4358 0.0137 1.35 7.56

C22:5 n3 5400–6100 SNV; DT 14 0.5113 0.0100 0.4072 0.0118 1.30 0.5143 0.0107 1.45 7.70

Total PUFA 5400–6100 SNV; DT 14 0.9512 0.7450 0.9453 0.7913 4.27 0.9265 0.9071 3.70 16.36

n3 PUFA 5400–6100 SNV; DT 14 0.7967 0.1445 0.7312 0.1666 1.93 0.7256 0.1537 1.91 9.73

n6 PUFA 5400–6100/7400–8400 SNV; DT 14 0.9429 0.7424 0.9344 0.7983 3.90 0.9054 0.9522 3.26 14.41
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C16:0, C18:0, SFA, C18:1, MUFA, C18:3 n3, C20:2 n6, C20:3 n6, C20:4 n6 and n3 PUFA. Also, in prediction the 
best RPDs were achieved by C18:2 n6, PUFA, n6 PUFA (values between 3.2 and 3.7).

Finally, the value RER (indicative of the suitability of models to categorize or quantify the samples), in mod-
els developed for intact samples showed values above 4, allowing a discrimination for all group or individual 
fatty acids. The RER limit of 9 was obtained by C13:0, C16:0, C18:0, C18:1, C18:2n6, C18:3 n3, C20:3 n3, SFA, 
MUFA, PUFA, n6 PUFA, n3 PUFA even if in the case of C13:0 it was linked to a very low  R2 indicating that the 
model was not applicable.

Realistically, a RER above 10, linked both to an RPD close to 3 and a  R2 > of 0.87 (in both validation models) 
was reported by C18:2 n6, PUFA and n6 PUFA while C18:1, SFA, MUFA. It thus seems easier to achieve more 
accurate models in cross validation losing accuracy in terms of RPD in external validation.

Minced fat result. In minced samples among the SFA, C16:0, C18:0 showed the highest  R2 of about 0.80 in 
calibration while in cross validation and external validation  R2 was slightly lower and was between 0.76 and 0.79. 
The other SFA fatty acids showed modest  R2 included between 0.18 and 0.48 in calibration and between 0.15 and 
0.46 in both validation models. The sum of SFA presented a  R2 of 0.89 and 0.87 respectively in calibration and 
validation. With regard to MUFA, the highest  R2 was obtained for C18:1 achieving  R2 of 0.89 in calibration and 
0.87 in both validation models. The other MUFA showed models with  R2 between 0.40 and 0.56 in calibration 
and of 0.34 and 0.50 in validation, except for C20:1 that exhibited a lower value. Total MUFA had calibration 
 R2 of 0.90 and slightly lower values in cross and external validation (respectively 0.89 and 0.88). For individual 
PUFA, as in intact fat, the highest calibration  R2 values were achieved in the case of C18:2 n6 (0.95), followed by 
C18:3 n3 (0.85) and C20:2 n6 (0.79), while in cross validation and external validation  R2 ranged between 0.74 

Table 3.  Prediction statistics of fatty acid profile of minced fat. SNV standard normal variate, DT de-trending, 
nPLS number of partial least square terms, R2c coefficient of determination in calibration, RMSEC root 
mean square error of calibration, R2cv coefficient of determination in cross-validation, RMSEcv root mean 
square error of cross validation, RPDcv residual prediction deviation in cross validation, R2v coefficient of 
determination of external validation, RMSEv root mean square error of external validation, RPDv residual 
prediction deviation in external validation, RER range error ratio in external validation, SFA saturated fatty 
acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids.

