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Simple Summary: This study investigated the effect of Lactobacillus acidophilus fermentation on
plant-based aquafeed’s biochemical and nutritional profiles, as well as its impact on the productive
performance and intestinal health of juvenile Nile tilapia (Oreochromis niloticus) reared in a biofloc
system. Two fermentation times of 6 h and 18 h were assessed over 60 days and compared with
positive and negative control diets containing fishmeal or devoid of animal protein, respectively. L.
acidophilus fermentation improved the plant-based feed. Fish fed with the diet that was fermented for
six hours exhibited improved survival rates. Fermentation worsened feed efficiency and increased
feed intake. Fermented feeds positively influenced intestinal health by increasing beneficial bacteria
and reducing pathogenic strains in both the rearing water and the fish’s guts. Fermented feeds also
enhanced intestinal mucosa development compared to non-fermented diets. These results emphasize
the promising impact of aquafeeds fermented with L. acidophilus on fish feeds and health and its
sustainability by replacing the use of fishmeal with the use of plant protein.

Abstract: This study evaluated the effect of fermentation with Lactobacillus acidophilus on the biochem-
ical and nutritional compositions of a plant-based diet and its effects on the productive performance
and intestinal health of juvenile Nile tilapia (Oreochromis niloticus) reared in a biofloc technology (BFT)
system. The in vitro kinetics of feed fermentation were studied to determine the L. acidophilus growth
and acidification curve through counting the colony-forming units (CFUs) mL−1 and measuring
the pH. Physicochemical and bromatological analyses of the feed were also performed. Based on
the microbial growth kinetics results, vegetable-based Nile tilapia feeds fermented for 6 (FPB6) and
18 (FPB18) h were evaluated for 60 days. Fermented diets were compared with a positive control diet
containing fishmeal (CFM) and a negative control diet without animal protein (CPB). Fermentation
with L. acidophilus increased lactic acid bacteria (LAB) count and the soluble protein concentration of
the plant-based feed, as well as decreasing the pH (p < 0.05). FPB treatments improved fish survival
compared with CPB (p < 0.05). Fermentation increased feed intake but worsened feed efficiency
(p < 0.05). The use of fermented feeds increased the LAB count and reduced pathogenic bacteria
both in the BFT system’s water and in the animals’ intestines (p < 0.05). Fermented plant-based feeds
showed greater villi (FPB6; FPB18) and higher goblet cell (FPB6) counts relative to the non-fermented
plant-based feed, which may indicate improved intestinal health. The results obtained in this study
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are promising and show the sustainable potential of using fermented plant-based feeds in fish feeding
rather than animal protein and, in particular, fishmeal.

Keywords: intestinal health; lactic acid bacteria; solid-state fermentation; soybean meal; survival

1. Introduction

The production and consumption of fish from aquaculture has been continuously
growing since the beginning of the modern aquaculture industry [1]. The intensification of
production has led to an increase in the demand for aquafeeds of high nutritional quality.
One of the main protein sources of aquafeeds is fishmeal. However, it is an expensive
and increasingly scarce product, causing an excessive rise in the prices of aquafeeds [2,3].
The replacement of fishmeal with plant protein sources [4–6] has been widely studied in
fish diets [2,7,8], but total substitution is not always possible [9–11]. In particular, the use
of plant-based ingredients in fish diets presents several challenges, such as the presence
of antinutritional factors (ANFs), low palatability, and deficiency in the concentration of
essential amino acids [12–14]. For some species, enteritis and gastric disorders may occur,
leading to a reduction in productive parameters [15,16].

Among the different strategies for improving the suitability of plant protein sources
for their inclusion at higher levels in aquafeeds, fermentation is one of the most recent
ones [6]. During fermentation, microorganisms break down complex substrates, producing
metabolites with functional properties [17]. Fermentation is an alternative that can improve
palatability, reduce ANFs, and provide functional properties to plant-based ingredients [18].
In particular, several studies have shown that fermentation of plant-based protein sources
can improve their nutritional and biochemical quality by reducing ANFs like glycinin and
β-conglycinin [12,13,19]. Furthermore, this process may also provide a significant increase
in peptides and free amino acid content [18–20].

Fermentation can be conducted using different microorganisms, like lactic acid bacte-
ria (LAB), yeasts, and Bacillus sp. [21]. The use of LAB enhances the attribution of bioactive
properties. Several compounds are produced by LAB during fermentation, such as vitamins,
aromatic compounds, antimicrobials like bacteriocins, and antioxidant enzymes [22–24].
Microorganisms of the genus Lactobacillus are generally recognized as safe for dietary pur-
poses [18,25]. Each strain of LAB can distinctly modify the substrate and the characteristics
of the fermented product [26,27]. Within the group of LAB, Lactobacillus acidophilus are
important microorganisms in the composition of the intestinal microbiota [28]. They are
used as a probiotic in fish feed [29], as they exhibit therapeutic activities in intestinal health
and produce a variety of antimicrobial compounds that are effective against pathogenic
bacteria [30].

Several studies have shown that the use of fermented protein sources with LAB has
a positive result on fish growth performance and allows higher inclusions of plant-based
protein in the diets [6,13,31,32]. Furthermore, fermented plant-based ingredients have
been observed to enhance the antioxidant response [33,34], digestive enzymatic activity,
gut condition, and intestinal microbiota [35–38]. On the other hand, few studies have
evaluated the complete substitution of fishmeal with fermented ingredients in plant-based
diets [14,39,40]. An approach that has yet to be evaluated is a complete feed fermentation
of plant-based diets, which would extend the benefits of fermentation to other ingredients
rather than just plant protein sources and optimize feed use. Complete fermentation
of plant-based diets may solve issues associated with reduced absorption of micro- and
macronutrients in the intestinal tract and improve the nutritional quality and palatability
of feeds.

