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Abstract: Decision support systems (DSS) are needed to carry out precision irrigation. Key issues in
this regard include how to deal with spatial variability and the adoption of deficit irrigation strategies
at the field scale. A software application originally designed for water balance-based automated
irrigation scheduling locally fine-tuned through the use of sensors has been further developed with
the emerging paradigm of both digital twins and the Internet of Things (IoT). The aim of this research
is to demonstrate the feasibility of automatically scheduling the irrigation of a commercial vineyard
when adopting regulated deficit irrigation (RDI) strategies and assimilating in near real time the
fraction of absorbed photosynthetically active radiation (fAPAR) obtained from Sentinel-2 imagery.
In addition, simulations of crop evapotranspiration obtained by the digital twin were compared with
remote sensing estimates using surface energy balance models and Copernicus-based inputs. Results
showed that regression between instantaneous fAPAR and in situ measurements of the fraction
of intercepted photosynthetically active radiation (fIPAR) had a coefficient of determination (R2)
ranging from 0.61 to 0.91, and a root mean square deviation (RMSD) of 0.10. The conversion of
fAPAR to a daily time step was dependent on row orientation. A site-specific automated irrigation
scheduling was successfully adopted and an adaptive response allowed spontaneous adjustments in
order to stress vines to a certain level at specific growing stages. Simulations of the soil water balance
components performed well. The regression between digital twin simulations and remote sensing-
estimated actual (two-source energy balance Priestley–Taylor modeling approach, TSEB-PTS2+S3) and
potential (Penman–Monteith approach) evapotranspiration showed RMSD values of 0.98 mm/day
and 1.14 mm/day, respectively.

Keywords: precision irrigation; digital twin; fAPAR; Sentinel; evapotranspiration

1. Introduction

Presently, water is becoming scarce not only in arid and drought areas, but also in
regions where rainfall used to be abundant. Although approximately 70% of freshwater
resources is used for food production, less than 60% of all water used for irrigation is
effectively used by crops [1]. One way to address this issue is to reduce inefficiencies in
irrigation management. This requires modernization of irrigation, from river catchment to
precise delivery and scheduling at the field level. Although it is true that there is a lot of
scientific and technical knowledge about the best irrigation strategies to be adopted for each
crop and time at the field level, putting them into practice is not a simple task. The main
limitations are the availability of the tools and skills required that allow the quantification
and monitoring of crop water requirements and water status in order to provide the right
amount of water at the right time and place. In this context, precision irrigation, which
is the application of the concept of precision agriculture to the field of irrigation, can
contribute to the technological approach. Precision agriculture has been recently defined
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as “a management strategy that gathers, processes and analyses temporal, spatial and
individual data and combines it with other information to support management decisions
according to estimated variability for improved resource use efficiency, productivity, quality,
profitability and sustainability of agricultural production” [2]. The latest technological
developments in precision irrigation offer important opportunities to close the existing gap
between water productivity and the profitability of an agricultural plot.

Crop water requirements are usually calculated following the FAO-56 soil water bal-
ance (SWB) approach [3]. This approach is based on estimating maximum crop evapotran-
spiration (ETc), obtained by multiplying a reference evapotranspiration (ET0), calculated
through the Penman–Monteith method, by a crop coefficient (Kc) that is characteristic
for each crop and growth stage. However, particularly in woody crops, this approach
can be quite uncertain as Kc may vary depending on factors such as row spacing and
orientation, variety, crop load and canopy training system [4,5]. With respect to the latter
of these factors, some studies have refined Kc in discontinuous canopies with indirect
measurements of light interception [6–8]. Additionally, supplying the full water require-
ments is not always possible or desirable. For instance, regulated deficit irrigation (RDI)
strategies have been successfully adopted to achieve higher water productivities [9–11]
and/or fruit quality [12–14]. Crop water status can be monitored with sensors and used
for irrigation scheduling [15–17]. Among the different sensors that are available, soil mois-
ture capacitance sensors are probably the most widely used to trigger irrigation [18,19].
Although the simplest methodology is based on the switching on or off of valves when the
signal of a soil moisture probe crosses some predefined threshold, commonly soil water
content at field capacity and wilting point [20], particular consideration needs to be given
to the high sensitivity of these sensors to differences in soil hydraulic properties and the
heterogeneous distribution of soil water content, especially in drip irrigation systems. A
combination of SWB and soil water content monitoring methods seems the best way to
efficiently schedule irrigation [21]. This type of dual approaches are based on determining
irrigation doses from a SWB model and feedback from sensors for the site-specific empirical
adjustment of Kc [22,23]. The methodology proposed by Casadesús et al. [22] uses the trend
of minimum soil moisture values between consecutive days to fine tune the water balance.
IRRIX was a decision support system (DSS) designed for SWB-based automated irrigation
scheduling locally tuned by sensors. Its feasibility was demonstrated in various crops such
as Japanese plum [24], apple [23] or olive trees [21]. This manuscript introduces further
improvements of IRRIX, described in Section 2.3, in which the assimilation of sensor data
by a SWB model has been further developed with the emerging paradigms of digital twins
and the Internet of Things (IoT). A digital twin is a virtual representation that serves as
the real-time digital counterpart of a physical object or process [25]. The new automated
irrigation system introduced in this study computes crop water requirements and closes
the irrigation control loop autonomously, on a daily basis, importing data from soil/plant
sensors, meteorology and remote sensing. Irrigation prescriptions are automatically sent to
the irrigation controller installed in the field compliant with site-specific strategies. The
digital twin behind the automated irrigation system also allows to simulate the different
SWB components separately, so the end user can see in real time the amount of water used
or the crop water status.