Parameter Spectrum range  (cm−1) Math. treat nPLS

Calibration Cross validation External validation

R2 RMSE R2cv RMSEcv RPDcv R2v RMSEv RPDv RER

C12:0 5400–7500 SNV; DT 14 0.4140 0.0100 0.3368 0.0123 1.23 0.4521 0.0115 1.37 6.86

C13:0 5400–7500 SNV; DT 13 0.1820 0.0009 0.1540 0.0010 1.09 0.1519 0.004 1.07 9.88

C14:0 5400–7500 SNV; DT 14 0.4856 0.1510 0.4160 0.1619 1.31 0.4639 0.167 1.37 7.70

C15:0 5400–7500 SNV; DT 15 0.2093 0.0125 0.1590 0.0130 1.09 0.1598 0.012 1.09 5.86

C16:0 5400–7500 SNV; DT 15 0.8055 0.9601 0.7689 1.0498 2.08 0.7987 1.020 2.23 9.05

C17:0 5400–7500 SNV; DT 12 0.2748 0.0792 0.1817 0.0844 1.10 0.1447 0.0865 1.01 5.49

C18:0 5400–7500 SNV; DT 14 0.8062 0.8332 0.7835 0.8706 2.15 0.7797 0.9667 2.13 9.67

C20:0 5400–7500 SNV; DT 14 0.3845 0.0336 0.3121 0.0352 1.20 0.4634 0.034 1.37 6.44

C22:0 5400–7500 SNV; DT 14 0.1923 0.0130 0.1570 0.0010 1.26 0.1994 0.009 1.17 6.07

Total SFA 5400–7500 SNV; DT 14 0.8971 1.1450 0.8789 1.2467 2.87 0.872 1.368 2.79 12.28

C14:1 4500–9500 SNV; DT 14 0.4000 0.0040 0.3704 0.0463 1.13 0.3628 0.0052 1.27 5.93

C16:1 4500–9500 SNV; DT 13 0.5690 0.4200 0.4510 0.4450 1.35 0.5090 0.4100 1.54 7.71

C17:1 4500–9500 SNV; DT 15 0.4080 0.0800 0.3440 0.0800 1.30 0.3628 0.0520 1.86 12.11

C18:1 4500–9500 SNV; DT 14 0.8980 1.1640 0.8745 1.2993 2.82 0.8789 1.2769 2.89 12.91

C20:1 4500–9500 SNV; DT 14 0.3733 0.1736 0.3704 0.1886 1.30 0.2798 0.1440 1.19 6.71

C22:1 4500–9500 SNV; DT 14 0.4080 0.0100 0.3470 0.0100 1.90 0.4307 0.0100 1.97 7.39

Total MUFA 4500–9500 SNV; DT 13 0.9056 1.1950 0.8976 1.2469 3.13 0.8875 1.3256 2.97 12.69

C18:2 n6 5400–6100/7400–8400 SNV; DT 13 0.9581 0.5963 0.9444 0.6892 4.24 0.9248 0.7989 3.63 14.71

C18:3n3 5400–6100 SNV; DT 13 0.8573 0.0982 0.8395 0.1043 2.51 0.7587 0.1260 2.04 9.38

C20:2 n6 5400–6100/7400–8400 SNV; DT 14 0.7980 0.0724 0.7600 0.0790 2.04 0.7450 0.0881 1.99 8.43

C20:3 n3 5400–6100 SNV; DT 14 0.6550 0.0315 0.6289 0.0327 1.65 0.6298 0.0327 1.84 10.85

C20:3 n6 5400–6100/ 7400–8400 SNV; DT 14 0.4928 0.0115 0.4620 0.0114 1.37 0.4164 0.0125 1.30 7.49

C20:4 n6 5400–6100/ 7400–8400 SNV; DT 14 0.6128 0.0220 0.5967 0.0229 1.58 0.5355 0.0245 1.47 6.45

C20:5 n3 5400–6100 SNV; DT 14 0.5559 0.0010 0.5214 0.0017 1.53 0.5214 0.0017 1.17 5.08

C22:5 n6 5400–6100/ 7400–8400 SNV; DT 14 0.4684 0.0125 0.4370 0.0129 1.34 0.3041 0.0134 1.21 5.05

C22:5 n3 5400–610/0 SNV; DT 14 0.5417 0.0100 0.5096 0.0109 1.44 0.5096 0.0109 1.42 7.51

Total PUFA 5400–6100 SNV; DT 13 0.9618 0.6590 0.9559 0.6796 4.98 0.9294 0.9004 3.75 15.11

