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Abstract: Soil characteristics, land management practices, and plant genotypes influence arbuscular
mycorrhizal fungi (AMF) communities, leading to the proliferation of AMF taxa with different growth
and nutritional outcomes in their hosts. However, the specific patterns driving these relationships are
still not well understood. This study aimed to (1) evaluate the influence of soil characteristics, land
use, and rootstock on AMF diversity and community structure and (2) assess the effect of those AMF
communities on grapevine growth and nutrition. Soil samples were collected from vineyard and
non-agricultural areas in Lisbon and Pegões, Portugal, and trap cultures established using Richter 110
and 1103 Paulsen rootstocks. After 3.5 months growth under greenhouse conditions, root-associated
AMF communities were assessed by amplicon metagenomic sequencing using AMF-specific primers.
Alpha diversity was only influenced by the soil type, while in β-diversity, an interaction was found
between the soil type and land use. Both diversity measures were positively correlated with foliar
K and negatively with leaf Mn and Mg. Notably, the concentrations of these nutrients were highly
correlated with the relative abundance of operational taxonomic units (OTUs) within the genera
Glomus, Rhizophagus, and Claroideoglomus. These results are valuable for supporting AMF selection
for improved plant nutrition based on varying soil types and land uses.

Keywords: Vineyard; Vitis vinifera; Glomeromycota; diversity; community composition; leaf nutrients

1. Introduction

Arbuscular mycorrhizal fungi (AMF) are key soil components essential for plant de-
velopment and ecosystem functioning [1,2]. It is estimated that they colonize the roots
of almost 80% of vascular plants, establishing one of the most ancient and widespread
symbioses on earth: the arbuscular mycorrhiza [3]. Host plants involved in this (usually)
mutualistic interaction benefit from enhanced water and nutrient acquisition as well as
increased tolerance to biotic and abiotic stresses such as pathogen attacks, soil salinity, metal
contamination, and water deficit [4,5]. Soil structure improved by AMF has also been docu-
mented, which is related to the synthesis of the glomalin glycoprotein and the formation
of an extensive mycelium network in the soil [3,6]. The latter also represents an attractive
habitat (mycorrhizosphere or hyphosphere) for several other beneficial microorganisms,
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with important soil functions such as nutrient cycling, organic matter decomposition, and
pathogen suppression [7–9].

Environmental conditions as well as fungal and plant genotypes are among the main
factors determining mycorrhizal function or performance [10]. Although the exact mecha-
nisms underlying plant response to this interaction are not fully understood, some studies
indicate that genetic polymorphism among plant varieties/species and differences in root
architecture, exudates, and the associated microbiome might have a strong influence on
it [10,11].

When it comes to fungi, the high functional diversity among AMF isolates/species [12–16]
has also been proven to influence colonization patterns [17,18] as well as P acquisition and
transfer capacity to the host plant [13,19]. As a result, different AMF genotypes can lead to
heterogenous effects on host performance. In general, diverse mycorrhizal communities
tend to promote higher benefits in terms of plant health and productivity [20–22], thus
determining plant competitiveness under different environmental conditions [14,23,24].
However, this topic remains controversial since, in some cases, AMF species competition
has been observed, with a consequent decrease in plant performance [25–32].

Although AMF are common in nearly every soil [33], in agricultural lands, conven-
tional management practices such as soil tillage, fertilization, and the use of pesticides neg-
atively affect mycorrhizal communities [34–40]. These practices, combined with low plant
diversity or monocropping, tend to decrease AMF abundance and diversity by promoting
fast-sporulating and generalist taxa with reduced symbiotic efficiency [36,38,39,41–43].
Given the relevance of balanced AMF communities for crop health and productivity [44],
it is critical to understand how different AMF communities influence plant growth and
nutrition, and if the lower AMF abundance and diversity commonly found in agricultural
soils is actually leading to suboptimal crop performance. This knowledge is essential to
support healthy soils and to develop sustainable soil management practices that harness
all the benefits that AMF communities can provide to crops.

Grapevine (Vitis vinifera L.) is one of the main monocultures cultivated across Europe,
with a planted area of 7.3 million ha [45]. In Portugal, grapevine is the second most planted
crop, with an area of 175,590 ha [46]. Despite being highly mycotrophic, conventional
agricultural practices in vineyard production systems can negatively affect mycorrhizal
communities [47]. For instance, the continuous application of Cu-based fungicides and
consequent Cu accumulation in vineyard soils decrease AMF species richness and mycor-
rhizal colonization [48,49], although AMF inoculation can partially mitigate those negative
effects [49,50]. However, information on how soil characteristics, land use intensity, and
rootstock genotypes influence grapevine AMF diversity is still scarce [48,51].

Therefore, this study aimed (1) to examine the effect of different factors such as
rootstock genotype (Richter 110 and 1103 Paulsen), soil type (collected in Lisbon and
Pegões, Portugal), and land use (vineyard and non-agricultural) on the diversity and
community structure of root associated AMF and (2) to assess the effect of those AMF
on grapevine growth and nutrition. The underlying hypotheses were that (1) different
rootstocks and soil types under distinct land uses generate different AMF community
assemblies and that (2) more diverse root-associated AMF communities lead to improved
grapevine growth and leaf nutrient concentrations.