One of the main limitations of only using soil and/or plant sensors to trigger irrigation
is that this will be based on point measurements which sometimes are not representative of
the heterogeneity of the entire irrigation sector. Satellite-based remote sensing technologies
open up the possibility of providing spatio-temporal information of fields in near real time.
In particular, the recent launch of the open access Sentinel-2 satellites (S2) makes it possible
to monitor vegetative growth on a five-day turnaround, as long as there are no clouds [26].
Typically, remote sensing spectral vegetation indices, such as the normalized difference
vegetation index (NDVI), have been used to derive Kc values [27–29]. However, saturation
issues of some of these indices at moderate-to-dense canopy levels and limitations of crops
with clumped canopy structures have been widely reported [30,31]. Instead, estimations
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of biophysical parameters of the vegetation could be more effective for the monitoring
of vegetative growth and therefore the estimation of potential evapotranspiration. In
this regard, the remote sensing-derived fraction of intercepted photosynthetically active
radiation (fIPAR) or the fraction of absorbed photosynthetically active radiation (fAPAR)
have been estimated in different crops, mostly using empirical relationships with spectral
vegetation indices [32–35]. However, this approach is site specific and sensitive to the
canopy architecture, the row orientation, the optical properties of the canopy elements
and the background [36]. Very few studies have aimed to derive fIPAR in heterogeneous
canopies, such as row-structured canopies, using radiative transfer models [18,37,38].
The fAPAR can also be derived from the biophysical processor available in the Sentinel
Application Platform (SNAP), which built a neuronal network with the PROSAIL model
and applied it to all S2 reflective bands [39]. fAPAR is often approximated by fIPAR
because the vegetation pigments present a strong absorption in this spectral domain
and the background reflectivities are usually small for well-developed canopies [40,41].
Therefore, S2 fAPAR time series could be a good alternative for assimilation into digital
twins and to estimate potential evapotranspiration in all types of canopy structures.

It is well known that other approaches have also been developed to directly retrieve
crop water requirements based on remotely sensed surface energy balance (SEB) mod-
els [42–44]. Land surface temperature (LST) plays a critical role in the SEB. However, a
trade-off exists between the spatial and temporal resolution of current thermal infrared
sensors onboard satellites. While waiting for the launch of new satellites with sensors with
a high spatial-temporal resolution in the thermal infrared domain, several approaches have
been tested to downscale the coarse resolution of thermal infrared satellite imagery [45–48].
For instance, some studies have successfully downscaled LST to 20 m using a data mining
sharpening (DMS) approach [48] with S2 and Sentinel-3 (S3) images [49]. The obtained
LST, together with other Copernicus-based inputs, was used to estimate daily actual evapo-
transpiration (ETa) through the Priestley–Taylor version of the two-source energy balance
(TSEB-PT) model [50–53]. These studies reported accuracies of instantaneous latent heat
flux in woody crops ranging from 76 to 87 W/m2. It is probable that in the near future SEB
modelling approaches with high-resolution LST will be operationally used to map crop
water status in near real time and assimilated into digital twins such as the one proposed in
this study. Therefore, studies that validate these approaches in different types of crops and
water status are necessary to advance the state of the art and evaluate their pros and cons.

One of the main challenges of automated irrigation DSS is to implement them in com-
mercial fields. From our knowledge, no study has used a DSS to automatically schedule
irrigation of a commercial vineyard through assimilating in near real time remote sensing
estimates of fAPAR. Nor has it been used in commercial fields with the adoption of RDI
strategies. Nor have digital twin-obtained SWB simulations been validated or compared
against other methodologies. Therefore, the aim of this research is to demonstrate the feasi-
bility of automatically scheduling the irrigation of a commercial vineyard by assimilating
S2 fAPAR and adopting an RDI strategy. In particular, this study focuses on: (i) regressing
S2 fAPAR with instantaneous fIPAR and upscaling it on a daily time scale using Oyarzun’s
modelling approach [54] in rows with different orientations, (ii) the suitability of adopt-
ing an RDI strategy through an automated irrigation DSS, and (iii) a comparison of the
evapotranspiration simulations obtained from a digital twin with those estimated with the
TSEB-PTS2+S3 and Penman–Monteith (PM) models using Copernicus-based inputs.

2. Materials and Methods
2.1. Study Site

This study was carried out during the growing seasons 2020 and 2021 in a 6.9 ha
commercial vineyard (cv. Grenache) located in Aranyó (41◦30′18′′ N–0◦50′09′′ E, 316 m,
Lleida, Spain) (Figure 1). The vineyard comprised three different irrigation sectors of 2.0,
2.3 and 2.6 ha (Figure 1b). Vines were planted in 2018 with a 110 Rister rootstock and at
1.0 × 2.0 m spacing distance. Two irrigation sectors (A and B) were oriented at 140 ◦ (NW-
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SE), while irrigation sector C was oriented at 100 ◦ (close to E-W). The canopy system was
trained using vertical shoot positioning (VSP), with a bilateral, spur-pruner cordon located
0.7 m above the ground. Soil was left bare throughout the growing season. Irrigation was
provided by means of a single pipe with drippers every 1 m, whose nominal flow was
2 L/h. Disease control and nutrition vine management were conducted by Family Torres
winery following the organic wine grape production protocol of the ‘Costers del Segre’
Denomination of Origin (Catalonia, Spain). The area has a typical Mediterranean climate,
with dry and hot summers and mild winters. Total annual rainfall in 2020 and 2021 was
475 and 288 mm, respectively. The annual reference evapotranspiration (ET0) for each year
was 1071 and 1065 mm, respectively.
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Figure 1. Study site of the vineyard, showing in (a) a general overview of the location, in (b) the
vineyard with the three irrigation sectors (A, B and C), in (c) averaged seasonal Sentinel-2 fAPAR
of 2019 and in (d) a zonification map based on averaged 2019 fAPAR and location of representative
points for sensor installation. WSC corresponds to the zone within irrigation sector C subjected to
water stress cycles.

In addition, an area of 0.2 ha within irrigation sector C was used to evaluate the soil
water balance simulations obtained by the digital twin and to compare the simulated evap-
otranspiration and stem water potential with, respectively, the remote sensing estimations
of evapotranspiration and stem water potential measurements (Figure 1b). In this area,
water stress cycles (WSC) were conducted throughout both studied growing seasons. This
area contained two pure pixels of 20 m. The WSC consisted of cutting irrigation for short
periods of time, twice per campaign, until measured stem water potential (Ψstem) reached
values below −1.2 MPa and then recovering vine water status again.