n3 PUFA 5400–6100 SNV; DT 14 0.8604 0.1180 0.8406 0.1272 2.51 0.8990 0.1394 2.56 10.80

n6 PUFA 5400–6100/7400–8400 SNV; DT 14 0.9497 0.6975 0.9441 0.7362 4.23 0.9221 0.8718 3.57 14.36
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and 0.94. For other long-chain fatty acids (C20:3 n3, C20:3 n6, C20:4 n6, C20:5 n3, C22:4 n6, C22:4 n6, C22:5 
n3)  R2 was situated between 0.46 to 0.65 in calibration more without showing differences between n3 and n6 FA. 
Validation results, in terms of  R2 were lower (0.62–0.32). The sum of PUFA gave the highest  R2 in calibration 
(0.96), similar in cross validation (0.95) and slightly lower in external validation (0.92). For n6 PUFA group the 
achieved  R2 was 0.95, 0.96 and 0.92 in calibration, cross validation, and external validation, respectively. Com-
pared to that, the results for n3 PUFA group were lower (from 0.84 to 0.89).

As expected, root mean square errors were lower in calibration than in cross validation or external validation, 
while  R2 value showed inverse pattern. The differences in root mean square error seem to depend on variability 
of the parameter considered: fatty acids with low concentration linked to less variability presented lower errors 
than higher values of the most abundant fatty acids.

Regarding the RPD in minced samples, values between 1.5 and 2.5 in cross validation were recorded in the 
case of C16:0, C18:0, C22:1, C20:2 n6, C20:3 n3, C20:4 n6 and C20:5 n3 even if in the case of C22:1 it was linked 
to a very low  R2 indicating that the model was not applicable. The best result in terms of RPD in cross validation 
(higher than 2.5 or closed to 3) was obtained by SFA, C18:1, MUFA, C18:2 n6, C18:3 n3, PUFA, n3 PUFA and 
n6 PUFA. Considering external validation, RPD behavior was comparable to those obtained in cross validation, 
achieving values between 1.5 and 2.5 for the following fatty acids: C16:0, C18:0, C16:1, C17:1, C22:1, C18:3 
n3, C20:2 n6 and C20:3 n3. Other parameters (SFA, C18:1, MUFA, C18:2 n6, PUFA, n3 PUFA and n6 PUFA) 
recorded higher values ranging from 2.8 to 3.8.

Finally, RER index in minced mode showed values above 4 for all parameters suggesting a discrimination 
capacity for all parameters. Certain fatty acids or groups (C13:0, C16:0, C17:1, C18:0, C18:1, C18:2n6, C18:3 n3, 
C20:3 n3, SFA, MUFA PUFA, PUFA n6, PUFA n3) reached RER values higher than 9, even if in the case of C13:0, 
C17:1 and C20:3n3 they were not linked to an adequate RPD or  R2. Effectively, a RER above 10, linked both to 
an RPD close to 3 and a  R2 > of 0.8 (in both validation models) was obtained for C18:1 C18:2 n6, SFA, MUFA, 
PUFA and n6 PUFA. In addition, both n3 PUFA and C18:3 n3 in minced samples highlighted better results than 
in intact ones in terms of closeness to limit of values necessary for the model’s application.

Discussion
The features of the spectra, belonging to the NIR region, are represented by the absorption produced by the com-
bination of harmonics and overtones of the fundamental frequencies of the functional groups. Visual identifica-
tion is suggested in NIRS studies in order to detect the presence of compounds and to reduce the spectral region 
from which to extract the useful information, even if the recognition of the individual chemical compounds is 
not always accessible. Moreover, in the studied NIR spectra, the visual evidence of the main tissue constituents 
(moisture/water, fat and protein) was confirmed but the characteristic bands showed a slight shift along the 
wavenumber axis depending on the type of samples or  instrument32,33.