2. Materials and Methods
2.1. Study Areas and Soil Sampling

In the present study, two locations in the viticultural regions of mainland Portugal
were selected: Tapada da Ajuda in the Lisbon wine region (hereinafter referred to as Lisbon)
and PORVID–Central Pole for the Conservation of Autochthonous Grapevine Variability in
Pegões, in the Peninsula de Setúbal region (hereinafter referred to as Pegões). According to
the Köppen–Geiger climate classification, both locations have a hot-summer Mediterranean
climate (Csa). Average temperature and annual precipitation correspond to 11.9–20.9 ◦C
and 680.4 mm in Lisbon [52] and 10.1–22.3 ◦C and 673.6 mm in Pegões [52]. In the spring
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of 2021, at sprouting time, three composite soil samples (~3 kg/sample) were collected in
each location (each one 20–30 m away from the others) at a depth of 20 cm (after removing
the litter) from two different land uses within each location: (1) vineyard soil (VS) from
inter-row spaces and (2) non-agricultural soil (NAS) from the surroundings of the vineyard
(at least 200 m far from the vineyard) (Supplementary Figure S1). According to the World
Reference Base for Soil Resources [53], soils from the sampled areas in Lisbon and Pegões
are classified as Hypereutric Vertic Cambisols and Arenosols, respectively.

Both in Lisbon and in Pegões, the sampled vineyards were planted with red-variety
grapevines grafted onto 1103 Paulsen rootstocks, conventionally managed and planted in
2016 and 1996, respectively. In Lisbon, the vineyard inter-row weed control was carried out
by regular mowing allowing the growth of a natural vegetation cover, while in Pegões, the
vineyard inter-row weed control included tillage and herbicide application (glyphosate).
In Lisbon, the vineyard was north–south-oriented on a sloping terrain, while in Pegões,
the vineyard was northeast–southwest-oriented, and the terrain was flat. In Lisbon, the
vegetation of the non-agricultural areas was characterized by pine and oak trees (Quercus
faginea Lam., Pinus pinea L., and Phillyrea latifolia L.) with dense undergrowth vegetation
formed by shrubs and herbaceous plants (e.g., Rhamnus alaternus L., Pistacia lentiscus L., and
Ruscus aculeatus L.). On the other hand, in Pegões, it was dominated by dispersed oak and
pine trees (Quercus suber L. and Pinus pinea L.) and continuous cover of herbaceous plants
(e.g., Ornithopus compressus L., Avena barbata Pott ex Link, Bromus sp., and Hordeum sp.).

The three soil samples collected per land use at each location were mixed and homoge-
nized at equal volumes. From each of these soils (Lisbon-NAS, Lisbon-VS, Pegões-NAS, and
Pegões-VS), a subsample was dried and sieved (fraction < 2 mm) to conduct soil chemical
analyses: pH and electric conductivity in a water suspension (1:2.5 m/V), cation exchange
capacity (extraction with ammonium acetate at 1 M); extractable P (Olsen method), total
N (Kjeldahl method), organic carbon (OC) by wet combustion (Sauerland method), and
macro- and micro-nutrients in available fraction (DTPA method), as in [30] (Table 1). Gen-
eral granulometry analysis was also performed to determine the percentage of coarse and
fine fractions.

Table 1. Physicochemical characteristics of the soils collected in vineyard (VS) and non-agricultural
(NAS) lands of Lisbon and Pegões, Portugal, and used in the greenhouse experiment.

Parameter
Lisbon Pegões

NAS VS NAS VS

Coarse soil fraction % (>2 mm) 34.2 34.4 8.7 10.7
Fine soil fraction % (<2 mm) 65.8 65.6 91.3 89.3
pH 7.9 7.5 5.4 6.9
Electric conductivity 1 150.10 137.00 28.15 36.89
Cation exchange capacity 2 54.4 60.2 3.1 3.6
Total organic carbon 3 27.78 17.57 10.98 4.72
Total N 3 2.36 1.33 0.46 0.30
Macronutrient concentration in
available fraction
P 4 18.61 42.9 4.34 14.99
Ca 3 16.1 13.9 9.4 9.8
Na 3 2.9 3.1 2.5 3.0
K 4 284.9 179.9 27.4 64.2
Mg 4 632.2 1229.0 26.1 36.5
Micronutrient concentration in
available fraction
Fe 4 59.12 132.87 106.42 56.57
Mn 4 29.41 45.89 1.52 2.40
Zn 4 14.39 5.1 2.30 3.34
Cu 4 4.00 6.97 0.02 13.98

1 Measured in µS cm−1; 2 cmol (+) kg−1; 3 g kg−1; 4 mg kg−1.
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The number of infective AMF propagules per gram of soil was determined by the
most probable number (MPN) method [54,55] using leeks (Alium porrum L.) as host plants.
For this, leek seeds were previously surface-disinfected and germinated in sterile sand (1 h
at 121 ◦C 1 atm pressure in the autoclave) under greenhouse conditions. Each fresh soil
sample (50 g) was diluted from 10−1 to 10−5 by mixing it with sterile sand. The substrate
obtained from each dilution was placed in germination trays (five pots per tray), and one
three-week-old leek seedling was planted per pot. Six months later, leek root systems were
collected and stained with Trypan blue [56,57]. The stained roots were observed under
a binocular stereomicroscope at 40× magnification, and the number of AMF-colonized
root systems per dilution factor and soil sample were assessed. Mycorrhizal propagule
concentration was then calculated according to the mathematical model described by [58].

Table 1 shows the characteristics of the four soils. Soils from Pegões had a smaller
coarse fraction compared to those of Lisbon. Furthermore, sand particles were predominant
within the fine fraction. On the other hand, the soils of Lisbon presented a larger coarse
fraction and higher clay content compared to the soils of Pegões, corresponding with
the clay-like and sandy textures previously described for Lisbon [59] and Pegões [30],
respectively. Electric conductivity, pH, CEC, OC concentration, and available P, K, N,
Mg, and Ca concentrations tended to be higher in Lisbon soils than in the ones of Pegões
(Table 1).

In Lisbon’s soils, the concentration of mycorrhizal infective propagules was 170 and
15 propagules g−1 in the NAS and the VS, respectively, and was markedly lower in Pegões’
soils, which had only 3 and 1.1 propagules g−1 in the VS and the NAS, respectively.