During 2020, irrigation scheduling was conducted by the winegrower without using
the cloud-based irrigation decision support system described in Section 2.3. In that year,
data were only gathered and used for simulations and validations. During 2021, irrigation
scheduling was carried out through the automated irrigation DSS. The DSS assimilated in
near real time information of remotely sensed estimates of daily fiPAR and data from soil
moisture sensors and weather stations in order to calculate vine water requirements.
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2.2. Selection of the Location for Installing Sensors

Sentinel-2 fAPAR time series were analyzed during the 2019 growing season [39].
A more detailed explanation of the approach used to estimate fAPAR with Sentinel-2 is
explained later in the manuscript (Section 2.5). The averaged seasonal fAPAR of 2019
was used to classify different management zones within the vineyard based on vegetative
growth (Figure 1c). Three different zones corresponding to different canopy vigor levels
(Low, Medium and High) were identified using the k-means clustering tool (QGIS software,
version Hannover 3.16) (Figure 1d). In each irrigation sector, a representative measuring
point was selected taking into account the fAPAR classification map. The point was placed
in the zone with the highest percentage within each irrigation sector. This representative
point within each irrigation sector was visually selected to install the soil moisture sensors
at different positions. For each point, soil properties were also analyzed and soil moisture
release curves obtained by Hyprop 2 (METER Group, Pullman, WA, USA) (Table 1).

Table 1. Soil properties sampled in the vineyard.

Soil Properties in Points of Each Irrigation Sector 1 A B C WSC

Soil depth (m) 2.0 1.8 0.8 0.8
Silt 0.35 0.34 0.36 0.35
Clay 0.42 0.56 0.58 0.62
Sand 0.24 0.09 0.05 0.03
USDA Soil Classification Clay
Soil water content at field capacity (33 KPa) m3 m−3 0.22 0.26 0.29 0.28
Soil water content at wilting point (−1500 KPa) m3 m−3 0.11 0.13 0.15 0.14
Saturated hydraulic conductivity (mm/h) 1.3 1.3 1.3 1.3
Apparent bulk density (kg m−3) 1.25 1.4 1.37 1.41

Note: 1 Values correspond to averages for the soil layers 0–0.15 and 0.15–0.30 m depth.

Three soil moisture sensors (TEROS-10, METER Group, Pullman, WA, USA) were
installed in each representative point at 0.3 m depth at three different positions: below
the emitter, and at 0.25 m and 0.5 m from the emitter. An MTKD water meter (LabFerrer
S.L., Cervera, Lleida, Spain) was also installed in each point to measure the amount of
water applied and to monitor irrigation events. All sensors were connected to a ZL6
datalogger (METER Group, Pullman, WA, USA) via cables, and the data stored at a 15-min
frequency at the ZENTRA cloud platform in near real time. Meteorological data were
automatically gathered from the website of the Meteorological Service of Catalonia (SMC,
www.ruralcat.net/web/guest/agrometeo.estacions) corresponding to a weather station
(Les Borges Blanques) located 1.5 km from the vineyard.

2.3. IrriDesk® and Definition of the Irrigation Seasonal Plan

The automated irrigation decision support system (DSS) used in this study, so called
IrriDesk®, is open-access accessible for research purposes through a non-commercial ver-
sion and also commercially available to any grower through an external company. IrriDesk®

(www.irridesk.com) is a cloud-hosted platform developed under the paradigm of digital
twin, which on a daily basis, sends updated prescriptions to irrigation controllers, following
the integration of different data sources such as local sensors, meteorological and remote
sensing data. IrriDesk® is an evolution of IRRIX, which has previously been used in several
trials of sensor-based irrigation control [21,23,24]. In both cases, the underlying approach
for irrigation scheduling is a site-specific soil water balance (SWB) fine-tuned by sensors [22].
In this approach, irrigation prescriptions for each management zone are calculated once a
day, based on an SWB model, in mm/day, and are sent machine-to-machine to the irrigation
controller after conversion to minutes of irrigation per irrigation event, considering the
properties of the irrigation system and the programmed irrigation frequency.

A relevant feature of IrriDesk® is that irrigation scheduling is guided by a seasonal
plan, which allows the application of more elaborate strategies, such as supplemental

www.ruralcat.net/web/guest/agrometeo.estacions
www.irridesk.com
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irrigation and RDI for managing irrigation with limiting water allocations. The seasonal
plan specifies, for each day, a range of acceptable accumulated irrigation since the start of
the season until that day. Then, if the measured irrigation approaches the borders of that
range (maximum and minimum), the irrigation prescriptions do not respond to sensors but
are calculated to keep the accumulated irrigation within the range. The target soil moisture
is also specified in the seasonal plan and can be set at different values along the season.
Additionally, intended water unbalances can be specified at precise periods of the season
in terms of the ratio between the irrigation to prescribe and the irrigation resulting from
the SWB model.

In the trials reported in this study, the seasonal plan was elaborated through SWB
simulations, using as inputs the agronomical description of the crop, soil and irrigation
setup, the historical weather at the site in the previous 10 years, the range of annual
irrigation applied in previous years and the curve of intended water unbalance agreed
between researchers and farmer. In the studied vineyard, the upper and lower applied
water thresholds were, respectively, set at 150 and 230 mm (Figure 2c). Since the aim was to
adopt an RDI strategy, water status levels were defined as a multiplier of irrigation needs
or intended water deviations from the SWB (Figure 2a). For instance, in this study the
multiplier was set to 0.6 during pre-veraison because the winegrower wanted to stress vines
at this phenological stage. Immediately before veraison, the multiplier was set to 1.5 in
order to recover vine water status. During post-veraison, it progressively decreased from
1.0 to 0.7. During post-harvest, water status was recovered again by defining a threshold of
1.0. Based on these values, the relative soil water content upper and lower limits were also
adjusted throughout the growing season (Figure 2b). All these curves were predefined to
determine admissible bounds for the irrigation scheduling and to ensure that irrigation
inputs above those available for the campaign were not used.

At the beginning of the growing season, the DSS considered an expected seasonal
curve of daily fIPARd based on the values measured the previous year. As the season
progressed, new observed values were obtained from remote sensing. The new values of
estimated fIPARd at the observation day were assimilated as the weighted average between
observed and expected values, where the weights were set at 0.9 and 0.1, respectively.
The expected values for the remaining part of the season were also modified. In general,
the expected fIPARd values were re-scaled to fit the new value with the expected value.
However, in early and late stages of the growing season, when fIPARd was expected to
undergo rapid variations with either shooting or leaf fall, the time axis was modified to fit
the new with the expected value.