The Nile tilapia (Oreochromis niloticus) is one of the most produced and consumed
freshwater fish worldwide [25]. It is typically cultured in rustic areas of some countries, is
easy to reproduce, and has an omnivorous feeding habit [41]. Recently, the raising of Nile
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tilapia in biofloc technology (BFT) systems has been developed [42,43]. The BFT system
enables increased productivity with low water renewal [42–45]. It is composed of flocs,
which are formed through the conversion of accumulated organic matter, such as feed waste
and feces, and the presence of a community of microbial, heterotrophic bacteria, algae, and
protozoa [46]. The bioconversion of biofloc flocs is carried out via a system in continuous
water aeration, and the addition of a carbon source like molasses to promote bacterial
growth [43]. This system enables productivity gains, but microbial growth control can be a
problem [47]. The flocs formed are sources of protein, minerals, and vitamins, and serve as
a natural food for animals and bacteria [43,44]. Therefore, the use of fermented feeds for
tilapia reared in a BFT system could have positive effects on the fish physiology and water
microbiota through the interaction between the components of the fermented product
and the heterotrophic microorganisms present in the water [47–49]. We hypothesize that
fermentation of plant-based diets with lactic acid bacteria may improve the productive
performance of fish, their intestinal condition, and their intestinal microorganism counts.
Thus, this study aimed to evaluate the effect of fermentation with L. acidophilus on the
biochemical and nutritional composition of plant-based feeds and its effects on water
quality, fish performance, and the intestinal health of juvenile Nile tilapia reared in a
BFT system.

2. Materials and Methods
2.1. Experimental Design

This study was divided into two distinct stages. The first stage consisted of several
in vitro tests that were carried out at the Laboratories of the Research Group on Food
Technology and Bioprocesses at the Federal University of Santa Catarina—Florianópolis,
Brazil. The second phase consisted of an in vivo nutritional trial at the Laboratory of
Fish Farming of the State University of Santa Catarina at the Center for Agricultural and
Veterinary Sciences—Lages, Brazil. The study was approved by the ethics committee for
animal use in research (CEUA-UDESC) under protocol No. 8681210822.

2.2. Selection of Microorganisms and Their Purity

The strain chosen for fermenting the plant-based feed was L. acidophilus (DSM 21717
Coana®, Florianópolis, Brazil). This strain was selected based on preliminary pilot tests.
Bacteria were reactivated in MRS (Man Rogosa Sharpe, Brand Kasvi, Laboratórios Conda S.
A., Madrid, Spain) broth at 36 ◦C for 48 h before use to verify the purity of the strains. The
purity determination was based on morphological evaluation of the strains (Bacillus-shaped,
green in color, without flagellum) in agar using an optical microscope. After verifying
their purity, the strains were stored in 2 mL tubes with a 50% (v/v) glycerol solution in an
ultra-freezer at −80 ◦C [50,51].

2.3. Experimental Feeds

Two isoproteic (33% crude protein) and isoenergetic (4100 kcal kg−1) compound
feeds with or without fishmeal (FM) were formulated (Table 1) to meet the nutritional
requirements of Nile tilapia [52,53], whereas the amino acid composition followed the
recommendation given by Santiago and Lovell [54]. The positive control diet (CFM)
had 20% FM, whereas the diet containing high levels of plant protein sources (CBP) did
not contain FM. Soybean meal was also used as a protein source in both diets, even
though its level of inclusion was lower in the CFM (42%) diet when compared to the CBP
(65%) diet, while soybean oil, corn, and wheat flour were used as energy sources. All
ingredients were ground in an industrial processor, sieved through a 0.71 mm opening
mesh, and homogeneously mixed. The mixed ingredients were stored in plastic packages
and maintained under refrigeration (4 ◦C) until pelleting.
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Table 1. Composition of experimental diets containing different levels of fishmeal and soybean meal
for Nile tilapia (Oreochromis niloticus).

(%) Ingredient CFM CPB

Soybean meal 42.0 65.0
Fishmeal 21.7 -

Corn 19.5 20.0
Wheat bran 13.0 13.0
Soybean oil 3.0 1.0

Premix * 0.5 0.5
DL-methionine 0.30 0.5

Total (%) 100 100
Calculated composition

DM (%) 89.21 88.15
CP (%) 33.64 33.83

GE (kcal kg−1) 4116.07 4131.11
EE (%) 7.34 5.03
CF (%) 4.87 6.41

MM (%) 11.16 4.90
CFM—animal protein feed; CPB—plant-based protein feed; DM—dry matter; CP—crude protein; GE—gross
energy; EE—ether extract; CF—crude fiber; MM –mineral matter. * Premix—folic acid: 1000 mg kg−1, calcium
pantothenate: 9000 mg kg−1, biotin: 100 mg kg−1, vit. A: 2,400,000 IU, vit. D3: 48,000 IU, vit. E: 24,000 IU,
vit. B1: 1600 mg, vit. B2: 9600 mg, vit. B6: 2,600,000 IU kg−1, vit. B12: 4000 IU kg−1, vit. K3: 609 mg
kg−1, vit. C: 49 g kg−1, iron: 20 g kg−1, manganese: 5980 mg kg−1, zinc: 28 g kg−1, BHA: 196 mg kg−1,
BHT: 3040 mg kg−1, iodine: 200 mg kg−1, selenium: 60 mg kg−1, niacin: 36 mg kg−1, choline: 60 g kg−1,
inositol: 2000 mg kg−1 (minimum guaranteed levels per kg of product). The FM was purchased at Agroforte®

(Laguna, Santa Catarina, Brazil; crude protein = 58.8%), the multivitamin premix was provided by Quimtia®

(Lima, Perú) and the other ingredients were purchased from local suppliers.

The plant-based feed was fermented following a methodology adapted from Azarm
and Lee [55]. In brief, autoclaved samples (100 ◦C for 20 min) of feeds were moistened (30%
moisture) with sterile mineral water and inoculated with 2% commercial sucrose and Sac-
charomyces cerevisiae (Fleischmann® dry biological yeast, Heilsbronn, Germany) [40,56]. The
S. cerevisiae was reactivated in warm water before being inoculated into the feed at a ratio of
60.5 mg for each 2 kg of feed [40]. S. cerevisiae was included in a low concentration to serve
as a starter for fermentation [56]. Direct inoculum of L. acidophilus, previously reactivated,
was performed after centrifugation (10 min at 4000 rpm), washing, and resuspension of
the pellet at a concentration of Log 8 CFU g−1. Samples were mixed and arranged in trays,
maintaining a maximum height of two centimeters of feed per tray. The fermentation was
carried out in an oven at 36 ◦C for up to 24 h. At the end of the fermentation process, the
fermented feeds were dried in an oven (36 ◦C) until reaching a constant weight and then
kept in a freezer (−20 ◦C) until their further use.

All feeds were pelleted in a meat grinder with the addition of water (30%) and dried in
an oven at 45 ◦C for 36 h. The drying temperature was low to keep microorganisms active.
Previous studies have already shown that LAB in fermented products can remain active
after pelleting [39]. The feeds were stored in plastic packages and kept in refrigerators
(4 ◦C) until use.