2.2. Grapevine Trap Culture Establishment

Grapevine trap cultures were established to study the characteristics of AMF commu-
nities from the different soils and to evaluate their effect in grapevine performance. Forty
non-rooted dormant vines of the red Aragonez variety grafted onto Richter 110 (R 110)
and 1103 Paulsen (1103 P) rootstocks were obtained from Viveiros Vitioeste (Bombarral,
Portugal). While both rootstocks are very vigorous, 1103 P has a better rooting response
than R 110 [60]. Yet, the latter has a resistance of up to 17% to active limestone, is extremely
sensitive to salinity and excess humidity, and is well adapted to poor and dry soils [61].

Before the experiment, to induce rooting, plants were washed with tap water and
planted into Styrofoam containers (65 × 35 × 16 cm) filled with sterile perlite. Plants
remained under greenhouse conditions for one month (temperatures 15–20 ◦C, natural
sunlight) and were watered daily. Every week, they were fertilized with half-strength
Hoagland and Arnon solution [62].

Rooted plants from both rootstocks (R 110 and 1103 P) with 4–5 leaves were then
transplanted into 1 L forest pot containers filled with the soils collected from the two
soil types (Pegões and Lisbon) and land uses (NAS and VS). Thus, eight experimental
treatments (2 rootstocks × 2 soil types × 2 land uses) were set up, with five biological
repetitions per treatment (Supplementary Figure S2). Plants remained 3.5 months under
greenhouse conditions (temperatures 15–25 ◦C, natural sunlight). They were watered daily
and fertilized weekly with a half-strength Hoagland and Arnon solution [62].

2.3. Growth, Nutrition, and Mycorrhizal Colonization Assessment in Grapevine Plants

At the end of the growing season, shoot length and root dry biomass were measured.
In addition, to determine foliar nutrient concentration, 3 g of leaves was collected per plant,
dried at 40 ◦C, ground, and analyzed as in [30]. To evaluate mycorrhizal colonization, 2 g of
fine roots were collected per plant. The root samples were stained with Trypan blue [56,57],
and root mycorrhizal colonization was estimated by the gridline intersect method [63].

2.4. Analysis of Mycorrhizal Community Characteristics

Root-associated AMF communities were analyzed following a molecular approach.
After 3.5 months of grapevine growth in the soils collected from the two locations and land
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uses, root samples were collected, washed with tap water, and immediately frozen in liquid
nitrogen. Roots of each experimental unit were ground in liquid nitrogen and stored at
−20 ◦C. The DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) was used to extract DNA
from the roots following the instructions of the manufacturer. The final DNA concentration
in all samples ranged between 20 and 50 ng µL−1, and samples with 200 ng of genomic DNA
were sent to Novogene Company (Cambridge, UK) for targeted amplicon sequencing based
on the partial ribosomal large subunit (LSU). Novogene performed PCR amplification of
the targeted regions using the barcoded-specific AMF primers FLR3 and FLR4 [64] as well
as the subsequent purification, equimolar pooling of the PCR products, and their ligation
to Illumina adapters. Libraries were sequenced in an Illumina NovaSeq 600 platform
to generate 250 bp paired-end raw reads. Appropriate quality-control procedures were
carried out at each step. The company also performed raw data cleaning (read merging,
filtering, and chimera removal using UCHIME algorithm) and OTU clustering at 97%
identity using Uparse software (Uparse v7.0.1090). Species annotation was performed
by BLAST with Blastall (version 2.2.25) and Unite version V8.2 database and was further
checked using MARJAMM [65]. Singletons were removed from the count table, and data
were normalized to 36216 sequences using ‘rrarefy’ function from the R package ‘vegan’
(version 2.6-4) [66]. The normalized OTU table was used to perform rarefaction analysis
(with ‘rarecurve’ function). Alpha diversity indices were calculated using ‘diversity’ and
‘specnumber’ functions and β-diversity through Bray–Curtis dissimilarity index using
‘vegdist’ function with ‘vegan’ package [66] in RStudio (version 2023.03.0+386).

Afterwards, Venn diagrams were constructed to study the shared and exclusive OTUs
present in the experimental treatments using Venny 2.1 tool [67], and the core mycorrhizal
community was identified using the following tool: https://bioinformatics.psb.ugent.be/
webtools/Venn/ (accessed on 3 July 2023). Linear discriminant analysis of effect size
(LEfSe) was performed to identify OTUs whose abundances differed significantly (p < 0.05)
between soil types, land uses, or rootstocks using the Microbiome Analyst tool version
2.0 [68] and setting the log LDA score cutoff at 2.

Co-occurrence network analysis was used to identify non-random interactions within
grapevine root AMF communities [69]. Six networks were created: two considering
each soil type (from Lisbon and Pegões), two considering the land use (VS and NAS),
and another two considering the rootstock (R 110 and 1103 P). In the networks, nodes
represent the different AMF OTUs and the edges the significant positive or negative
associations between OTUs. This connectivity study among mycorrhizal OTUs is indicative
of community complexity [70]. Co-occurrence network analyses were performed with the
‘cooccur’ package in R [71]. Visualization of the positive or negative co-occurrence of OTU
pairs was performed using the ‘visNetwork’ package (version 2.1.2) [72] in RStudio.

2.5. Statistical Analyses

Root biomass, shoot length, mycorrhizal colonization, and α-diversity indices were
compared by a three-way ANOVA, where soil type, rootstock, and land use were considered
as the main factors. Mean differences among the individual experimental treatments were
evaluated by a Duncan post hoc test. Since root mycorrhizal colonization had a significant
interaction between soil type and land use factors, a two-way ANOVA was conducted in
each soil type considering land use and rootstock effects.

