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Abstract

African swine fever virus (ASFV) is a dsDNA virus that can cause high mortality in pigs of all

ages. Spray-dried porcine plasma (SDPP) is a highly digestible ingredient used in feed

because it benefits performance, gut function and immunity. The objectives were to test if

the spray-drying (SD) conditions along with post-drying storage of product for 14 days can

inactivate ASFV inoculated in liquid plasma. Fresh liquid porcine plasma was inoculated

with ASFV (BA71V) to a final concentration of 105.18 ±0.08 TCID50/mL of liquid plasma. Tripli-

cate 2-L samples of spiked plasma were SD in a lab drier set at an outlet temperature of

80˚C or 71˚C. The final dried samples were stored at 4˚C or 20˚C for 14 d. Liquid and SD

samples were analyzed for ASFV infectivity in two mirror 24-well plaques containing VERO

cells monolayers. Wells were inoculated with different dilutions of SDPP dissolved 1:9 in

PBS. One plaque was immediately frozen at -80˚C and the other was incubated at 37˚C for

3 d. Each dilution was replicated 9 times. After incubation both plaques were analyzed for

ASFV by qRT-PCR. Results indicated that the SD process inactivated between 3.2 to 4.2

Logs ASFV TCID50/mL and 2.53 to 2.75 Logs TCID50/mL when the outlet temperature were

80˚C and 71˚C respectively. All SD samples stored at 4˚C or 20˚C for 14 d were absent of

infectious ASFV. The combination of SD and post drying storage at both temperatures for

14 d was able to inactive >5.18 ±0.08 Log10 of ASFV inoculated in liquid porcine plasma,

demonstrating that the manufacturing process for SDPP can be considered safe regarding

ASFV.

Introduction

Spray-dried porcine plasma (SDPP) is a highly digestible, high-protein ingredient that is

widely used in feed because it benefits growth performance, feed efficiency, intestinal integrity,

and immune parameters [1–3].

The manufacturing process of SDPP begins with the collection of blood from healthy ani-

mals declared fit for slaughter for human consumption by the veterinary authorities. Blood is
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collected into containers with anticoagulant, chilled, and centrifuged to separate plasma. Liq-

uid plasma is then concentrated and spray-dried at 80˚C throughout its substance to produce

SDPP [3, 4]. Spray-drying involves very rapid desiccation of the liquid [5], results in a dried

powder with low moisture (< 9%) and very low water activity (aw < 0.6), which has a detri-

mental effect on bacteria and virus survivability, as has been shown for multiple bacteria and

viruses of interest in swine industry [6–12]. Furthermore, some microorganisms, especially

bacteria and enveloped viruses, are not able to survive for a prolonged time in dried materials

like SDPP with very low water activity [3, 5, 8, 12, 13]. Therefore, a minimum post-drying

period of 14 days at 20˚C has been established as processing standards of the European Animal

Protein Association (EAPA) (EAPA Code of Practice, https://www.eapa.biz/quality-safety)

and been adopted by most SDPP manufacturers.

African swine fever virus (ASFV) is an enveloped dsDNA virus belonging to the Asfarviridae
family [14] that can cause high mortality in pigs of all ages. In 2007, a virulent ASFV strain

(genotype II) appeared in Georgia causing mortality rates up to 100%, and from there spread

across the Caucasus region into the Russian Federation, Easter Europe, and other West Euro-

pean countries (Belgium, Germany, Italy, Greece and Czech Republic). Subsequently, from

2018 onwards, ASFV further spread to China, South-East Asia, and more recently, in the

Dominican Republic and Haiti, where millions of animals have succumbed to the disease [15,

16]. At global level there is no commercial vaccine available to fight against the ASF pandemic;

however, recent results with recombinant live attenuated viruses provided hope for a safe and

effective vaccine against ASFV as demonstrated by the launching of the first commercial vac-

cine against ASFV in Vietnam. This vaccine product is based on a recombinant deletion

mutant lacking the I177L gene from the Georgia 2007 ASFV isolate [15–17].

The prevalence of African Swine Fever (ASF) has increased concerns that feed ingredients

could represent a risk factor for spreading ASF. Spray-drying has shown an ASFV inactivation

capacity of 4.11 ± 0.20 Log10 TCID50/mL [18] resulting in the recognition of SDPP as a negligi-

ble risk for transmitting the disease [19]. However, other studies are necessary to characterize

the inactivation capacity of other processing steps included in the manufacturing process of

SDPP, such as the post-processing storage period at 20˚C.