2.4. Characterization of Fermented Feed

Samples of the fermented feed were collected every six hours to count their populations
of LAB, measure the pH values, and determine their soluble protein content. A total of
1.6 g of each sample was weighed and diluted in sterile tubes containing sterilized peptone
water for the viable cell count (Log CFU g−1). Bags were vortexed for ca. 1 min and a serial
dilution was performed in the sterilized glass tubes containing 9 mL of peptone water and
1 mL of the sample. Then, 0.1 mL of the selected dilutions was inoculated in triplicate on
MRS agar dishes for LAB counting. The dishes were incubated inverted in an oven at 36 ◦C
for 48 h for subsequent CFU mL−1 counting [57–59]. The pH analyses were performed with
5 g samples, which were weighed and diluted in distilled water. The pH was measured
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using a benchtop pH meter (Simpla model pH140), with samples being collected every 6 h
during the fermentation period [60].

The identification of total soluble proteins was performed using the Bradford
method [61]. In brief, 0.002 g of the formulated diets was weighed and added to 2 mL
Eppendorf tubes. Samples were diluted in 1 mL PBS solution (1:10, w/v). The Eppendorf
tubes were sonicated (Bandelin Sonopuls HD 2200) for 2.5 min (5 rounds of 30 s with 1 min
intervals in an ice bath) for the release of soluble proteins. Then, samples were centrifuged
for 10 min at 4000 rpm and their supernatant was used for the Bradford analysis. Sub-
sequently, a 20 mg 10 mL−1 solution of BSA (bovine serum albumin) was prepared to
generate the standard dilution curve, used for the construction of the calibration graph for
the analyses. An aliquot of 10 µL of sample and 1 mL of Bradford’s solution was added to
a quartz cuvette. The sample’s optical density was read with a spectrophotometer (Thermo
Scientific Genesys 150, Waltham, MA, USA) at λ = 595 nm and the soluble protein (mg g−1)
levels were determined using the regression equation between the absorbance and protein
(BSA) content.

Two fermentation times (6 and 18 h) for the aquafeeds were selected for the test
with Nile tilapia to evaluate the effects of total or partial fermentation. In addition to
the above-mentioned analyses, bromatological, amino acid composition, leaching rate,
and shelf-life analyses were also carried out at the selected times and in the control diets.
Proximal composition analyses were performed according to the AOAC [62]. The analysis
of the amino acid concentration was performed at the CBO (laboratory analyses CBO, Rio
de Janeiro, Brazil) laboratory using the methodology described by White et al. [63] and
Lucas et al. [64]. To evaluate the leaching rate, samples (5 g) of feeds were placed in a
transparent plastic cup containing 500 mL of water. Two durations of exposure (1 and
3 min) to water were evaluated and after this period, the samples were collected with a
sieve, dried in an oven with forced air circulation (55 ◦C), and weighed. Four replicates
were performed for each diet. Based on the difference between the weight of the feeds at
the beginning and their weight at the end, the leaching rate was measured.

The shelf life of the diets was determined by evaluating the microbial unfeasibility
curve (LAB survival) and mold and yeast counts. For this purpose, the experimental
feeds were kept at room temperature and refrigerated. Diets were sampled at 0, 7, 15, 30,
and 60 days. A total of 5 g of each sample was weighed on an analytical balance. Three
replicates were performed for each diet. After serial dilution, the samples were inoculated
in PDA (potato dextrose agar, EP/USP/BAM, Brand Kasvi, Laboratórios Conda S. A.,
Madrid, Spain) and MRS agar for the quantification of molds and yeasts, as well as LAB,
respectively. The PDA dishes were incubated at approximately room temperature for 24 to
48 h. The MRS agar dishes were incubated inverted in an oven at 36 ◦C for between 24 and
48 h inside anaerobic jars. Counting was performed in triplicates (CFU g−1).

2.5. Animals and Facilities

A total of 408 masculinized juvenile Nile tilapias with an average initial weight of
8.3 ± 0.2 g (mean ± standard deviation) were provided by a producer located in Pouso
Redondo, Santa Catarina (Brazil). After an acclimatization period of 15 days, the fish were
distributed in 24 tanks with a useful volume of 70 L at a density of 17 fish per tank. The
tanks were equipped with an individual aeration system coupled to a radial compressor.
Each experimental unit also had a heater with a thermostat responsible for maintaining a
constant water temperature (ca. 26–28 ◦C) and a temperature-controlled environment at
30 ◦C. Fish were fed manually twice a day (8 a.m. and 4 p.m.) until apparent satiety. This
strategy allowed for the accurate calculation of feed intake for the experimental diets. The
tilapias’ avidity to eat allowed for ascertaining their interest in the tested feeds, even in the
murky water of the BFT system.



Animals 2024, 14, 332 6 of 22

2.6. BFT System Maintenance

The rearing tanks were prepared with an inoculation of 20% of water from another
mature BFT system (macrocosm). The water in the tanks was slightly salinized (4 g L−1) to
reduce the fish’s susceptibility to diseases. Salinity was measured using a refractometer
(Model RTS-28 Instrutherm). All tanks received uninterrupted oxygenation. The calculation
of the amount of organic carbon added to the water was used to maintain the C/N ratio at
15:1, aiming to maintain the heterotrophic system of the biofloc [65,66]. This methodology
assumes that fish assimilate approximately 25% of the nitrogen in their food and that the
remaining 75% is converted into total ammonia nitrogen (TAN) in the water [67]. The
amount of nitrogen was monitored based on an analysis of ammonia in the water using a
rapid analysis kit (Labcon Teste®, Dois Vizinhos, Brazil), and molasses was added whenever
the values exceeded 0.5 mg L−1. Sedimentable solids were determined using an aliquot
of water collected from each tank and transferred to an Imhoff cone, then evaluated after
20 min. Partial water changes were performed whenever the sedimentable solids exceeded
25 mg L−1.

2.7. Water Quality

Water quality parameters such as the temperature, pH, dissolved oxygen, ammonia,
nitrate and nitrite levels, and sedimentable solids were measured every two days. An
Alfakit™ AT170 oximeter (Florianópolis, Brazil) was used for the measuring of the dissolved
oxygen and temperature. An Alfakit™ AT100P photocolorimeter (Florianópolis, Brazil)
was used to determine the ammonia, nitrate, and nitrite concentrations. Sedimentable
solids were determined using an aliquot of water collected from each tank and transferred
to an Imhoff cone. The amount of sedimented solids in the cones was evaluated after
20 min of collection. Water samples were collected weekly to perform total suspended
solids (TSSs) analyses [68].