The absorption bands of water always found in biological samples could easily be distinguished thanks to 
the presence of first stretch overtones and the valley absorption curve at 5500–6200  cm−1 that follows the first 
harmonic transitions of C–H  bonds33,34. Typical fat spectra bands were evident around the characteristic wave-
number according to previous study on  meat32,35,36. The consequential peaks at 5670 and 5800  cm−1 could be 
indicative of cis double bonds of unsaturated fatty acids according to Pieszczek et al.36 and Garrido-Varo et al.37. 
As for proteins, the very low content in the fat samples, taking the 5% limit proposed by ElMasry et al.33 as a refer-
ence, represent a modest contribution to the characteristics of the spectra. Furthermore, the protein absorption 
was likely masked by the strong peak of water and fatty acids in the same wavenumber regions as reported by Tsai 
et al.38 and ElMasry and  Nakauchi33. The development of predictive models showed that the best relationships 
were obtained in a specific region of the near infrared spectrum. In almost all cases, the importance of selecting 
a specific spectral region was confirmed within each group of fatty acids. In agreement with our results, different 
studies on pig  loin4,32,39 reported the best predictive models with the selected spectral range. In contrast, other 
 studies15,40 suggested that the optimization of spectral regions demands more processing time than considerable 
improvements. In particular, Cáceres-Nevado et al.15 comparing full spectrum and a selected range didn’t achieve 
statistically significant difference in calibration approaches. In all cases, pretreatment of the spectra, SNV and DT 
proved useful to remove the effects of scattering and reduce the multicollinearity. In addition, the confounding 
effects of baseline shift and curvature were likely reduced due to spectral difference  calculations1. However, the 
lower number of math pre-processing treatments on spectra was always considered in order to avoid the complex-
ity of interpretation, the loss of some information and the minor structural differences among very similar signal 
 profiles41 In various autochthonous breeds used in this research, spectral behavior was similar, exception being 
Crna Slavonska where the spectral discrepancy in absorbance occurred in minced samples. The difference in 
absorption capacities between intact and minced samples was consistent with previous studies on  meat4,15 which 
reported the effect of the structural loss of tissue. Cozzolino et al.42 and Fan et al.43, working on lamb and pork 
muscles, respectively suggested that grinding interferes with structure of muscles thus affecting light absorbance. 
The wide variability in fatty acids values, especially for the fatty acids present in greater quantities was related to 
the diverse production systems and diets to which the different local pig breeds are subjected in their respective 
farms and  countries44. This variability could be useful and positive for the development of predictive models by 
NIRS  technology45,46. As expected, and as mentioned by other  authors15,43 the best coefficients of determination 
for cross-validation and external validation were observed in the minced presentation mode, even if the trend 
of the results was the same. Sample preparation conditions are recognized as one of the key factors influencing 
the capacities of the NIRS and it is well known that homogenization improves the accuracy of  NIRS26. However, 
mincing the fat is time consuming and could be difficult to homogenize with a mixer because the composition 
changes and tissue components attaching to the equipment can create  errors26. The comparison with other studies 
in NIRS research is always difficult due to the different instruments (size of irradiated surface, signal/noise ratio, 
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depth of light penetration), chemometrics models, parameters used and environmental conditions  present39. The 
NIRS research developed for the prediction of fatty acids were more abundant and spread for minced samples 
than for intact samples. However also in the case of minced samples often studies considered only one breed 
(Iberian pig samples) obtaining statistics in validation similar or slightly higher for  R2 to present work, but 
moderately lower  errors27 probably due to the different set sizes. Prevolnik Povše24, who studied fat of two local 
breeds (Slovenian Krškopolje pig and Croatian Turopolje pig) reported similar or slightly lower cross validation 
 R2 for SFA, MUFA and PUFA group, while the cross-validation errors slightly higher in our research. In the study 
by Müller et al.40 on pork fat from different carcass batches, a similar  R2 was found in the prediction for MUFA, 
PUFA, C18:1 and C18:3 n3 while lower  R2 were obtained for C18:2 n6 and higher for SFA and C18:0. Also in this 
case, the errors in prediction presented were lower compared to those obtained by our models except for C18:3 
n3. Previous study on melted fat obtained better results in all cases than in the present  study25,26,47 with errors of 
cross-validation or prediction ranging from 0.26 to 0.87 for C16:0, from 0.27 to 0.64 for C18:0, from 0.20 to 0.59 
for C18:1 and from 0.15 to 0.36 for linoleic acid. Those results were probably linked to the melting condition that 
can affect precision and accuracy in the results. Also, Flåtten et al.48 reported that in purified fat better results 
were achieved, even if in his study LC PUFA were predicted by mid-infrared transmission. Regarding the NIRS 
results of prediction (external validation), the obtained values were in the same order as those obtained with 
the cross validation confirming the goodness of the proposed models of the present work. Even if the higher 
number of samples considered in our study positively affected the applicability of NIRS, the relevant number of 
factors variability involved within samples sets (diet, rearing systems, etc.) have probably affected accuracy and 
precision of estimation statistics with direct effects on errors. Moreover, in our study variability of each breed 
was directly affected by different traditional breeding conditions of each country.