With the configuration set in these trials, the daily irrigation dose (did) (mm/day)
were calculated as:

did = iwu∗(ET0∗ (fKx ∗ fIPARd + Ke )− effRain) + SPcorrection (1)

where iwu is the intended water unbalance specified in the seasonal plan, ET0 is the refer-
ence evapotranspiration measured the previous day at a nearby weather station (mm/day),
fKx is an empirically adjusted coefficient from feedback by soil moisture sensors [22],
fIPARd is the expected fIPARd for that day (%), obtained from S2 fAPAR and upscaled
on a daily time step with Oyarzun’s model, Ke is the coefficient for soil evaporation [3]
calculated by the model, effRain is the effective rain of the previous day (mm), obtained
from pluviometer measurements and recalculated by the model, and SPcorrection is the
required addition or subtraction of irrigation to keep the measurements within the range
specified in the seasonal plan.
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Figure 2. Definition of the seasonal plan parameters configured in the irrigation decision support
system (DSS). The plan specifies: (a) intentional soil water balance deviation, multiplier of water needs;
(b) thresholds defining the range of crop water comfort in terms of relative soil water content recorded
by sensors (wilting point = 0, field capacity = 1); (c) range of cumulative irrigation thresholds, mm.

In addition to scheduling irrigation, the digital twin behind IrriDesk® models the
different variables of the soil water balance. The SWB model is based on the rationale
of AquaCrop [55] plus specific adaptations to deal with discontinuous canopies and drip
irrigation. For instance, it deals with daily fIPAR and soil water content is obtained
by individually simulating nine compartments spatially distributed throughout the tree
spacing (three blocks with three soil profile layers in depth). The simulated SWB variables
were used to calculate the Crop Water Stress Index (CWSI) as one minus the ratio between
actual and potential transpiration rate (1 − Ta/Tp) [56].

2.4. Field Measurements

Ψstem was measured in each representative point throughout the 2020 and 2021 grow-
ing seasons every two weeks at noon with a pressure chamber (model 3005; Soil Moisture
Equipment Corp. Santa Barbara, CA, USA) following the protocol described by McCutchan
and Shackel [57]. Shaded leaves were wrapped in plastic bags covered with aluminum foil
at least one hour before Ψstem measurements. All measurements were taken in less than
one hour with three leaves at each point, one in each single vine.

On the other hand, fIPAR was measured from 11:00 to 13:00 h (GMT+2) using a
portable ceptometer (AccuPAR Linear PAR, Decagon Devices, Inc., Pullman, WA, USA)
on the same dates as Ψstem. Incident PAR above and below vines was measured in five
vines in a row per point. Measurements were conducted in horizontal position at ground
level and perpendicular to vine row. In order to cover vine spacing, five equally spaced
measurements were determined in an open space adjacent to each vine. Vine structural
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parameters such as height and canopy width perpendicular to the row were also measured
on each occasion. These data were used to calculate fIPARd through the hourly Oyarzun
model [54] and further used to validate remote sensing fAPAR. The canopy porosity
parameter of Oyarzun’s model was adjusted so that the instantaneous measured value of
fIPAR agreed with the simulated value.

2.5. Satellite Imagery and Biophysical Variables

Multispectral instruments on Sentinel-2A and Sentinel-2B satellites provide high
resolution multispectral shortwave observations of Earth’s surface with a geometric revisit
time at the equator of 5 days [58]. S2 overpass through the study site was between 10:36
and 10:50 GTM. S2 images at level-2A were downloaded for the study site from Copernicus
Open Access hub (https://scihub.copernicus.eu/ (last accessed on 15 November 2022))
using the Sentinelsat library (https://sentinelsat.readthedocs.io/en/stable/ (last accessed
on 15 November 2022)). Biophysical variables of the vegetation were estimated from the
S2 biophysical processor [39] available in the SNAP software v8.0 (https://step.esa.int/
main/download/snap-download/, last accessed on 11 December 2021). This processor
relies on building a randomized dataset of vegetation biophysical variables from which
reflectance simulations by the radiative transfer models (RTM) PROSPECT and SAIL are
produced [59]. Therefore, instantaneous values of biophysical variables were obtained at
the time of the satellite overpass for those days under clear sky conditions. In total, 23 and
22 S2 images were processed from April to October for 2020 and 2021, respectively. fAPAR
was empirically regressed with both instantaneous and daily modeled fiPAR (fIPARd).
Then, each time a S2 image was available, fAPAR of each irrigation sector was converted
to fIPARd and assimilated into the digital twin to calculate grapevine water requirements
(Equation (1)). In addition, the leaf area index (LAI) and the fractional vegetation cover
(FVC) were used to derive actual evapotranspiration with the TSEB-PT model.

2.6. Actual and Potential Evapotranspiration Using Copernicus-Based Inputs

Sentinel-3A and Sentinel-3B images from the sea and land surface radiometer (SLSTR)
were downloaded to obtain LST at 1 km resolution. In total, 99 and 111 cloud-free S3
images were processed in 2020 and 2021 for the same period mentioned for S2. The
DMS approach [49] was used, combining S2 and S3 images to sharpen 1 km coarse spa-
tial resolution LST from S3 to 20 m. The methodology used is described by Guzinski
et al. [50]. Meteorological inputs were obtained from the European Center of Medium
Weather Forecast (ECMWF) ERA5 reanalysis dataset [60]. This dataset has a 30 km
grid and was used to run the TSEB-PT model. For the current study, the variables
used were air temperature at 2 m, dew point temperature at 2 m, wind speed at 100 m,
surface pressure and total column water vapor (TCWV). In addition, aerosol optical
thickness (AOT) at 550 m was obtained from the Copernicus Atmosphere Monitoring
Service (CAMS) since it is not included in ERA5. Two ancillary sources of data were
also used: land cover maps from the Copernicus Climate Change Service (C3S) (https:
//cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview, last
accessed on 10 October 2021) and the digital elevation model (DEM) of the shuttle radar
topography mission (SRTM). In the study site, the C3S landcover map, produced at 300 m
resolution, did not vary from one year to another, and so the one from 2017 was used for
both years. A look-up table of different parameters associated to each crop class was set up
in accordance with Guzinski et al. [50].