The water quality parameters remained within the recommended limits for tilapia
rearing in BFT systems [69], as described in Section 3.3. Furthermore, water samples were
collected to count the heterotrophic microorganisms, LAB, and Vibrio sp. on days 0, 7, 15,
30, and 60. Petri dishes were incubated in an oven at 36 ◦C. Colony-forming units (CFUs)
were counted after 24 h of incubation in TSA (tryptone soy agar, Brand Kasvi, Laboratórios
Conda S. A., Madrid, Spain) and TCBS (thiosulfate, citrate, bile, and sucrose agar, Brand
Neogen Corporation, Lansing, MI, USA) media and after 48 h in MRS medium.

2.8. Fish Performance

At the beginning of the experiments and at 30 and 60 days, all fish were fasted for 24 h,
anesthetized with eugenol (50 mg L−1), and individually weighed. Productive performance
was analyzed based on the following key performance indicators: body weight gain (WG)
and apparent feed conversion (FC). Mortality was also recorded to assess the survival
rate (SR).

Weight gain(WG) = final mean weight − initial mean weight (1)

Apparent feed conversion(FC) =
feed intake

total weight gain
(2)

Survival rate (SR) =
total animals at the end

total animals at the beginning
× 100 (3)

Four fish from each replicate tank were anesthetized and then euthanized via medullary
injection at 30 days to count their intestinal microorganisms. Before collection, the fish
were fasted for 24 h. On the 60th day of the experiment, biological materials were col-
lected from eight more fish from each experimental unit following the protocol described
above: namely, two fish for the intestinal histomorphometry analyses (n = 48), three fish
for the intestinal microorganism count analyses (n = 72), and three fish for the analyses
of intestinal enzyme activity (n = 72). A pool was created with three fish from each tank
for the microorganism count and enzymatic activity analyses, resulting in one sample per
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experimental unit (n = 24). This strategy was adopted to reduce variability, considering the
tank as an experimental unit.

2.9. Intestinal Microorganism Count

The intestines of Nile tilapia were aseptically removed, weighed to the nearest 0.1 g,
ground, homogenized, and serially diluted (1:10) in test tubes containing sterile saline
solution (0.65%). Then, the intestinal homogenates were seeded in Petri dishes with MRS
agar, TSA, and TCBS agar to quantify the LAB, total heterotrophic bacteria, and Vibrio sp.,
respectively [57,59,70]. Intestinal homogenates seeded in Petri dishes were incubated in an
oven at 35 ◦C. Colony-forming units (CFUs) were counted after 24 h of incubation in the
TSA and TCBS media and after 48 h in the MRS medium.

2.10. Intestinal Histomorphometry

Two fish from each replicate per treatment (n = 48) were selected for intestinal histo-
morphometric analysis after euthanasia. Their intestines were removed and weighed after
sectioning the abdominal wall. A portion of the anterior intestine (ca. 4 cm) of each animal
was collected and fixed in 15% neutral buffered formaldehyde. Samples were dehydrated
in ethanol solutions of increasing concentrations, cleared with xylene, and embedded in
paraffin. Serial sections (4 µm thickness) were obtained with a microtome and stained with
hematoxylin and eosin for general description, and the periodic acid–Schiff (PAS) method
was used for goblet cell identification and counting. Slides were analyzed using an optical
microscope, the software ToupTek ToupView ×64 image analyzer version 2270/07/03, and
a digital camera (Moticam 2300, 3 MP, resolution of 3264 × 2448, Germany, RML 5). The
intestinal villi were evaluated and measured in terms of height, width, thickness, and the
total number of goblet cells counted, as described in De Mello et al. [71].

2.11. Biochemical Analyses

A pool of three fish from each replicate per treatment were selected for biochemical
analysis after euthanasia (total of n = 24 samples; n = 6 samples per treatment). Alpha-
amylase, total alkaline protease, and lipase activities were determined according to the
methodology described by García-Carreño [72]. The intestines of three fish were collected
per tank replicate. During this collection, the samples were immediately frozen in liquid
nitrogen (−196 ◦C) and stored in an ultra-freezer at −80 ◦C until analysis. To perform the
analyses, the samples were then thawed, weighed, and fractionated into smaller sizes to
facilitate their homogenization in order to carry out the analysis. They were homogenized
using ice-cold sterilized distilled water (1:6 w/v) and sonicated under refrigeration (0–4 ◦C)
for 5 min. Then, the homogenate was centrifuged at 11,000× g for 10 min at 4 ◦C, and the
pellet containing cell debris was discarded. The recovered supernatant was used to define
the enzymatic activity using standard protocols.

Amylase activity was determined through a starch hydrolysis test after interrupting
the reaction by using dinitrosalicylic acid with an absorbance at λ = 540 nm, being expressed
in moles of reducing sugars [73]. Total alkaline protease activity (U) was evaluated through
the quantification of azocasein hydrolysis [72,74]. The lipase concentration was determined
using p-nitrophenyl laurate and propanol, and the resulting reaction with the supernatant
was stopped using ketone [75]. Lipase activity was measured at a wavelength of λ = 410 nm.
The concentration of enzyme required to hydrolyze the lipid components was expressed as
lipase activity (U). Samples were kept refrigerated during these analyses and all digestive
enzyme determinations were performed in triplicate per sample (methodological replicate).
The activity of the digestive enzymes was expressed as specific activity (U mg−1 protein).

Regarding oxidative stress enzymes, catalase (CAT) activity was measured by de-
creasing the absorbance at λ = 240 nm (
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Glutathione reductase (GR) activity was determined by measuring NADPH oxidation at
λ = 340 nm (
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= 6.22 mM−1 cm−1), using 20 mM glutathione disulfide and 2 mM NADPH
as substrates [78]. The superoxide dismutase (SOD) activity was measured at λ = 550 nm
as the degree of inhibition of cytochrome C reduction by O2 generated by the xanthine
oxidase/hypoxanthine system [79]. The reaction mixture consisted of 50 mM sodium
phosphate buffer pH 7.8, 0.1 mM Na 2 EDTA, 50 µM hypoxanthine, 10 µM cytochrome
C, and 0.6 U mL−1 xanthine oxidase. A unit of SOD activity was defined as the amount
of sample causing a 50% inhibition of cytochrome C reduction compared to the baseline
record obtained with buffer instead of sample.