The Spearman rank correlation test was used to study the relationship between root
mycorrhizal diversity indices and soil and plant parameters (soil chemical properties, shoot
and root biomass, mycorrhizal colonization, and leaf nutrient concentration). The same
test was also used to find significant correlations (p < 0.01) between individual OTUs and
leaf nutrient concentration. Data visualization was performed with ‘pheatmap’ package
(version 1.0.12) in RStudio.

The effect of soil type (Lisbon or Pegões), land use (VS or NAS), and rootstock (R 110
or 1103 P) on AMF community structure was analyzed with a PERMANOVA [73] based on
the Bray–Curtis distances using the ‘adonis’ function of the ‘vegan’ package [66] in Rstudio.

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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The significance of the factors and their interactions was assessed through comparison with
999 randomized data sets. A principal coordinate analysis (PCoA) was conducted based
on the Bray–Curtis dissimilarity matrix, also using the ‘vegan’ package. Visualization was
carried out using ‘ggplot2’ package version 3.4.2 [74] in RStudio.

On the other hand, a Mantel test was conducted to study the correlation between
Bray–Curtis distance matrix in root AMF communities and leaf nutrient content distance
matrix (based on Euclidean distances) with the ‘mantel’ function of the ‘vegan’ package [66].
Then, the ‘envfit’ function was used to find significant correlations between the mycorrhizal
community and individual leaf nutrients. Result visualization was carried out using the
‘ggplot2’ package [74] in RStudio.

3. Results
3.1. Soil Type and Land Use Effect on the Diversity of Culturable Mycorrhizal Communities

Three and a half months after grapevine trap culture growth in the four soils, the
AMF communities associated with grapevine roots were analyzed. Illumina sequenc-
ing yielded 1,268,181 reads after sequence filtering and cleaning, which were grouped
into 256 OTUs corresponding to the Glomeromycota phylum. The sampling effort was
considered sufficient according to the rarefaction curve (Supplementary Figure S3).

Alpha-diversity indices of root-associated AMF (OTU richness and Shannon index)
significantly differed among the soils from the two locations (Table 2), being higher in
Lisbon’ soils (Figure 1). No significant effect of the land use and the rootstock, or interactions
among them, were found (Table 2).

Table 2. p-values of the three-way ANOVA conducted for alpha diversity indices.

Factors/Effects OTU Richness Shannon Index

Rootstock 0.496 0.139
Soil type 0.007 <0.001
Land use 0.192 0.227

Rootstock × Soil type 0.515 0.685
Rootstock × Land use 0.347 0.994
Soil type × Land use 0.882 0.073

Rootstock × Soil type × Land use 0.267 0.658
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Figure 1. Alpha-diversity indices, i.e., OTU richness and Shannon index, in roots of Aragonez
vine plants grafted onto Richter 110 (R110) or 1103 P (1103 P) rootstocks grown in vineyard or
non-agricultural soils from Lisbon and Pegões. Bars indicate average values (n = 3 ± standard error).
The effect of the soil type (collected from Lisbon or Pegões locations) was significant for all the
three indices.
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The analysis of root mycorrhizal community diversity and soil parameters demon-
strated that OTU richness was positively correlated with soil OC and N concentrations and
Shannon index with pH, EC, OC, total N, K, Ca, and Zn concentrations (Supplementary
Table S1).

A core AMF community of 67 OTUs was identified in grapevine roots. The shared
OTUs among all experimental groups belonged mainly to uncultured Glomeromycota and
Glomeraceae taxa as well as to Rhizophagus, Glomus, and Funneliformis genera. According to
the Venn diagrams, the soils from the two locations, independently of land use or planted
rootstock, shared 191 OTUS (78.6% of the total number of OTUs) (Figure 2A), also belonging
to uncultured or undescribed members of Glomeromycota and Glomeraceae taxa as well as
to Glomus, Rhizophagus, Funneliformis, and Claroideglomus genera (Figures 2A and 3A). Most
differences between soil types corresponded to low-frequency genera (Figure 3B). Some
genera were restricted to one of the soil types, meaning they were only present in Lisbon
(36 OTUs) or Pegões (16 OTUs) (Figure 2A). For example, Racocetra and Entrophospora were
exclusively associated with plants grown in Lisbon’s soils.
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Figure 2. Venn diagrams representing shared and exclusive OTUs in grapevine roots according to
the (A) soil type (from Lisbon or Pegões), (B) land use, and (C) rootstock.

Regarding the land use, 215 OTUs were shared among VS and NAS (88.5% of the
OTUs), which corresponded to uncultured Glomeromycota, as well as Glomeraceae,
Claroideoglomeraceae, Gigasporaceae, and Paraglomeraceae families (Figure 2B). How-
ever, 5 OTUs were exclusive of VS (including uncultured Glomerales and Glomeromycota,
Entrophosohora, and Racocetra taxa) and 23 exclusive of the NAS (including uncultured or
undescribed Glomeromycota taxa and Ambispora, Gigaspora, Claroideoglomus, Scutellospora,
and Dominikia genera) (Figures 2B and 3A,B).

Richter 110 and 1103 P rootstocks shared 204 OTUs (84%) and had 19 and 20 exclusive
OTUs, respectively (Figure 2C). In the first rootstock, the exclusive OTUs belonged to
Claroideoglomus, Entrophospora, Funneliformis, and Glomus genera as well as to uncultured
Glomeromycota taxa. In 1103 P, three exclusive OTUs also belonged to Claroideoglomus,
Racocetra, Rhizophagus, Dominikia, and Glomus genera and to uncultured Glomeromycota
taxa (Figures 2C and 3A,B).
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Figure 3. (A) Arbuscular mycorrhizal fungal community composition in roots of Aragonez vine
plants grafted onto Richter 110 (R110) or 1103 P (1103 P) rootstocks grown in vineyard (VS) or
non-agricultural (NAS) soils from Lisbon and Pegões. (B) Frequencies of low-abundant (less than 5%)
mycorrhizal fungal genera.