The TSEB-PT modeling approach [61] estimates the energy fluxes of both soil and
canopy, separately based on a single bulk LST measurement that initially assumes a maxi-
mum potential rate of transpiration. This first guess, which usually starts with an alpha
coefficient of 1.26, is sequentially reduced until realistic fluxes are obtained [62]. This
model has been used to derive land-surface energy fluxes using Copernicus-based inputs
(TSEB-PTS2+S3) [50–53]. Further details on the TSEB model scheme can be found at the

https://scihub.copernicus.eu/
https://sentinelsat.readthedocs.io/en/stable/
https://step.esa.int/main/download/snap-download/
https://step.esa.int/main/download/snap-download/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview
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source code (https://github.com/hectornieto/pyTSEB., last accessed on 22 April 2022) and
the original formulation of the model [42].

On the other hand, potential evapotranspiration (ETp), defined as the water usage (or
evapotranspiration rate) of a well-watered crop was computed from the Penman–Monteith
model, assuming a maximum stomatal conductance [63,64]. ETp was therefore computed
using S2 LAI estimations and the same meteorological inputs as in the TSEB-PTS2+S3. For
both cases, instantaneous energy fluxes at the satellite overpass were upscaled to daily
water fluxes, expressed in units of mm/day, by multiplying the instantaneous ratio of latent
heat fluxes over solar irradiance by the average daily solar irradiance [65]. Gap filling was
applied following the protocol described by Jofre-Cekalović et al. [53]. Both TSEB-PTS2+S3
and the Penman–Monteith estimated ET were intercompared with that modelled through
the digital twin by computing their correlation as well as their root mean square deviation

(RMSD =

√
∑ (xi−yi)

2

N ). The RMSD is analogous to the root mean square error (RMSE), but
denotes deviations between two independent estimates (x and y) rather than the error from
one estimate to a reference measurement.

3. Results and Discussion
3.1. Sentinel-2 fAPAR

S2 fAPAR was compared with fIPAR under the hypothesis that for green canopies the
latter is a good proxy of fAPAR. This assumption is valid mostly during the non-senescence
periods of the growing season due to the strong absorption capacity in this spectral domain
of the photosynthetic pigments [66] and the usually small background reflectivities for
well-developed canopies [40,41,67]. A comparison of instantaneous S2 fAPAR with in
situ measurements of fIPAR at the same time as the satellite overpassed showed an R2

of 0.61 and 0.91 for irrigation sectors with 140◦ and 100◦ row orientation, respectively
(Figure 3a). These coefficients of determination are quite promising and suggest the
suitability of using S2 fAPAR in discontinuous canopies, particularly in conditions without
cover crop in the interrow. On the other hand, the existence of cover crop in the interrow
could be a problem when estimating the biophysical parameters of the canopy, especially
with the spatial resolutions provided by the current open-source satellites. The RMSD,
which ranged from 0.09 to 0.10 indicated that this relationship did not significantly vary
between row orientations. This deviation, however, may be explained by soil background
reflectance and diffuse illumination variations due to multiscattering or also due to the
poor representativeness of five vines within a 20 m pixel. Wojnowski et al. [68] reported
that fIPAR is typically 6–9% higher than fAPAR. Despite this, the deviation obtained is
insignificant for the purposes of this study.
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Since most growth simulation models, including the one used in this study, have a
daily time step, instantaneous S2 fAPAR was regressed with the modelled daily fIPAR
(fIPARd) obtained from Oyarzun’s model. This regression showed differences between row
orientation (Figure 3b). In both irrigation sectors, fIPARd tended to be higher than instanta-
neous S2 fAPAR. In addition, irrigation sectors with rows oriented closer to a N-S direction
(closer to 180◦) had a higher fIPARd than others. As mentioned, the modelled fiPARd was
computed with Oyarzun’s modelling approach [54], which is based on geometric relation-
ships between the stand structure, the sun’s position, and the length of the shadow cast by
the trees. Some studies have indicated that the instantaneous fAPAR value at 10:00 solar
time is very close to the daily integrated value under clear sky conditions [69]. However, it
was found in this study that, particularly in discontinuous woody crops planted in rows
and sometimes with different training systems, this is not always the case and that it varies
with row orientation. Figure 4 shows the diurnal trends of hourly modelled fIPAR in each
irrigation sector and the estimated instantaneous S2 fAPAR for 2020 and 2021. Each line
corresponds to a different date. Results indicate that irrigation sectors A and B (140◦ row
orientation) tend to intercept more light throughout the day than C. As rows of A and B
are closest to an N-S orientation, the model follows an expected hourly symmetrical path
with respect to near solar noon with higher fractional interception in the early morning and
late afternoon, and a minimum at approximately midday. On the other hand, the fIPAR of
irrigation sector C (100◦ row orientation) was more constant throughout the day, except for
early morning and late afternoon. The S2 satellite overpass, and therefore fAPAR estimates,
coincide with the minimum daily values of fIPAR for rows oriented at 140◦ (Figure 4a,b).
The same agreement was observed for irrigation sector C in 2020 (Figure 4c). However, it
seems that for irrigation sector C in 2021 the S2 fAPAR was slightly lower in comparison to
the modelled fIPAR at the time of satellite overpass. A possible explanation, which needs
to be corroborated in further studies, may be related to a higher soil background effect in
the rows oriented at 100◦ due to the vines having lower canopy vigor in 2021 than in 2020.
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The seasonal distribution of S2 fAPAR showed differences between growing seasons
(Figure 5a). Overall, fAPAR in 2020 was higher than in 2021. This is explained by a rainier
spring in 2020. In both years, fAPAR increased during the spring until reaching maximum
values in approximately mid-June. These maximum fAPAR values were 0.55 and 0.24 in
2020 and 2021, respectively. Consequently, a summer pruning was carried out at mid-June
which significantly reduced vegetative growth. Differences in fAPAR between irrigation
sectors were only observed just before summer pruning, with irrigation sector A having the
highest fAPAR. During 2021, instantaneous S2 fAPAR was converted to fIPARd using the
empirical regression obtained in Figure 3b and consequently assimilated in the digital twin
in order to calculate vine water requirements. Figure 5b shows the seasonal evolution of
estimated fIPARd. It can be observed that irrigation sectors A and B have a higher fIPARd
than C throughout both growing seasons. Spatio-temporal time series of S2 fAPAR also
illustrate these patterns during both growing seasons (Appendix A).
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the Oyarzun et al. [54] approach and equations from Figure 3b for each of the irrigation sectors (A, B
and C) and for the growing seasons 2020 and 2021. Arrows indicate summer pruning.