The objective of the present study was to determine the level of ASFV inactivation in liquid

plasma artificially contaminated with ASFV by the safety steps involved in commercial SDPP

production including spray-drying in combination with storage for 14 days at different

temperatures.

Material and methods

African swine fever virus

ASFV strain Badajoz-71 adapted to Vero cells (ASFV-BA71-V) [20] was provided by Dr.

Marı́a Luisa Salas from Centro de Biologı́a Molecular Severo Ochoa (CBMSO), Madrid, Spain.

The virus was propagated in Vero cells (ATCC CCL-81) grown in DMEM (ThermoFisher,

Waltham, MA, USA) supplemented with 10% FBS (BioWest, Florida, USA), 200 mM gluta-

mine (ThermoFisher), penicillin 100 UI/mL (ThermoFisher), streptomycin 100 μg/mL (Ther-

moFisher), and nystatin 40 UI/mL (Sigma-Aldrich, Missouri, USA). Viral stock solution was

produced in this way in successive passages obtaining a final viral titer of 106.9 TCID50/mL

measured by immunoperoxidase monolayer assay (IPMA).

Plasma

The plasma used for this experiment was obtained from pigs slaughtered in European porcine

abattoir facilities from animals inspected and approved as fit for slaughter for human
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consumption by official veterinary authorities. Blood was collected in stainless steel containers,

with an anticoagulant (sodium tripolyphosphate), refrigerated and transported to the APC

Europe facilities (APC-Europe S.L.U., Granollers, Spain). Plasma was separated in less than 24

hours from collection by commercial centrifugation. Eight liters of fresh plasma were UV-C

irradiated at 10000 J/L for this study using the UV-C SurePure SP-1 device as previously

described [21, 22] to inactivate any microorganisms before the ASFV inoculation. A 10 mL

sample of the 8-L batch was stored at –80˚C and later used as a control to determine ASFV

antibodies (INgezim PPA COMPAC, INGENASA; Madrid, Spain) or genome by real time

PCR (qRT-PCR) analysis [23].

ASFV spray-drying inactivation

Three 2-L batches of UV-C irradiated liquid porcine plasma were used for the study. From

each batch, 200 mL of the 2 L were collected and stored at –80˚C for later analysis. The remain-

ing 1800 mL of liquid plasma per batch were inoculated with 200 mL of ASFV-BA71-V stock

solution (106.9 TCID50/mL) achieving a viral theoretical titer of 105.9 TCID50/mL.

The spray-drying process was conducted using a laboratory spray-drier (Büchi Mini Spray

Dryer B-290, Büchi Labortechnik, Switzerland) simulating industrial process conditions. The

laboratory spray-drier was set to an inlet air temperature of 200 ± 5˚C and outlet air tempera-

ture set at 80 ± 1˚C or at 71 ± 1˚C as previously described [10]. Airflow through the column

and the suspension flow to the nozzle was set at 45 m3 h-1 (at 20˚C) and 0.2 lh-1, respectively.

The airflow through the feed nozzle adjusted to 0.7 m3h-1 (at 20˚C). Residence time was esti-

mated to be 0.41 s.

Before processing and collecting dried samples for analysis, the lab spray-dryer processing

parameters were stabilized by running it with non-inoculated UV-C irradiated liquid porcine

plasma at the target temperature for 10 min. After this time, the sample collector for the spray-

dryer was replaced with a clean one and the previously collected powder was discarded. This

preliminary drying time assures that the system was stabilized at the desired processing param-

eters before the ASFV inoculated plasma was dried and samples for analysis were collected.

Each dried inoculated sample was distributed in twenty-seven samples of 0.5 g in 0.5 cm

glass tubes (inner diameter). Nine samples were obtained directly without receiving additional

heat post drying. To simulate the longer retention time in commercial spray driers, an addi-

tional 9 samples were placed in a water bath at 90±3˚C for 30 seconds (real temperature in the

powder sample was around 70.4˚C) and another nine samples for 60 seconds (real temperature

in the powder sample was around 80.7˚C). The temperature of the spray dried samples during

the 30 s and 60 s post-drying heat treatment was monitored with temperature probes. In each

simulation, three of these samples were analyzed directly, three samples were stored at 4˚C for

14 days and another 3 samples at 20-22˚C (room temperature) for 14 days (Fig 1).

Sample analysis

Spray-dried samples were reconstituted by adding 4.5 mL of PBS to 0.5 g of plasma sample

(ratio SDPP 1:9 PBS). A ten-fold dilution series was done from native samples to -3 dilution.