Linear discriminant analysis of effect size (LEfSe) identified 49 OTUs that were sig-
nificantly enriched in grapevine roots grown in Lisbon’s soil and 17 that were enriched in
Pegões soils (Figure S4). Most of the OTUs whose relative abundance was significantly
higher in Lisbon’s soils belonged to undescribed Glomeromycota taxa, but there was one
OTU belonging to Claroideoglomus genus, one to Septoglomus genus, two to Funneliformis
genus, fifteen to Glomus genus, and five to Rhizophagus genus. In Pegões soils, besides the
undescribed Glomeromycota taxa, three OTUs from Glomus genus, three from Rhizophagus
genus, and one OTU from Paraglomus genus were identified as biomarkers for that soil
(Figure S4, Supplementary Table S2). The LEfSe analysis did not find OTUs that could
discriminate between land uses or rootstocks.

Community composition and structure was studied by β-diversity, which was calcu-
lated from Bray–Curtis distances. The PERMANOVA test showed a significant interaction
between the land use and soil type, while the rootstock factor lacked significant effect
(p = 0.224) (Table 3). Therefore, this factor was not included in the PCoA analysis. This
analysis showed a marked separation between root-associated mycorrhizal communities
of plants grown in Lisbon and Pegões soils (Figure 4). Moreover, in Lisbon’s soils, AMF
communities were separated according to the land use, but this was not the case for the
ones of Pegões soils (Figure 4).

Table 3. Results of PERMANOVA test for β-diversity calculated from Bray–Curtis distances in
mycorrhizal communities among rootstocks, land uses, and soil types.

Factor/Effect F p-Value

Rootstock 1.3517 0.224
Land use 5.7826 0.001
Soil type 7.9101 0.001

Rootstock × Land use 1.7479 0.121
Rootstock × Soil type 0.9196 0.487
Land use × Soil type 6.4062 0.001

Rootstock × Land use × Soil type 1.3307 0.246
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Figure 4. Principal coordinate analysis conducted with Bray–Curtis distances of root-associated
mycorrhizal communities from Lisbon’s and Pegões’ non-agricultural soils (NAS) and vineyard
soils (VS).

In the co-occurrence network analysis, we identified the OTU pairs that co-occurred
more or less often (positive and negative co-occurrence) than would be expected if randomly
distributed. In roots of plants grown in Pegões soils, there were 22% more statistically
significant connections among OTUs than in the ones grown in Lisbon soils. Furthermore,
in Lisbon soils, we found that 356 (56%) of the significant connections were positive, while
in Pegões soils, this number was much higher, with 725 associations (92% of the total
number) (Table 4, Supplementary Figure S5).

Table 4. Degree of connection of grapevine root-associated arbuscular mycorrhizal fungal com-
munities in Lisbon and Pegões, non-agricultural soil and vineyard soil, and Richter 110 and
1103 Paulsen rootstocks.

Experimental Groups Positive
Connections

Negative
Connections

Total Significant
Connections

Total Analyzed
Pairs

Percentage of
Non-Random

Soil type
Lisbon 345 273 618 21,000 2.9
Pegões 725 67 792 16,735 4.7

Land use
Vineyard soil 725 67 792 16,735 4.7
Non-agricultural soil 777 311 1088 21,114 5.2

Rootstock
Richter 110 828 78 906 19,387 4.7
1103 Paulsen 1024 213 1237 18,011 6.9

When AMF associations were studied according to the land use, 22% more significant
connections among mycorrhizal OTUs were found in roots grown in the NAS than in
the VS (Table 4, Supplementary Figure S5). Positive connections were more prevalent
than negative ones in both cases, with positive connections accounting for 92% of total
connections in roots grown in VS and 71% in those grown in NAS, respectively (Table 4,
Supplementary Figure S5). Concerning rootstocks, 1103 P had 27% more connections
among AMF OTUs than R 110, most of them being positive (83% and 91%, respectively)
(Table 4, Supplementary Figure S5).
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3.2. Effect of Different AMF Communities in the Growth and Nutrition of Grapevine Plants

Three and half months after grapevine growth in the four different soils, their growth,
root mycorrhizal colonization rate, and leaf nutrient content were analyzed (Supplementary
Table S3). Growth of Aragonez grapevine plants grafted onto R 110 or 1103 P rootstocks
was not significantly affected by the different soil types and land uses (Table 5). However, a
significant effect of rootstock factor was found in root mycorrhizal colonization percentage
(p = 0.01), with higher values found in 1103 P rootstock roots (72 ± 4.1%) than in R110 roots
(61 ± 1.9%) (Table 5, Figure 5). In addition, a significant interaction was also found in root
mycorrhizal colonization percentage between soil type and land use factors (Table 5). In
Pegões, plants grown in the VS had higher colonization percentage than the ones grown in
the NAS, but in Lisbon, the land use did not have a significant effect (Figure 5).

Table 5. p-values of the three-way ANOVA test conducted to assess of the effects of soil type, land
use, and rootstock on grapevine shoot length, root biomass, and root mycorrhizal colonization.