3.2. Performance of the Automated Decision Support System for Irrigation Scheduling

The performance of the DSS in terms of the automated scheduling of irrigation of
a vineyard during 2021 was compared with the traditional irrigation management that
the winegrower conducted in 2020. In the latter, the winegrower clearly applied different
amounts of water in each irrigation sector (Figure 6). The total amount of water applied
was 150, 183 and 238 mm in A, B and C, respectively. In contrast, the amounts of water
applied in 2021 were always between the maximum and minimum thresholds predefined
at the beginning of the growing season. The total amount of water applied in 2021 was
201, 235 and 213 mm for A, B and C, respectively. The spatial variability of this vineyard is
not particularly high, which explains why the differences in the amount of applied water
were insignificant.
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seasons 2020 and 2021. UL and LL correspond to upper and lower limits of water availability
pre-established by the end user at the beginning of the season and which act as thresholds.

Data recorded with soil moisture sensors located at different positions detected both
irrigation and precipitation events throughout the growing season (Figure 7). Irrigation
events were more noticeable and had a quicker response in soil moisture sensors located
at 0 and 25 cm from the emitter than those at 50 cm. Sensor-to-sensor variability has
been widely analyzed and can be attributed to the small volume of soil measured, sensor
sensitivity to local variations in soil properties or the spatial and dynamic heterogeneity
in wet bulbs around emitters [21,23,70–72]. Although some studies have recommended
installing sensors at different depths and positions, to install a large number of sensors
for commercially scheduled irrigation is very expensive. Domínguez-Niño et al. [72]
analyzed soil moisture positioning according to soil water dynamics and concluded that, in
the context of SWB-based automated irrigation scheduling fine-tuned with soil moisture
sensors, the recommended sensor locations can be a combination of sensors close to the
vertical of the dripper and other sensors midway between neighboring drippers, at 30 cm
depth. In our study, we positioned the soil moisture sensors following this recommendation.

It can be observed in the soil moisture data corresponding to 2020 that the winegrower
did not irrigate in any sector from fruit-set to veraison (Figure 7a,c,e). As a consequence,
soil moisture decreased. Irrigation events occurred again during post-veraison in order
to recover vine water status. Comparing this strategy with Ψstem values measured in
each irrigation sector, it can be observed that the winegrower was able to stress vines
during pre-veraison to Ψstem values of −1.1 MPa (Figure 8). However, although the vines
recovered slightly at veraison, the Ψstem values subsequently dropped again until harvest.
This suggests that despite applying large amounts of water during post-veraison, this was
nevertheless insufficient to recover vine water status until the end of the growing season. A
different irrigation strategy was conducted in 2021, following the seasonal plan predefined
and based on intentional water balance deviation and a range of cumulative irrigation
thresholds (Figure 2a). Soil moisture sensors indicated high soil moisture values for all
irrigation sectors at the beginning of the growing season due to spring precipitations and
the first irrigation events during May. These large amounts of applied irrigation water were
higher than the predefined cumulative irrigation thresholds, so irrigation was automatically
stopped for some dates (Figure 6). This fact also coincided with the lowest multiplier of
water needs (0.6) during fruit-set, which was maintained throughout the month of June.
Consequently, the seasonal plan defined in the DSS comprised starting vine water status
recovery from early July in order to reach veraison with vines transpiring at near potential
rates. Accordingly, the DSS started triggering irrigation again by the end of June. Irrigation
in sector C started, however, some days before A and B because soil water moisture in C
was lower. Despite these first irrigation events at the end of June, Ψstem values continued
falling for some days (Figure 8). An improvement in Ψstem was only observed in sector
B on one measurement day, but the values fell again on the next measurement day. The
minimum Ψstem value of −1.2 MPa for irrigation sectors A and B was reached on 8 July
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2021, while for irrigation sector C lower values were reached and lasted longer. This
can be explained as the result of the soil depth in C being lower and, therefore, also the
available soil water content explored by the rooting system. Because the relative soil water
content was below the pre-established thresholds only a few days before veraison, the DSS
automatically prescribed more water. It can be observed how, after these irrigation events,
the trend in daily minimum values of soil moisture increased a few days before veraison
in A and B but not as much in C (Figure 7b,d,f). It was at veraison, and after large water
irrigation amounts, that soil moisture in C reached values close to field capacity (Figure 7f).
Figure 9 also shows how Ψstem in A and B recovered earlier than in C at veraison. During
post-veraison, the irrigation strategy consisted of nearly meeting vine water requirements.
In contrast to 2020, Ψstem values remained constant at values between −0.8 and −1.0 MPa
until harvest.
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Figure 7. Seasonal trends of soil moisture measured by moisture sensors (TEROS-10) located at
different positions: below emitter (0 cm), 25 cm from the emitter (25 cm) and 50 cm from the emitter
(50 cm), all at 0.3 m depth, during the growing seasons 2020 (left) and 2021 (right) for irrigation
sectors A (a,b), B (c,d) and C (e,f). Θw corresponds with soil moisture, while FC and WP correspond
to field capacity and wilting point, respectively.

Overall, this study demonstrates the feasibility of scheduling irrigation through an
automated SWB approach fine-tuned with capacitance-type soil moisture sensors and the
assimilation of remote sensing estimates of biophysical parameters. Here, we observed
how the adaptive response allowed spontaneous adjustments in order to stress vines to a
certain level at specific growing stages.
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Figure 9. Seasonal variation of simulations of different soil water balance components throughout the
growing season 2020 (left) and 2021 (right) for irrigation sectors A (a,b), B (c,d) and C (e,f). did: daily
irrigation dose, ppt: precipitation; ET0: reference evapotranspiration; Tp: potential transpiration;
Ta: actual transpiration; Es: soil evaporation; Drain: drainage.