The soluble proteins from crude enzyme extracts used for digestive enzyme and an-
tioxidative stress enzyme determination were quantified through the Bradford method [61]
using bovine serum albumin, as is standard. Enzymatic activities were expressed as specific
enzymatic activity in nmol of catalyzed substrate per milligram of protein (nmol mg−1

protein) for the CAT, GST, and GR activities, and in U mg−1 protein for the SOD activity.
All assays were performed in triplicate at 25 ◦C, and the absorbance was read using a
spectrophotometer (Tecan TM infinite M200, Tecan Trading AG, Männedorf, Switzerland).

2.12. Statistical Analyses

Our data are expressed as the mean ± SD. The data were subjected to tests to verify
the normality of errors (Shapiro–Wilk) and the homoscedasticity of variances (Levene).
Data expressed as percentage values were subjected to arcsine transformation. Differences
between the results were determined via analysis of variance (ANOVA), using Tukey’s
test at a 5% probability, and linear regressions were carried out with the software Statistic
version 10.0.

3. Results
3.1. Characterization of the Fermented Feed

The growth kinetics of L. acidophilus during the feed fermentation showed a quadratic
effect (Figure 1a; p < 0.05). The exponential phase of fermentation (Log phase) was reached
during the first 6 h of fermentation. LAB CFUs reached their maximum levels after 12 h
(stationary phase) and bacterial growth stabilized until the end of the evaluated period
(24 h). LAB multiplication reduced the pH in a quadratic way (Figure 1b; p < 0.05). There
is also a quadratic effect (p < 0.05) for the concentration of soluble proteins, showing an
increase during the fermentation time (Figure 1c). However, a reduction in the soluble
protein concentration was observed after 12 h of fermentation. Fermentation of the feed did
not affect its proximate composition (Table 2) nor its amino acid profile (Table 3) (p > 0.05).

Table 2. Proximate composition analyses (% in dry weight) of the experimental diets tested in Nile
tilapia (O. niloticus) reared under biofloc technology (BFT).

CFM CPB FPB6 FPB18

Dry matter (%) 95.39 ± 0.08 94.78 ± 0.02 94.78 ± 0.07 93.84 ± 0.19
Mineral material (%) 12.8 ± 0.06 5.48 ± 0.04 5.42 ± 0.01 5.47 ± 0.11

Crude protein (%) 34.14 ± 1.90 36.89 ± 1.94 35.88 ± 1.92 36.57 ± 1.93
Ether extract (%) 3.7 ± 3.42 5.77 ± 0.09 3.64 ± 2.92 4.07 ± 1.71

CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed;
FPB18—18 h fermented plant-based protein feed.
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Figure 1. Characterization of plant-based feed fermented with Lactobacillus acidophilus at different
fermentation times: (a) lactic acid bacteria count; (b) pH; and (c) soluble protein concentration.
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Table 3. Amino acid profiles (%) of the experimental diets tested in Nile tilapia (O. niloticus) reared
under biofloc technology (BFT).

Amino Acid (%) CFM CPB FPB6 FPB18

Essential amino acids
Arginine 1.99 2.35 2.38 2.35

Phenylalanine 1.44 1.87 1.78 1.74
Histidine 0.75 0.94 0.90 0.90
Isoleucine 1.38 1.72 1.66 1.63
Leucine 2.43 3.00 2.89 2.89
Lysine 2.08 2.50 2.28 2.14

Methionine 0.73 0.83 0.90 0.80
Valine 1.58 1.80 1.74 1.73

Threonine 1.04 1.28 1.27 1.24
Non-essential amino acids

Aspartic acid 3.22 3.87 4.03 3.96
Glutamic acid 5.47 6.52 6.63 6.62

Alanine 1.76 1.71 1.69 1.71
Cystine 0.35 0.46 0.54 0.57
Glycine 2.27 1.56 1.58 1.59

Hydroxyproline 0.46 0.09 0.09 0.10
Proline 1.93 1.98 1.93 1.93
Serine 1.42 1.66 1.70 1.69

Taurine 0.07 <0.01 <0.01 <0.01
Tyrosine 1.05 1.27 1.11 1.22

Sum of amino acids 31.43 35.42 35.09 34.81
CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed;
FPB18—18 h fermented plant-based protein feed.

3.2. Leaching Rate and Shelf Life

The leaching rate was higher (p < 0.05) for the FPB6 feed after the two evaluated times
when compared to the rest of the tested feeds (Table 4). Fermentation increased the shelf
life of the fermented plant-based feeds (Table 5). In particular, a significant reduction in the
count of molds and yeasts was observed in the FPB6 and FPB18 feeds compared to the two
controls at both evaluated times (p < 0.05). The lactic acid bacteria also remained viable in
the fermented feeds.

Table 4. Leaching rates (%) of the experimental diets after different times.

CFM CPB FPB6 FPB18

1 min 13.90 ± 2.62 a 14.02 ± 7.16 a 25.04 ± 4.89 b 10.89 ± 1.06 a

3 min 20.80 ± 9.00 a 13.51 ± 2.99 a 38.6 ± 7.92 b 16.59 ± 4.05 a

ND—not detected. Percentages followed by different letters differ (ANOVA, p < 0.05) from each other according
to Tukey’s test. CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based
protein feed; FPB18—18 h fermented plant-based protein feed.

Table 5. Shelf life (Log10 CFU g−1) of each experimental diet.

CFM CPB FPB6 FPB18

Lactic acid bacteria
0 days nd nd 5.77 ± 0.43 5.45 ± 0.30
7 days nd nd 5.64 ± 0.54 5.33 ± 0.43

15 days nd nd 5.66 ± 0.59 5.06 ± 0.43
30 days nd nd 6.63 ± 0.45 5.28 ± 0.41
60 days nd nd 4.39 ± 0.56 4.21 ± 0.13



Animals 2024, 14, 332 11 of 22

Table 5. Cont.