Factors/Effect Shoot Length Root Biomass Mycorrhizal
Colonization

Soil type 0.351 0.708 0.716
Rootstock 0.635 0.884 0.012
Land use 0.903 0.675 0.129
Soil type × Rootstock 0.288 0.351 0.852
Soil type × Land use 0.052 0.123 0.028
Rootstock × Land use 0.604 0.382 0.241
Soil type × Rootstock × Land use 0.279 0.075 0.620
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Figure 5. Mycorrhizal colonization (%) in Aragonez variety grapevines grafted onto Richter 110
(R110) or 1103 Paulsen (1103 P) rootstocks grown in vineyard or non-agricultural soils from Lisbon
and Pegões. Bars indicate average values ± standard error (n = 5). Above each location, the results of
the two-way ANOVA for land use and rootstock effects and their interaction are shown. Asterisks
indicate significant effect, and “ns” indicates non-significant effect at p = 0.05. Different letters indicate
significant differences according to Duncan post hoc test conducted to compare experimental groups
within each soil type.
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Plant growth parameters and root mycorrhizal colonization percentage were not
correlated with α-diversity indices (Figure 6). However, the two α-diversity indices
were negatively correlated with leaf Mn nutrient concentration (OTU richness: Spearman
rho = −0.432, p = 0.035; Shannon index: Spearman rho = −0.650, p = 0.001). Furthermore,
Shannon index was negatively correlated with leaf Mg (Spearman rho = −0.650) and
positively with K concentrations (Spearman’s rho = 0.666), with all p-values below 0.01
(Figure 6).
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Accordingly, when the correlations between the relative abundance of each OTU in the
roots and leaf nutrient concentrations were studied, foliar Mn, K, and Mg also stood out as
having the highest number of significant correlations with AMF OTUs, all at a significance
level of p = 0.01 (Supplementary Figure S6). In the case of leaf Mn and Mg concentrations,
significant correlations were mostly negative (80% and 96%, respectively), while for K
concentrations, they were mainly positive (76%). Notably, the relative abundance of
40 OTUs (17% of the total OTUs) displayed simultaneous negative correlations with Mn
and Mg leaf concentrations while exhibiting a positive correlation with K concentration.
Those taxa corresponded to uncultured Glomeromycota and Glomerales taxa as well as to
Glomus, Rhizophagus, and Claroideoglomus genera (Supplementary Figure S6).

In the case of leaf Ca, Na, and P concentrations, the trend was not as clear. Leaf
Ca concentration was positively correlated with an uncultured Glomeromycota OTU
and negatively correlated with two OTUs of the genus Scutellospora and with uncultured
Glomeromycota taxa. Foliar Na concentration was positively correlated with eight OTUs
(belonging to uncultured Glomeromycota taxa, Rhizophagus, and Glomus genera) but nega-
tively correlated with two OTUs belonging to uncultured Glomeromycota taxon and to
Claroideoglomus genus. Foliar P concentration was positively correlated with three OTUs
corresponding to uncultured Glomeromycota and Rhizophagus taxa and negatively corre-
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lated with OTU 286 (Glomus sp.) (Supplementary Figure S6). Leaf N concentration was
not correlated with the abundance of any root AMF OTU. Concerning micronutrients,
two OTUs belonging to undescribed Glomeromycota taxa were negatively correlated with
leaf Fe concentration, but Zn and Cu concentrations were not correlated with the relative
abundance of any OTU.

On the other hand, the Mantel test conducted to study the correlation between Bray–
Curtis distance matrix of root AMF communities and leaf nutrient dissimilarity matrix
indicated a significant correlation (p = 0.0017) between them (Figure 7). Particularly, Bray–
Curtis distance matrix showed significant and positive correlations with leaf Ca, Mg, K, and
Mn concentrations, with Mantel statistic r of 0.2785, 0.4285, 0.4916, and 0.5277, respectively,
and p-values of 0.035, 0.006, 0.002, and 0.001, respectively.
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4. Discussion
4.1. Land Use, Soil Type, and Rootstock Effects on Culturable AMF Communities

In this study, where the effects of land use, soil type, and rootstock were studied in
grapevine root AMF communities, we found a prevalence of the Glomeraceae family in the
roots of all experimental treatments, with prominent representation from genera such as
Rhizophagus, Glomus, and Funneliformis. This finding is consistent with the results obtained
for most global ecosystems [75], including vineyards [76,77]. In fact, in both VS from
Pegões and Lisbon, OTUs of the genera Rhizophagus and Glomus were dominant. According
to their life history strategy, species within these genera are commonly classified as r
strategists, i.e., rapid colonizers with abundant sporulation [78] and fast reestablishment
of their mycelium following disturbance [79], which gives them a competitive advantage
in agricultural environments under conventional practices. Species from those genera are
commonly reported in vine-growing areas, in particular Rhizophagus spp., Funneliformis
mosseae, F. geosporum, and Glomus fasciculatum [37,41,59,77,80,81]. In our study, we also
found OTUs from Claroideoglomeraceae and Acaulosporaceae families, which is consistent
with the results reported in the aforementioned studies. Additionally, we identified taxa
from Paraglomus and Racocetra genera, which seems to be more controversial, as they have
been reported as absent in some vineyards while present in others [37,77,81,82].

Contrastingly, some other taxa seem to be more specific to particular environments.
For instance, some OTUs within the genera Ambispora, Gigaspora, and Scutellospora were
exclusive of Pegões NAS, suggesting a preference for non-disturbed, sandy, and low-fertility
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soils. This was confirmed by [83], which found that Gigasporaceae family taxa tend to be
predominant in sandy soils with low levels of humidity, organic carbon (OC), and nutrients.
These species are usually K strategists and have high extraradical hyphal production (i.e.,
they are edaphophilic species) [70,84] providing their hosts with competitive attributes
under limiting nutrient conditions [83].