3.3. Simulations of the Water Balance Variables through the Digital Twin

Table 2 shows a summary of the total cumulative values of modelled evapotranspira-
tion, water use efficiency and water stress. Rainfall in 2020 was greater than in 2021. As
already seen in the fAPAR values shown in Figure 5, this caused greater vine vegetative
growth and, consequently, greater vine water demand. For this reason, both ETp and ETa
values of 2020 were higher than in 2021. With regard to the (rain + irrigation)/ETp ratio,
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vines received slightly less water in relation to its needs in 2020, when irrigation was carried
out at the farmer’s discretion. In 2021, irrigation sector B received the highest percentage of
water applied in relation to its needs, which may explain the higher Ψstem values observed
in some specific moments. Except for irrigation sector C, the ETa/ETp ratio was lower in
2020 than in 2021, suggesting that vines were more stressed in the second year. Figure 9
shows the simulations of the SWB variables in each irrigation sector throughout the 2020
and 2021 growing seasons. Potential transpiration (Tp) was higher in 2020 than in 2021.
Actual transpiration (Ta) was similar to Tp until late June, but once RDI was adopted Ta
began to fall below Tp. During this period, Ta was approximately 49% and 45% lower
than Tp for 2020 and 2021, respectively. In 2021, irrigation sector C was more stressed than
sectors A and B, with cumulative Ta approximately 64% lower than Tp. This concurs with
the lowest Ψstem observed during pre-veraison. After each precipitation event, a peak can
be observed corresponding to drainage and soil evaporation. Soil evaporation peaks after
each irrigation event can also be observed. In total, the vineyard’s average soil evaporation
represented 41% and 54% of total ETa for 2020 and 2021, respectively (Table 2). Although
there was more rainfall in 2020, soil evaporation increased in 2021 because the number of
days with irrigation events was higher. These percentages of soil evaporation throughout
the growing season are not far from values reported in the literature, which vary from 22 to
59% ETa depending on the amount of rainfall and irrigation events [73–75].

Table 2. Summary of annual reference evapotranspiration (ET0), the soil water balance variables
(Rainfall, ETp and ETa), water use efficiency (R + IR/ETp and E/ETa) and water stress (ETa/ETp)
ratios for each irrigation sector during the 2020 and 2021 growing seasons. R, IR and E, respectively,
correspond to rainfall, irrigation and soil evaporation.

Year Irrig.
Sector Variables

ET0 (mm) R (mm) ETp (mm) ETa (mm) (R +
IR)/ETp

E/ETa ETa/ETp

2020
A

895 323
731.3 553.5 0.65 0.42 0.76

B 799.5 574.1 0.63 0.43 0.72
C 865.1 675.0 0.65 0.38 0.78

2021
A

902 207
605.7 502.8 0.67 0.49 0.83

B 611.5 526.4 0.72 0.49 0.86
C 646.9 455.6 0.65 0.65 0.70

3.4. Comparison of Digital Twin Simulations of ET with Values Estimated with Remote Sensing

In this study, we did not have the opportunity to install a flux tower or sap flow sensors
to validate the simulations of evapotranspiration or the plant water status made through
the digital twin in each of the irrigation sectors of the vineyard. Instead, we used stem
water potential (Ψstem) as an indicator of plant water status and compared ET simulations
with the values estimated through remote sensing using SEB modelling approaches.

The crop water stress index (CWSI) [56] was correlated with Ψstem (Figure 10). By
using the empirical equation, it is possible to obtain the thresholds of Ψstem for a CWSI
of zero and one, which, respectively, corresponded to −0.51 MPa and −2.3 MPa. These
thresholds seem reasonable and concur with those reported in similar studies [76].

A previous step to compare ET between different approaches was to discard the pos-
sibility of the use of meteorological data from different sources affecting ET estimations.
Figure 11a shows how the daily reference ET0 obtained from ERA5 correlated with that
obtained from the closest weather station to the vineyard. The RMSD was 0.54 mm/day,
thus ruling out the influence of meteorological data on the error metrics observed in ETa
and ETp estimates. The regression between modelled and estimated ETa using two years
of data showed an RMSD of 0.98 mm/day (Figure 11b) with a coefficient of regression of
0.45. The R2 and RMSD for ETp were 0.67 and 1.14 mm/day, respectively (Figure 11c).
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An ANOVA analysis was conducted to assess differences in the RMSD of both ETa and
ETp between years and irrigation sectors, but the results were not statistically significant.
Although numerous studies have demonstrated the potential of using TSEB-PT to mon-
itor ETa, very few have validated the TSEB-PT using Copernicus-based inputs. Studies
validated with flux towers concluded that the RMSE of instantaneous heat flux was ap-
proximately 30% in agricultural areas [50,53]. Guzinski et al. [51] also obtained an RMSE
of 0.96 mm/day when validation was performed for multiple crops together, including
irrigated and rainfed. In addition, it is known from previous studies that TSEB-PT is quite
sensitive to a correct determination of canopy structure/roughness [51,77]. Therefore, any
error in the parameters assigned in the lookup table associated to land cover maps or in
the estimates of biophysical variables could yield larger uncertainties in ETa estimates
with the TSEB-PTS2+S3 approach. Another source of bias could be the inability of the DMS
approach to capture precise values of LST when crops are under short-term water stress
and there is no evidence of a decrease in biomass [52,53]. Therefore, since the vineyard
of this study was under water stress for some periods, it cannot be ruled out that ETa
estimates with the TSEB-PTS2+S3 approach were overestimated for some dates in compar-
ison to the simulation with the SWB approach. This hypothesis is further validated in a
small part of the vineyard where short water stress cycles were adopted and vine water
status monitored throughout the growing season (Figure 12). Figure 11 also shows that
both remotely sensed ETa and ETp were underestimated for many dates. This could be
attributable to the different methodologies used to assimilate the biophysical parameters.
The remote sensing SEB approach uses instantaneous estimates of S2 LAI as an input in
order to iteratively derive fIPAR through the Campbell and Norman technique [78]. This is
then used to derive instantaneous energy fluxes, which are later upscaled to daily fluxes
considering the average daily solar irradiance [65]. In contrast, the SWB approach used
by the irrigation DSS assimilates fIPARd, which was derived from S2 fAPAR and upscaled
to a daily time step through Oyarzun’s model. Because this hypothesis is speculative,
further studies should be conducted in order to validate the simulations of the different
SWB parameters obtained through IrriDesk’s digital twin.
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Figure 11. Relationship between (a) observed and ERA5 reference evapotranspiration (ET0) calculated
in accordance with FAO-56, (b) actual evapotranspiration (ETa) simulated through the SWB digital
twin and modelled using the TSEB-PTS2+S3 approach with Copernicus-based inputs, and (c) potential
evapotranspiration (ETp) simulated through the SWB digital twin and modelled with Penman–
Monteith and Copernicus-based inputs. Data correspond to all irrigation sectors for 2020 and 2021.
Different colors represent irrigation sectors, while symbols correspond to different years.
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Figure 12. Comparison of the seasonal variation of (a) actual evapotranspiration obtained with
TSEB-PTS2+S3 and (b) potential evapotranspiration (ETp) obtained with Penman–Monteith, with the
simulations obtained with the digital twin, in an area within the vineyard’s irrigation sector C with
water stress cycles (WSC). ppt: precipitation, did: daily irrigation dose, SWP: stem water potential
(Ψstem), ETa: simulated actual evapotranspiration with the digital twin, ETa TSEB: modelled actual
evapotranspiration with TSEB-PTS2+S3, ETp: simulated potential evapotranspiration with the digital
twin, and ETp PM: modelled potential evapotranspiration with the Penman–Monteith approach.
Arrows indicate the periods when water stress occurred.
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3.5. Comparison of the Response of ET in Vines under Water Stress Cycles (WSC)