CFM CPB FPB6 FPB18

Molds and yeasts
0 days 6.29 ± 0.52 d 6.09 ± 0.65 c 4.89 ± 1.26 a 4.65 ± 0.56 b

7 days 6.53 ± 0.47 d 6.07 ± 0.10 c 5.35 ± 0.71 a 5.45 ± 0.03 b

15 days 5.39 ± 0.12 d 5.44 ± 0.38 c 3.81 ± 0.16 b 3.07 ± 1.09 a

30 days 6.64 ± 0.57 d 6.61 ± 0.86 c 5.85 ± 0.13 b 4.50 ± 0.70 a

60 days 5.78 ± 0.74 d 5.61 ± 0.13 c 4.47 ± 0.24 a 4.73 ± 0.16 b

Means ± SD followed by different letters differ (ANOVA, p < 0.05) from each other according to Tukey’s test.
nd—not detected; CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based
protein feed; FPB18—18 h fermented plant-based protein feed.

3.3. Microorganism Count in the Water

Throughout the whole experiment, the water parameters were maintained stable: tem-
perature, 27.09 ± 0.36 ◦C; pH, 8.40 ± 0.28; dissolved oxygen, 8.08 ± 0.23 mg L−1; ammonia,
0.47 ± 0.27 mg NH3 L−1; nitrite, 0.35 ± 0.09 mg NH3 L−1; nitrate, 1.43 ± 1.14 mg NH3 L−1;
sedimentable solids, 7.96 ± 3.16 mg L−1; and TSS, 225.22 ± 82.08 mg L−1. After 60 days
of the experiment, the use of FPB18 increased (p < 0.05) the LAB count in the BFT tanks
compared to the CFM and CPB diets (Table 6). Moreover, a reduction (p < 0.05) in Vibrio sp.
was observed in the water of the tanks that received FPB6 relative to the CFM diet.

Table 6. Microorganism counts in the water system.

CFM CPB FPB6 FPB18

LAB
0 days 4.36 ± 0.48 4.36 ± 0.48 4.36 ± 0.48 4.36 ± 0.48
7 days 4.05 ± 0.14 4.09 ± 0.31 4.38 ± 0.22 4.47 ± 0.10
15 days 3.46 ± 0.91 3.54 ± 0.62 4.06 ± 0.04 4.31 ± 0.66
30 days 3.68 ± 0.19 3.42 ± 0.75 4.21± 0.07 4.29 ± 0.66
60 days 5.60 ± 0.21 b 5.51± 0.72 b 6.55 ± 0.06 ab 6.65 ± 0.10 a

Heterotrophic bacteria
0 days 4.74 ± 1.73 4.74 ± 1.73 4.74 ± 1.73 4.74 ± 1.73
7 days 6.38 ± 0.04 5.87 ± 0.94 6.08 ± 0.01 6.00 ± 0.76

15 days 6.24 ± 0.28 6.33 ± 0.66 6.35 ± 0.96 6.56 ± 0.26
30 days 6.20 ± 0.06 5.98 ± 0.53 6.57 ± 0.13 6.27 ± 0.27
60 days 6.02 ± 0.11 5.78 ± 0.13 6.62 ± 0.15 6.34 ± 0.20

Vibrio sp.
0 days 5.25 ± 0.16 5.25 ± 0.16 5.25 ± 0.16 5.25 ± 0.16
7 days 5.35 ± 0.56 5.24 ± 0.72 4.91 ± 0.38 4.17 ± 0.32

30 days 6.93 ± 0.48 6.73 ± 0.50 5.71 ± 1.01 5.85 ± 0.66
60 days 6.89 ± 0.39 b 6.45 ± 0.42 ab 4.89 ± 1.38 a 5.49 ± 0.45 ab

Means ± SD followed by different letters differ (ANOVA, p < 0.05) from each other according to Tukey’s test.
CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed;
FPB18—18 h fermented plant-based protein feed.

3.4. Fish Performance

The FPB6 feed improved (p < 0.05) fish survival compared to the CPB diet (Figure 2).
Fermentation of the feed increased (p < 0.05) the plant-based feed intake in comparison to
the CPB diet (Table 7). The amount of feed ingested by fish from the FPB6 and FPB18 treat-
ments did not differ from the positive control CFM (p > 0.05). Regardless of fermentation
time, the fermented feeds resulted in worse feed conversion ratios when compared to the
non-fermented feeds (p < 0.05).
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Figure 2. Survival rates of juvenile Nile tilapia (O. niloticus) fed experimental diets that differed in
their level of fishmeal inclusion (CFM and CPB) and the fermentation time of plant protein feeds
(FPB6 and FPB18) after 60 days of the experiment. Percentages followed by different letters differ
(ANOVA, p < 0.05) from each other according to Tukey’s test. CFM—animal protein feed; CPB—
plant-based protein feed; FPB6—6 h fermented plant-based protein feed; FPB18—18 h fermented
plant-based protein feed.

Table 7. Performance of juvenile Nile tilapia (O. niloticus) fed experimental diets differing in the level
of fishmeal inclusion (CFM and CPB) and the fermentation time of plant protein feeds (FPB6 and
FPB18) after 60 days of the experiment.

CFM CPB FPB6 FPB18

Weight gain (g) 34.84 ± 7.10 a 22.28 ± 3.18 b 23.44 ± 0.89 b 20.87 ± 1.59 b

Feed consumption (g
per fish) 27.50 ± 3.03 a 20.42 ± 1.71 b 30.47 ±1.61 a 28.76 ± 3.14 a

Feed conversion 0.81 ± 0.16 a 0.84 ± 0.02 a 1.28 ± 0.03 b 1.38 ± 0.13 b

HIS (%) 2.11 ± 0.49 1.70 ± 0.32 1.95 ± 0.48 1.68 ± 0.35
Means ± SD followed by different letters differ (ANOVA, p < 0.05) from each other according to Tukey’s test.
CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed;
FPB18—18 h fermented plant-based protein feed; HSI—hepatosomatic index.

3.5. Intestinal Microorganism Count

At the end of the trial, the concentration of heterotrophic bacteria in the intestines of
Nile tilapia fed the FPB6 diet was higher than in the rest of the dietary groups (p < 0.05). The
levels of intestinal LAB at 30 and 60 days were lower (p < 0.05) in the fish that received plant-
based feeds (Table 8). The count of potential pathogenic microorganisms of the Vibrionaceae
family was lower (p < 0.05) in the fish treated with fermented plant-based feeds.
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Table 8. Intestinal microorganism counts (Log10 CFU g−1) of juvenile Nile tilapia (O. niloticus) fed
experimental diets differing in the level of fishmeal inclusion (CFM and CBP) and the fermentation
time of plant protein feeds (FPB6 and FPB18) after 60 days of the experiment.