Considering the main objective of this work, the evaluation of the NIRS method for simultaneous measure-
ment of fatty acid composition in back fat of different autochthonous pig breeds, the RPD and RER indexes 
used to evaluate the capacity of the models suggested that the NIR equation of C18:1, C18:2 n6, SFA, MUFA, 
PUFA and n6 PUFA could be considered usable in most applications, including quality starting from minced fat 
samples. Promising results were also obtained for the quantification of C18:3n3 and n3 PUFA. For some of the 
major constituents (C16:0, C18:0, C20:2 n6, C20:3 n3), the RPD achieved, linked to a RER > 9 and to a  R2 > 0.62 
allowed for discrimination to differentiate high, medium and low values that could be useful on quality control 
 categorization49. According to Müller et al.40, the calibration of minor fatty acids resulted generally poorer in 
terms of  R2, RMSE, RPD and RER suggesting that NIRS cannot be used to quantify all individual fatty acids 
simultaneously although minced samples were used. In addition, as reported by Gjerlaug-Enger et al.26 NIRS 
has the best predictive ability for organic components with large volumes. However, both RPD and RER as well 
as  R2 are highly dependent on the range of values in the calibration. Finally, even if RPD statistic is widely used 
in NIRS research for assessing the predictions  efficiency50, Cáceres-Nevado et al.15 suggested that this criterion 
cannot be generalized to all types of products or all NIRS instruments.

Considering the results obtained for intact fat, Pérez-Marín et al.39 working on skin-free subcutaneous intact 
fat of Iberian pig on cross validation, reported higher  R2 than our results for C16:0 (0.88), C18:0 (0.80) and 
C18:1 (0.92) and lower error on average. González-Martin et al.1 on subcutaneous fat of Iberian pigs achieved 
in external validation both slightly higher results of  R2 and lower errors for C16:0, C18:0 and C18:1. On the 
contrary, the coefficients of determination of C18:2 and especially C18:3 n3 are higher in our study than in the 
mentioned research. Also, Pérez-Marín et al.39 reported calibration models poorer than our study for C18:2  (R2 
0.42) connecting these results with a lower variation data set as shown by the standard deviation of 1/3 than 
ours (0.75 vs. 3.0%). Minor fatty acids are rarely reported in that research and the results are often inconsistent: 
González-Martín et al.1 reported higher  R2 than ours for C14:0 and lower values for C20:1.

Regarding the fatty acid group, in external validation González-Martín et al.1 achieved lower  R2 for MUFA 
and PUFA, and higher  R2 and lower error for PUFA. However, it must be noted that the variation of fatty acids 
for Iberian  pigs1,39 was generally lower than those considered in our research because in Spain pigs are fed several 
diets but on the basis of the same extensive feeding programs and similar strategies. Gjerlaug-Enger et al.26, work-
ing on fat layers from Norwegian Landrace and Duroc pigs cut into small pieces (brick size: 3–5 mm), obtained 
slightly higher results for  R2, RPD and RER for both the group and individual fatty acids. Nevertheless, a relative 
variation was considered by Gjerlaug-Enger et al.26 study because calibrations were made starting from pigs fed 
almost the same diet and tested in two experimental stations. It is stressed that in NIRS prediction the variation 
should cover the population in which the calibrations will be used for subsequent predictions: a larger variability 
in fatty acids could be obtained if pigs came randomly from different rearing system even if the NIRS capacity 
and accuracy can tend to  decrease26. However, Prieto et al.46 suggested the use of specific prediction equations 
within each breed, as breed differences in NIRS meat fatty acid estimation were determined in finished animals 
fed a similar dietary regime and sourced from a single experimental farm. These authors reported genetic dif-
ferences between breeds as the most influential factor in the accuracy of fatty acid estimation, that could be also 
associated to a different size of the adipocytes between the breeds linked to the absorbance in the collection of 
NIR spectra. At the current state, more research is needed to validate the patterns and results of NIRS estimation 
within different breeds.