Each dilution was inoculated in 9 wells, obtaining 9 replicates of the same sample. This proce-

dure was done by duplicate to obtain two identical mirror 24 wells plates. Of these two identi-

cal plates, one of them was immediately frozen at -80˚C and the other one was incubated at

37˚C for 3 days. After the 3-day incubation period, the plates were frozen and thawed and the

frozen plates were thawed also.

Both mirror plates were analyzed for presence of ASFV by qRT-PCR [23]. From the 9 inoc-

ulated wells for each dilution, 100 µL were taken from three wells and mixed to perform a
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single extraction from those 3 wells. In this way, from the 9 initial wells, 3 DNA extractions

(INDICAL, INDICAL BIOSCIENCE, Leipzig, Germany) were performed for each dilution.

Subsequently, these three extractions were analyzed by qRT-PCR to obtain three replicates of

each dilution. We compared the difference between the Ct obtained in the frozen plate and the

plate incubated at 37˚C, assuming that a difference of Ct in the incubated plate compared to

the frozen plate implied viral replication in the Vero cell culture [24]. The reduction factor was

calculated as the difference between the virus titer detected in the inoculated material at start

of the experiment and the titer or absence of replication detected in the final sample after pro-

cessing. Values were calculated as the reduction in Logs TCID50/mL including standard error.

Standard curves were established at each outlet temperature by regressing Log10 TCID50/mL

SDPP on CT results (Figs 2 and 3).

Results

The spray-drying process at an outlet temperature of 80˚C throughout its substance inacti-

vated ASFV between 3.2±0.07 to 4.2±0.07 Logs TCID50/mL. When the outlet temperature was

reduced to 71˚C, ASFV inactivation was reduced to 2.53±0.12 to 2.75±0.04 Logs TCID50/mL

(Table 1).

The ASFV inoculated spray-dried samples obtained from both outlet temperatures with dif-

ferent residence times (0 to 60 seconds) when stored either at 4˚C or 20˚C for 14 days were

completely inactivated (Table 1). Our data suggested that both storage temperatures after the

spray-drying process inactivated at least an additional 2.65±0.08 Log of ASFV.

Fig 1. Scheme of the experiment.

https://doi.org/10.1371/journal.pone.0290395.g001
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Discussion

Spray-dried plasma (SDP) is a functional protein source that significantly improves daily gain,

feed intake, production efficiency and reduces post weaning lag [2, 25–29]. The manufacturing

process of SDP involves several safety features as veterinary inspection at abattoir, pooling of

plasma, spray-drying process and storage [3, 4]. Veterinary inspection is crucial to ensure that

blood from only healthy animals slaughtered for human consumption is the exclusive source

of raw material to be used for the manufacturing of blood products. However, veterinarian

inspections might not find subclinical illnesses or early viremia/bacteremia, therefore, imple-

menting, understanding, and validating the biosafety measures are therefore crucial for the

manufacturing process of SDP.

Several viruses of concern to the swine industry, including the Porcine respiratory and
reproductive syndrome virus (PRRSV), Pseudorabies virus (PRV), and Porcine epidemic diar-
rhea virus (PEDV), have been shown to be effectively inactivated by spray-drying [9–12], as

well as bacteria such as Escherichia coli or Salmonella enterica [7, 8].

The phenomena involved in spray-drying inactivation of these pathogens rely on the rapid

desiccation [5], cytoplasmic membrane damage [30, 31], genetic material destruction, and

inactivation of other proteins, including enzymes [31]. Under commercial conditions, during

the spray-drying process, SDP is exposed to a minimum of 80˚C throughout substance [3], a

temperature that is recognized as effective to inactivate pathogens such as ASFV, CSFV, Swine
vesicular disease virus and Foot and mouth disease virus (FMDV) in cooked meat products

(“Council Directive 2002/99/EC of 16 December 2002). In the present study we tested the

commercial outlet air temperature conditions of 80˚C and 71˚C. Under these conditions we

Fig 2. Standard curve of ASFV Log TCID50/mL vs Ct for samples spray-dried at 80˚C.

https://doi.org/10.1371/journal.pone.0290395.g002
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observed higher ASFV inactivation at 80˚C (range between 3.23–4.20 Log reduction Value

(LRV)) than 71˚C (range 2.53±0.12–2.75±0.04 LRV), results that agrees with publications indi-

cating that pathogen inactivation during spray-drying is related to the inlet and outlet air tem-

peratures, especially the outlet temperature [3, 5, 32]. These results also agree with the code of

practice that established 80˚C outlet temperature as the recommended drying temperature for

commercial blood products intended for use in swine feedstuff (EAPA, 2022). In addition, the

results confirm that the higher residence time of commercial driers (30 to 60 seconds)

increases the inactivation of ASFV inoculated in liquid plasma compared to the residence time

of laboratory driers (<1 sec), as demonstrated in previous publications that show higher resi-

dence time inside spray driers may increase the inactivation of microorganisms [5, 32].