CFM CPB FPB6 FPB18

LAB
30 days 3.86 ± 0.09 a 3.81 ± 0.39 b 4.39 ± 0.56 a 4.08 ± 0.56 a

60 days 6.18 ± 0.60 a 5.63 ± 0.85 b 6.26 ± 0.69 a 6.44 ± 0.30 a

Heterotrophic bacteria
30 days 6.51 ± 0.63 6.05 ± 0.36 5.94 ± 0.4 5.75 ± 0.59
60 days 5.25 ± 0.89 b 5.82 ± 0.36 b 6.37 ± 0.33 a 6.00 ± 0.66 b

Vibrio. sp.
30 days 5.45 ± 0.23 5.41 ± 0.31 5.23 ± 0.41 4.14 ± 1.56
60 days 6.80 ± 0.55 b 6.60 ± 0.75 b 5.12 ± 0.70 a 5.30 ± 1.04 a

Means ± SD followed by different letters differ (ANOVA, p < 0.05) from each other according to Tukey’s test.
CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed;
FPB18—18 h fermented plant-based protein feed.

3.6. Intestinal Histomorphometry

Small intestine epithelial organization was normal and did not show any sign of
inflammation in fish from the CBP, FPB6, and FPB18 groups, showing that these treatments
were innocuous to epithelium integrity and organization. The villus height of fish that
were fed the fermented diets did not differ from their congeners fed the CFM diet (Table 9;
p > 0.05). The smallest villus size was observed in the fish fed the CPB diet. The number of
goblet cells was higher in fish fed the FPB6 diet compared to those given non-fermented
feeds. The lowest goblet cell densities were observed in the CPB and CFM groups (p < 0.05).

Table 9. Intestinal histomorphometry measurements of juvenile Nile tilapia (O. niloticus) fed experi-
mental diets differing in the level of fishmeal inclusion (CFM and CPB) and the fermentation time of
plant protein feeds (FPB6 and FPB18) after 60 days of experiment.

Villus CFM CPB FPB6 FPB18

Height (µm) 385.87 ± 38.39 a 268.90 ± 18.19 b 442.60 ± 42.94 a 396.17 ± 30.42 a

Width (µm) 96.86 ± 3.70 86.78 ± 8.38 95.73 ± 21.18 96.3 2± 7.09
Thickness (µm) 47.15 ± 3.51 40.43 ± 4.50 43.46 ± 6.26 42.84 ± 7.12

GCs (u.) 8.69 ± 2.24 b 8.01 ± 2.46 b 16.15 ± 3.75 a 13.82 ± 3.18 ab

Means ± SD followed by different letters differ (ANOVA, p < 0.05) from each other according to Tukey’s test. CFM—
animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed; FPB18—18 h
fermented plant-based protein feed; GCs—goblet cells; u.—each goblet cell was contacted individually.

3.7. Intestinal Enzymatic Activity

The activities of the α-amylase, lipase, and total alkaline proteases, and the activity of
the oxidative stress enzymes, were not affected by the experimental diets (Tables 10 and 11,
respectively; p > 0.05).

Table 10. Specific activity of selected pancreatic digestive enzymes in the intestinal portion of juvenile
Nile tilapia (O. niloticus) fed experimental diets differing in the level of fishmeal inclusion (CFM
and CPB) and the fermentation time of plant protein feeds (FPB6 and FPB18) after 60 days of the
experiment.

Enzyme CFM CPB FPB6 FPB18

Amylase 1.57 ± 1.47 2.09 ± 1.09 1.68 ± 0.47 2.81 ± 0.12
Lipase 3.53 ± 0.26 3.11 ± 0.33 2.58 ± 0.88 2.83 ± 0.96

Total alkaline proteases 1.09 ± 0.24 0.79 ± 0.30 1.04 ± 0.21 0.95 ± 0.19
CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed;
FPB18—18 h fermented plant-based protein feed. Amylase activity was expressed as U mg−1 of protein; lipase
activity was expressed in U g−1; protease activity was expressed as U g−1.
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Table 11. Activity of oxidative stress enzymes in the intestinal portion of juvenile Nile tilapia (O.
niloticus) fed experimental diets differing in the level of fishmeal inclusion (CFM and CPB) and the
fermentation time of plant protein feeds (FPB6 and FPB18) after 60 days of experiment.

CFM CPB FPB6 FPB18

Soluble protein 7.21 ± 2.33 6.98 ± 2.03 9.04 ± 2.73 7.90 ± 2.09
Gluthatione reductase 26.11 ± 8.04 26.77 ± 5.07 21.01 ± 4.51 23.22 ± 5.51

Gluthatione peroxidase 151.48 ± 68.31 147.26 ± 59.75 128.95 ± 56.83 121.32 ± 51.26
Catalase 6.52 ± 9.14 8.82 ± 3.77 7.06 ± 3.37 6.98 ± 2.90

SOD 98.43 ± 0.74 98.70 ± 1.50 99.91 ± 2.01 98.75 ± 2.13
CFM—animal protein feed; CPB—plant-based protein feed; FPB6—6 h fermented plant-based protein feed;
FPB18—18 h fermented plant-based protein feed. Protein concentration was expressed as mg mg−1; gluthatione
reductase, gluthatione peroxidase, and catalase activity was expressed in nmol min−1 mg prot−1.

4. Discussion

By means of fermentation, LAB multiply and produce different types of metabo-
lites [80]. Under the current experimental conditions, LAB reached their maximum concen-
tration after 12 h in the fermented feeds. There are no reference values for the growth of
LAB during the fermentation of vegetable feeds for Nile tilapia, but the values obtained
here are similar [81] or higher [82] than those obtained in the fermentation of soybean
substrates for L. acidophilus. A reduction in pH and an increase in soluble proteins and cell
growth were also observed in the first 12 h of fermentation, which may be a consequence
of organic acid production by LAB [83], and because of an accumulation of peptides and
low-molecular weight proteins resulting from the fermentation process [18], since LAB
break down proteins, releasing peptides [80]. Another hypothesis for the variation in
the concentration of soluble proteins could be the reduction in pH during fermentation,
which can alter the solubility of the proteins present in the feed [84]. Similar results were
also observed during the fermentation of soybean meal with LAB and in combination
with other microorganisms [39,82]. In addition, as peptides are an available substrate
for bacterial growth [18], this may explain the faint growth of LAB under the current
fermentation conditions.