In order to consider the model suitability for estimation of fatty acids from intact fat, the simultaneous con-
sideration of the coefficient  R2, RPD and RER indicates that the model was efficient for the practical quantifica-
tion application of C18:2 n6, PUFA and n6 PUFA. The SFA and MUFA group, as well as C18:1 models could be 
considered to be suitable for screening  purposes50–52. Finally, the possibility to categorize sample discriminating 
between high and low fatty acids values with acceptable precision seem to be promising for C16:0, C18:0, C18:3 
n3 as well as C20:2 n6 and n3 PUFA.
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Methods
Ethics approval and consent to participate. Animal Care and Use Committee approval was not nec-
essary because backfat samples were collected after slaughtering of animals. The authors did not have direct 
control over the care of the animals because the experimentation of this study did not include the analysis of the 
subjects’ life stages.

Sample collection. A total of 439 backfat samples were collected after slaughter from subjects belonging to 
12 European local pig, in the frame of H2020 project TREASURE (Table 4).

Subcutaneous fat (backfat) was sampled 1–2 days after slaughter from the left half-carcasses between the 
second to the fifth lumbar vertebra, individually vacuum packed and frozen at − 20 °C and sent to the University 
of Florence laboratory. After thawing, intact fat samples were scanned by FT-NIRS. Subsequently, samples were 
minced by electric meat grinder and scanned by FT-NIRS. Once the scans were acquired, the same samples 
were further used for gas chromatographic analysis. For each animal, all analysis were performed in duplicate.

Reference analysis. Total lipids content was determined using the method of Folch et al.53; fatty acid pro-
file of total lipids, using the modified technique of Morrison and  Smith54.Fatty acids (FAs) methyl esters were 
analyzed by gas chromatography using a Varian 430 apparatus (Varian Inc., Palo Alto, CA, USA) equipped 
with a flame ionisation detector. FAs separation occurred in a Supelco Omegawax TM 320 capillary column 
(30-mlength; 0.32 mm internal diameter; 0.25 lm film thick-ness; Supelco, Bellafonte, PA, USA). The chromato-
graphic conditions were an initial temperature of 160 C, which was then increased by 2 C/min until the tempera-
ture reached 220 C. One microliter of sample in hexane was injected with the carrier gas (helium) at a constant 
flow of 1.5 mL  min−1 and at a split ratio of 1:20. The detector temperature was set at 260 C. The chromatograms 
were recorded using computing integrator software (Galaxie Chromatography Data System 1.9.302.952; Varian 
Inc.). The percentage of each fatty acid was calculated on the total of fatty acids detected and expressed as g/100 g 
of FAMEs. Fatty acid groups were obtained as sum of all saturated fatty acids (SFA) detected, sum of all mono-
unsaturated fatty acids (MUFA) and sum of all polyunsaturated fatty acids (PUFA).