Fig 3. Standard curve of ASFV Log TCID50/mL vs Ct for samples spray-dried at 71˚C.

https://doi.org/10.1371/journal.pone.0290395.g003

Table 1. African swine fever virus (ASFV) inactivation during spray-drying at different outlet temperatures and residence times and further storage at either 4˚C

or 20˚C for 14 d. Initial ASFV inoculation in liquid plasma was 105.18 ±0.08 TCID50/mL.

Conditions SDPP (TCID50/mL) LRVs during SD Storage of SDPP (4˚C or 20˚C) for 14days (TCID50/mL)

(TCID50/mL)

SD at 80˚C; No post treatment 1.94±0.07 3.23±0.07 Negative

SD at 80˚C; RT 30 sec at 80˚C 1.35±0.06 3.82±0.07 Negative

SD at 80˚C; RT 60 sec at 80˚C 0.97±0.07 4.20±0.07 Negative

SD at 71˚C; No post treatment 2.59±0.14 2.58±0.14 Negative

SD at 71˚C; RT 30 sec at 80˚C 2.64±0.12 2.53±0.12 Negative

SD at 71˚C; RT 60 sec at 80˚C 2.42±0.04 2.75±0.04 Negative

SD = spray-drying; RT = residence time; SDPP = spray-dried porcine plasma; LRVs = Log10 reduction values

https://doi.org/10.1371/journal.pone.0290395.t001
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In previous studies spray-drying at 80˚C for 60 s, was able to inactivate 4.11 Log TCID50/

mL of ASFV [15]. In the present study, we wanted to characterize the loss of viability that

occurs naturally in the storage step of SDPP manufacturing process, comparing two different

storage temperatures. Post-drying storage for 14 days at 4˚C or 21±2˚C resulted in complete

inactivation of ASFV. The additional 1.95±0.08 Log10 TCID50/mL inactivation at 80˚C or 2.65

±0.08 Log10 TCID50/mL at 71˚C partially agrees with results obtained by Fischer et al., 2021

[24], who achieved a complete inactivation of 5.7 HAD/ml after two weeks of storage at room

temperature, but limited inactivation was achieved for SDPP spiked with ASFV and stored at

4˚C. However, we observed a 2.65±0.08 Log10 TCID50/mL loss of viability when SDPP was

stored at 4˚C. The differing results between our study and theirs may be that in our study we

inoculated ASFV into the liquid plasma before drying, whereas they spiked ASFV on previ-

ously dried porcine plasma. Therefore, the initial viral titer after spray drying in our study was

lower than the initial viral titer of the spiked SDPP used in the study by Fischer et al. (2021). In

addition, we started the storage period just after spray-drying of the liquid plasma without

time for the virus to recover from the heat and desiccation effects associated with the spray-

drying process. In contrast, the current results are consistent with the inactivation of 2 Log10

TCID50 observed by Dee et al., 2018 [33] over 30 days at room temperature.

Furthermore, in a previous study [18] it was demonstrated that the minimum infectious

dose in feed mixed with ASFV contaminated liquid porcine plasma was higher than 5.0 Log10

TCID50/pig. Considering this minimum infective dose of ASFV in the feed, the proven inacti-

vation capacity of the spray-drying process (> 4 log TCID50/mL) and the subsequent inactiva-

tion during post-drying storage (inactivation between 1.95 to 5.7 Log10 TCID50/mL) within

two weeks at room temperature, the manufacturing process for SDPP has a high inactivation

capacity against ASFV.

The overall results demonstrated that spray-dry process at 80˚C or 71˚C and the subsequent

storage at room temperature for 14 days inactivates >5.18 ±0.08 Log10 TCID50/mL of ASFV

result in a safe feed ingredient for use in swine feed.

Acknowledgments

The authors want to acknowledge the protocol review and suggestions received from the tech-

nical members of the European Animal Protein Association (EAPA), especially from Lourens

Heres (Sonac/Darling Ingredients, The Netherlands) and Isabelle Kalmar (Veos N.V.,

Belgium).

Author Contributions

Conceptualization: Elena Blázquez, Joan Pujols, Joaquim Segalés, Carmen Rodrı́guez,
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