The study of diversity indices revealed that α-diversity was solely influenced by the
soil type. LEfSe analysis identified 49 OTUs with significantly higher relative abundance
in plant roots grown in Lisbon’s soils and 17 showing significantly higher abundance
in plant roots from Pegões. In addition, 36 OTUs were exclusive to plant roots grown
in Lisbon’s soils and 16 to plant roots grown in Pegões soils. The observed differences
between the two soils may be attributed to their distinct physico-chemical characteristics.
We disclosed significant positive correlations between Shannon index and several soil
parameters, including pH, EC, OC, total N, and K, Ca, and Zn concentrations in the
available fraction, with the values of these parameters being markedly higher in Lisbon’s
soils. Although high soil nutrient concentrations have been associated with reduced AMF
diversity and decreased mycorrhizal activity [19,85–88], the more favorable soil structure
of Lisbon’s soils may have contributed to the higher diversity observed in our study.
Despite the significant fine fraction (~66% of soil particles) in Lisbon’s soils, primarily
comprised of clays, which has been associated with lower abundance of AMF propagules
and diversity [83], the presence of a substantial coarse fraction (~34% of soil particles) and
a high organic matter concentration may have improved soil structure, porosity, aeration,
and water-retention capacity. These factors could explain the higher species richness and
diversity observed in those soils when compared to those from Pegões (mostly dominated
by sand particles and with low organic matter concentration). However, other factors
may have also influenced the α-diversity of AMF communities, like the different plant
communities originally present in Lisbon and Pegões soils [89–91].

Even though land use did not affect α-diversity, the number of mycorrhizal propagules
tended to be lower in VS than in NAS. Several management practices such as soil tillage,
which impacts the mycelial network within the soil [40,47], the excessive use of P-based
fertilizers [92,93] or some pesticides can be detrimental to AMF populations [59,94–97].
The different weed management strategies used in the vineyard soils of Pegões and Lisbon
might have also affected AMF propagule formation. While in the latter location, weed
control was achieved through mowing, in Pegões, herbicides were applied. In vineyards,
herbicide application can lead to a decrease in grapevine root mycorrhizal colonization and
in the formation of mycorrhizal propagules in the soil, especially spores and hyphae [98,99].

Concerning AMF community structure (β-diversity), a significant interaction was
found between soil type and land use. In Lisbon, the PCoA analysis showed a clear
separation between AMF communities of VS and NAS, but not in Pegões. Jansa et al. [100]
also observed that different soil-tillage treatments significantly affected AMF community
structure but not AMF α-diversity. Similarly, Bouffaud et al. [41] observed that land use
type only influenced mycorrhizal β-diversity, with no significant impact on α-diversity.
However, it is important to note that in our study, AMF-diversity indexes were not assessed
directly in the soil. Instead, we evaluated root-associated AMF from plants grown in
pots filled with soil samples collected from the field (known as grapevine trap cultures).
Therefore, our results may not fully reflect the effects of the soil type or land use on
mycorrhizal communities [81,101].

We found that the rootstock effect was not significant for either root mycorrhizal
α-diversity or β-diversity, in contrast with previous studies suggesting that the rootstock
influences grapevine microbiome [102] and mycorrhizal community composition in vine-
yard soils [81,103]. However, we found differences in rootstock preferences at the OTU
composition level. For instance, in Pegões soils, Septoglomus and Dominikia were only found
colonizing 1103 P plants, and Paraglomus genus was exclusive of R110 rootstock.

Besides AMF community composition and diversity, it has also been demonstrated
that the interaction between members of the community network can play an important
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role in ecosystem functioning, with potential consequences on host performance and
adaptation [70,104]. To evaluate the connectivity of the AMF community, we studied
co-occurrence networks according to the different experimental factors (soil type, land
use, and rootstock). Although co-occurrence networks may not have clear biological
implications [105], they may still be useful for unravelling particular connectivity trends
among mycorrhizal OTUs across different experimental treatments. In fact, in our work, we
detected a large difference in the degree of connectivity between mycorrhizal OTUs in roots
grown in NAS and VS, with the number of OTUs involved in the network being higher in
the NAS (indicative of a more complex community). These results are in agreement with
previous results showing that agricultural management intensity can affect the connectivity
of soil and root-associated microbial communities [97,106]. In line with our findings,
Banerjee et al. [97] found higher connectivity between root fungal communities in an organic
wheat field compared to a conventional one, representing extensively and intensively
managed soils, respectively. They also suggested that in conventionally managed fields,
the proliferation of r strategists (fast-growing species adapted to ecological disturbances)
may be promoted, leading to microbial assemblies with more random connections (less
connectivity), while in less-disturbed soils, the proliferation of K strategists (slow-growing
species) is enhanced, favoring the establishment of more stable associations among them
(higher connectivity).

In addition, root-associated AMF communities in VS had a higher percentage of posi-
tive connections compared to the community found in roots grown in NAS (92% versus
71%, respectively). Positive associations in the co-occurrence analysis do not exclusively
reflect mutualistic interactions between AMF OTUs, as they may also indicate a niche over-
lap among OTUs, i.e., the coexistence of microorganisms with the same niche requirements
but without direct interdependence [107–110]. Hence, our results might reflect the presence
of a less-connected community formed by particular OTUs, probably r strategists, adapted
to the same niche and agricultural soil conditions.

Much less is known about how different soil characteristics (i.e., physico-chemical
properties) affect microbial co-occurrence networks. We found a higher connectivity and
number of positive associations between AMF OTUs in plants grown in Pegões soils than
in the ones from Lisbon’s soils. Yang et al. [111] found that connectivity between microbial
species was mostly affected by soil pH. Even though we also detected a difference in pH
between both soil types (with soils being slightly alkaline in Lisbon and slightly acidic
in Pegões), further studies are necessary to elucidate how different soil parameters affect
grapevine root-associated AMF co-occurrence networks.

On the other hand, several works show that host genotypes affect root endophyte co-
occurrence networks [70,112–114]. In our study, we observed that the root-associated AMF
network was less dense in 1103 P rootstock than in R 110. However, although Guo et al. [70]
found that the AMF network with the lowest complexity and highest number of positive
interactions was the one leading to greater growth benefits in their hosts, we did not find
differences in root biomass or shoot length between the two grapevine rootstocks.