Seasonal variation in Ψstem shows the periods when water stress occurred, twice in
each growing season (Figure 12). Irrigation was stopped for short periods of time until
measured Ψstem reached severe water stress values. On each occasion, vine water status
was recovered again by applying large amounts of water. Minimum Ψstem values were
−1.46 and −1.60 MPa for 2020 and 2021, respectively. Both ETa and ETp followed the same
trend throughout both growing seasons, with higher rates in 2020 than in 2021 due to the
higher vegetative growth in the first year. The R2 and RMSD between the digital twin
simulations and remotely sensed estimates of ETp and ETa, were, respectively, 0.60 and
0.93 mm/day and 0.29 and 1.13 mm/day. For ETp, the regression seems reasonable and
the deviation was mostly due to an underestimation in remotely sensed ETp. The possible
reason for this has previously described in this paper. On the other hand, this analysis
confirms the hypothesis that the TSEB-PTS2+S3 tends to overestimate evapotranspiration
when water stress occurs for short periods of time. This can be observed in the periods
when Ψstem values were more negative. In those periods, while simulated ETa decreases,
the ETa TSEB-PTS2+S3 remains high with values close to ETp. The cause of this is based on
the inability of the DMS approach to capture the full range of surface temperatures [52].
Since sharpened LST was obtained from machine learning algorithms which relate S3 LST
with S2 shortwave bands at coarse resolutions, it is probable that differences in sharpened
LST can mainly be attributed to differences in vegetative growth variables, but not when
short-term water stress occurs and the amount of biomass is not reduced [53].

4. Conclusions and Perspective

This study tested the feasibility of scheduling irrigation through an automated soil
water balance (SWB) approach fine-tuned with capacitance-type soil moisture sensors
and pre-defined irrigation amount thresholds. Results show that estimates of grapevine
fAPAR from Sentinel-2 had a RMSD of 0.10 in comparison with in situ measurements of
instantaneous fIPAR, independently of row orientation. Modelled fIPARd was between
13% and 21% higher than instantaneous S2 fAPAR, and dependent on row orientation.
Vineyards with rows oriented close to 140◦ had a higher fIPARd than those oriented at 100◦.
This suggests that crop growth models that need a daily time step of light interception
as an input and intend to assimilate remote sensing estimates of biophysical variables
should consider that S2 fAPAR corresponds to instantaneous values. Therefore, models
such as Oyarzun’s can be a successful alternative to upscale from instantaneous to daytime
scale, and considering row orientation. Using the DSS in 2021, this study demonstrated
the feasibility of calculating vine water requirements and the automated scheduling of
irrigation by assimilating in near real time estimates of fIPARd.

The DSS also demonstrated its suitability to automatically carry out an RDI strategy by
applying different amounts of water in different irrigation sectors. Simulations of soil water
balance components through the digital twin seem to perform well. For instance, differences
in both simulated ETa and ETp were observed between years, attributable to higher vine
vegetative growth in 2020 than in 2021. In addition, simulated Ta decreased up to 49% in
comparison to Tp when water stress was adopted following an RDI strategy, and simulated
CWSI (as 1− Ta/Tp) was correlated with Ψstem. Simulations of ETa and ETp showed RMSD
values of 0.98 and 1.14 mm/day, respectively, when compared with estimations obtained
from remote sensing surface energy balance models. To obtain accurate spatio-temporal
estimations of crop water status in water stress conditions continues to be an enormous
challenge. Although this study demonstrates the capacity of the digital twin to obtain
accurate simulations of vine water status under different levels of water stress, and to
schedule the irrigation of individual irrigation sectors on this assumption, it is important
to highlight that these simulations were obtained using soil moisture sensor data from a
single representative vine. This study shows, once again, the current difficulty in estimating
and monitoring water stress in heterogeneous row crops using satellite remote sensing
approaches due to the lack of a high spatio-temporal resolution thermal sensor. Some
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studies have validated the TSEB-PTS2+S3 approach in multiple crops, obtaining an averaged
RMSE of 0.96 mm/day [51]. However, the water stress cycles experiment conducted in
this study shows that when vines were under short periods of water stress and there was
no evidence of a decrease in biomass, the disaggregation methodology used to downscale
land surface temperature (LST) was not able to estimate high values of LST and therefore
ETa was overestimated in comparison with the SWB-simulated ETa.
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