FT‑NIRS data pre‑treatment and chemometric analysis. Spectra were processed by chemometric 
approach using Unscrambler  CAMO® software. To optimize the accuracy of calibration, several mathematical 
pre-treatments were applied: multiplicative scatter correction (MSC) and standard normal variate (SNV), with 
or without the de-trending (DT) option were applied for the correction of scatter effects in the spectra, spectral 
derivative Savitzky–Golay polynomial filter (SG) including a smoothing step before derivation (with 10 smooth-
ing left side points and 9 smoothing right side points) avoiding reduction of the signal to noise ratio were applied 
when necessary. Furthermore, to optimize the extraction of useful information a selection or reduction from 
spectra were applied analyzing the spectra at the specific wavenumbers. Outliers were detected by both observ-
ing spectra line plot and principal component analysis (PCA) results. Possible outliers were identified as samples 
with high residual values and high Hotelling’s  T2 statistic referred to spectra range (T > 2.5 as often reported for 
the removal of outliers)55. A scatterplot of leverage, respectively for intact (Supplementary Fig. S2) and minced 
(Supplementary Fig. S3) samples, were also considered in order to detect outliers. The obtained data set was 
split in two stratified data sets: a training (calibration) set with 80% of the samples and a validation set including 
the remaining 20% of the samples. In both sets, however, all breeds were included, guaranteeing the presence 
of 20% of animals for each breed in validation set. All models were built using partial least square regression 
(PLS), after other models as principal component regression (PCR) were evaluated and discarded because of 
lower predictive ability. To develop the model, for each parameter, the optimum number of PLS factors (nPLS) 
has been selected based on the one that determined the lowest error in cross validation and thus avoiding over-
fitting. Indeed, an internal cross-validation using the leave one-out method was applied on the training set and 
both the coefficient of determination of cross validation  (R2cv) and root mean square errors in cross validation 
(RMEcv) were obtained. All calibrations were evaluated on the basis of both the entire NIR spectrum and spe-

Table 4.  Breeds and total number of backfat samples and origin country used in the study.

Breed Total number of backfat samples Origin country

Alentejana 19 Portugal

Bísara 54 Portugal

Cinta Senese 19 Italy

Crna Slavonska 16 Croatia

Gascon 76 France

Iberian 75 Spain

Krškopolje 35 Slovenija

Lithuanian Wattle 5 Lithuania

Lithuanian White 23 Lithuania

Majorcan Black 40 Spain

Schwabisch Hãllisches 57 Germany

Turopolje 20 Croatia
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cific regions, considering previous studies and the band/overtone present in our spectral data  set32,35,36. The best 
model for each trait was evaluated based on the highest coefficient of determination in calibration  (R2) and in 
external validation or prediction  (R2v) as well as on the lowest root mean square error in calibration (RMSE) 
and prediction (RMSEv).

Residual prediction deviation (RPD) index was calculated as standard deviation (SD) of the set of samples and 
the RMSE ratio in cross validation (RPDcv) and in external validation (RPDv), in order to evaluate goodness of 
fit and model accuracy. The relationship between the interval of composition of the reference data for the col-
lective calibration (Ymax − Ymin) and the RMSEv, known as the range error ratio (RER) index, was calculated as 
statistics indicators of the greatest weight in the precision of a NIRS calibration  model50. The model performance 
can be considered sufficient for a rough screening if RPD is between 1.5 and 2.552. Williams and  Sobering51 sug-
gested an ‘accurate estimation capacity’ if RPD values were higher than the limit of 2.5, even though afterwards 
the limit for the accuracy evaluation was increased to  352, because the error of prediction is reduced by a factor 
of more than  three56. A RER between 4 and 8 suggests the possibility of discriminating high values from low 
ones, while RER values in the range of 8–10 represent the possibility of predicting quantitative data and an RER 
above 10 or 12 indicates good  predictability5,49.

Conclusion
In conclusion it seems possible to use NIRS technology for the prediction of principal fatty acid families (SFA; 
MUFA and PUFA as well as n6 PUFA) and some singular fatty acid as C18:1 and C18:2 n6 coming from a large 
population of European autochthonous pigs’ breeds if minced fat samples are used. The homogenization of fat 
is promising for the quantification of C18:3 n3 and n3 PUFA and allow the screening (high and low value) for 
some major important constituents (C16:0, C18:0, C20:2 n6, C20:3 n3,) while it seems to be more difficult for 
other fatty acids.

Prediction on intact fat samples, although displaying lower predictive ability, has the advantage of being 
instantaneous and could be applied on marketable products. It seems suitable for PUFA and n6 PUFA as well as 
for C18:2 n6 while for other families (SFA and MUFA) as well as for C18:1 a discrimination between high and 
low values would be feasible.

The study of the specific wavenumbers at which NIR are closely associated with the fatty acid group composi-
tion resulted useful in order to achieve accurate calibrations. Moreover, the large variability of fatty acids used 
in this study could have affected the robustness of models. NIR spectroscopy will become more widely used in 
quality control, industries or breeding programs as more attention is given to reduce errors.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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