4.2. Effects of Different Root-Associated AMF Communities in Grapevine Growth and Nutrition

In the present study, 1103 P roots had higher mycorrhizal colonization percentage
than the ones from R 110 rootstock, as also observed by Karagiannidis et al. [115]. Previous
studies have reported variations in mycorrhizal root occupation associated with differ-
ent grapevine rootstocks [115,116], which is possibly explained by distinct root system
structure, such as the density of fine roots and response to different biotic and abiotic
conditions. In addition, despite VS in Pegões having lower AMF propagule concentration
compared to the NAS, it promoted higher root mycorrhizal colonization rates. Although
the application of glyphosate for weed control in the VS of Pegões may be partly respon-
sible for the decrease in propagule concentration in the soil, as suggested by previous
studies [117,118], its negative effects on AMF communities are considered species-specific,
favoring the selection of herbicide-tolerant mycorrhizal species [94]. Consequently, the
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higher mycorrhizal colonization observed in the plants grown in the VS of Pegões could
indicate a greater prevalence of glyphosate-tolerant taxa compared to the ones in the NAS,
which might have more herbicide-sensitive and edaphophilic species [119].

However, differences in mycorrhizal colonization rates were not translated into differ-
ences in shoot or root growth, as previously documented [120]. This may be due to the fact
that some AMF species with higher and faster colonization rates, like the ones that tend to
proliferate in agricultural soils, are not necessarily the most mutualistic ones and do not
promote higher biomass production in the host plant [84].

Arbuscular mycorrhizal fungi usually contribute to better plant nutrition, in both
macro- and micronutrients like P, N, K, Ca, Mg, Zn, Cu, S, and Fe, due to several mecha-
nisms like a higher soil exploration capacity of their extraradical mycelium network, and
some enzymatic activities that can increase the availability of some nutrients [3,121–123].
Although P is the nutrient that tends to increase its concentration the most in mycor-
rhizal grapevines [47,121,124], this depends on the AMF species or isolates present in
the roots [30,121,125,126]. Moreover, in non-sterile soils, especially in those with high P
concentrations, AMF can sometimes produce neutral or even negative effects (although
less frequently) on shoot P concentration [30,127–131]. In the present study, which was
conducted using non-sterilized soils, we found that the relative abundance of only three
OTUs was positively correlated with leaf P concentration, while one OTU corresponding to
Glomus sp. was negatively correlated, clearly demonstrating a high variability existing in
the effect of different AMF in P nutrition.

On the other hand, the relative abundance of 40 OTUs was negatively correlated with
foliar Mn and Mg, and positively correlated with K concentrations, which was ultimately
translated into significant correlations between α- and β-diversity indices and foliar K,
Mn, and Mg concentrations. Compared to P, much less is known about the role of AMF
symbiosis in the uptake and accumulation of other nutrients [47,132]. It seems that K shoot
concentration is generally increased and Mn decreased in mycorrhizal plants [133–135], as
also observed in grapevine leaves [93,125]. Since antagonistic interactions are commonly
found between K and Mg uptake in plants [136], it is not unexpected that AMF that enhance
K uptake tend to reduce Mg concentration in their host plants.

Results concerning mycorrhizal effect on Ca, Na, Cu, and Fe concentration in grapevines
also tend to vary depending on the study [30,93,121,125,133,137–139]. In our experiment,
some of the OTU’s relative abundance in roots was positively correlated with foliar Ca,
Na, or Fe concentrations, and others were negatively correlated, contrasting with leaf Zn
and Cu concentrations, which were not correlated with any OTU. Since AMF species or
even isolates may vary in their ability to promote different element uptake in the host
plant [19,140], it is important to promote and conserve diverse mycorrhizal communities to
guarantee the ecosystem services provided by these fungi.

5. Conclusions

In the present study, we demonstrated that the soil type and therefore its specific
characteristics represented the major driver of grapevine root AMF α- and β-diversity. The
effect of land use on root-associated AMF community diversity was less obvious, and most
differences between VS and NAS were found at OTU composition level. In addition, root
AMF communities in the VS soil had less-complex OTU networks than those in the NAS
soil. Nevertheless, those differences were not translated into changes in grapevine growth,
although the presence of some mycorrhizal OTUs was highly correlated with leaf macro-
and micronutrient concentration.

Although grapevine trap cultures may not reflect the real soil AMF community char-
acteristics, their use is important for identifying specific rootstock preferences and for
evaluating the effects of different taxa compositions on plant nutrition. Future field studies
could further support the results obtained here. Altogether, this knowledge is essential to
determine which AMF species/isolates could be worth inoculating for improving plant
nutrient concentration and can allow a more profound understanding about the potential
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need for introducing specific changes in soil management practices in order to promote the
proliferation of key AMF taxa.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agriculture13112163/s1, Figure S1: Sampling sites; Figure S2: Experimental
design; Figure S3: Rarefaction curve for assessing the sampling effort; Figure S4: Significantly
enriched arbuscular mycorrhizal taxa detected by linear discriminant analysis of effect size (LEfSe)
in Lisbon and Pegões soils. Significant differences were defined at p < 0.05 and an LDA score (log
LDA) > 2.0. Figure S5: Significant co-occurrence networks of grapevine root arbuscular mycorrhizal
fungal communities; Figure S6: Correlation analysis between individual operational taxonomic units
of arbuscular mycorrhizal fungi and leaf nutrient concentrations; Table S1: Correlation analysis
between soil physico-chemical properties and α-diversity indexes; Table S2: Significantly enriched
arbuscular mycorrhizal taxa detected by linear discriminant analysis of effect size (LEfSe) in Lisbon
and Pegões soils; Table S3: Leaf nutrient concentration.
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