Fermentation did not affect the bromatological composition and amino acid profile
of the feeds. Crude protein values remained constant in all treatments, which fits the
nutritional requirements of juvenile Nile tilapia [53]. Studies with soybean meal fermen-
tation have shown that there may be an increase in proteins and amino acids, but that
these levels are maintained in most cases [39,85]. Protein synthesis during fermentation
may not occur, wherein only the hydrolysis of larger proteins, releasing peptides and free
amino acids, takes places [86–88]. The increase in soluble proteins confirms the higher
availability of low-molecular weight peptides, which may be easily absorbed and used
by the host [31,39,89]. However, more studies are still needed to characterize the peptide
profile in fermented feeds and their functionality, as well as their impact on fish condition,
health, and growth. Under our experimental conditions, the leaching rate increased in
feeds fermented for six hours. This result may also be related to a higher concentration of
soluble proteins, which may have reduced stability and led to nutrient losses. Factors such
as the choice of fermenting microorganism, substrate, time, and temperature can influence
the levels of amino acids and the nutritional quality of the feed during fermentation and
can be used to adjust the nutritional quality of fermented feeds according to the stage of
development and nutritional requirements of farmed fish [85,90,91].

The shelf-life analyses of our fermented feeds showed that the LAB remained viable
even after pelleting the feed. The fermented plant-based feeds had the lowest count
of molds and yeasts compared to the two controls over the 60 days of evaluation. The
increased shelf life of these fermented products can be associated with the production of
antimicrobial substances and the pH reduction, having probiotic effects on the host and
protecting feed spoilage [92]. Bacteria of the genus Lactobacillus may release antimicrobial
peptides such as exogenous enzymes (lysozyme) and bacteriocins under situations of



Animals 2024, 14, 332 15 of 22

competition or stress [93,94]; these substances inhibit the spoilage microflora, such as molds
and fungi, present in food [94]. The release of organic acids, such as lactic and acetic,
during fermentation by LAB can also be an inhibitory factor for the growth of spoilage
bacteria [95]. Organic acids exhibit antifungal activity by interacting with the cell wall of
the microorganism [95]. Potential future studies characterizing the bacteriocins and organic
acids present in fermented feeds are important to better understand these results and the
further application of fermented feeds.

The water quality dynamics of the BFT system were not affected by the administration
of fermented feeds. According to Mohammadi et al. [96], the recommended values of TSS
for Nile tilapia cultivation in BFT systems should remain between 300 and 690 mg L−1,
which are considerably higher than the values found in the present study for this species.
Furthermore, heterotrophic bacteria growth was effective in controlling ammonia levels
and the cycling of nitrogenous compounds, as demonstrated by the low levels of nitrite and
increased nitrate. Additionally, the use of fermented feeds positively affected the count of
microorganisms in the water in the BFT tanks, with an increase in LAB and a reduction in
Vibrio sp. The increase in LAB during fermentation may have contributed to the reduction
in Vibrio sp., through the competitive exclusion process [97]. The use of probiotics has
already been demonstrated to be effective in BFT systems to control pathogenic bacteria in
water [98]. The presented results on water microbiota modulation with the use of fermented
feeds are unprecedented and demonstrate the double benefit of implementing this strategy
in BFT systems, since not only are the shelf lives of the feeds extended, but also the water
quality is improved.

Survival of these Nile tilapia juveniles was higher in the fish fed with the FPB6 diet
compared to the plant-based diets. This result is unprecedented with fermented feeds
and ingredients. The use of fermented soybean meal in fish diets has shown evidence of
improvement in intestinal health, but survival is generally not affected [99–101]. In a recent
study, the use of a fermented feed with a co-culture of LAB did not affect the survival of
largemouth bass Micropterus salmoides [102]. By expanding the benefits of fermenting the
complete feed, the effects of fermenting were able to be maximized. The improved survival
may be linked to an increase in both the LAB concentration and the metabolites produced in
fermentation and the probiotic effect of LAB on the host. In this sense, fermentation led to
an exponential growth of L. acidophilus, which has probiotic properties [103] and produces
substances with nutraceutical properties, improving the intestinal health of the fish and its
overall condition [104]. Several studies have evidenced that the direct use of LAB in tilapia
feeds can increase their survival [105–107]. The decrease observed in the Vibrio sp. in the
water of the treatments with fermented feeds may also explain their better survival. More
evaluations under challenge conditions are required to evaluate the nutraceutical potential
of fermented feeds and test their use as functional diets.

In general, feeds containing animal protein (CFM) are more ingested by Nile
tilapia [108]. In the present study, the ingestion of fermented plant-based feeds did not
differ from the control diet containing fishmeal. This result confirms the potential of
feed fermentation as a strategy to improve the palatability of plant-based diets. Aromatic
organic compounds are released during the fermentation process, improving the palata-
bility of feeds, and promoting fish ingesta [109]. This is the first study conducted with
fermented plant-based feeds, but it has already been demonstrated that soybean meal
fermented with LAB can partially replace fishmeal without impairing feed intake and fish
performance [100–110]. This result, however, may vary for different species. For example,
fermentation of conventional diets for largemouth bass reduced their ingestion rate [102].
Regarding the current study’s promising results, more studies are still needed to identify
the palatability enhancers present in fermented feeds and evaluate their effect on fish
feeding behavior.

Fermentation of the vegetable feeds had no positive effect on fish weight gain, and
the best growth was obtained with the CFM diet. Fermented feeds showed a worsening of
feed conversion, which may have harmed the results in terms of production performance.
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However, no leftover feed was found in any treatment and there were no changes in
the suspended solids and water quality that could indicate an increase in bioflocs due to
the decomposition of unconsumed feed by heterotrophic bacteria in the tanks. Thus, the
worsening in the food conversion values can be explained by the presence of antinutritional
factors from vegetable protein sources in the fermented feeds. Soybean meal contains
allergenic proteins (β-conglycinin and glycine), insoluble fiber, phytates, and tannins, which
may not have been completely eliminated during fermentation [111–114]. Furthermore, the
feed fermented for 6 h had a higher concentration of soluble proteins, which may have led
to an excess of low-molecular weight peptides and free amino acids that could compromise
their absorption and subsequent use [115,116]. Similar results have been obtained with the
inclusion of high levels of fermented soybean meal in diets of catfish (Rhamdia quelen) [82].
Furthermore, changes in the leaching rate that may affect dietary protein levels may also
explain the poorer conversion of this diet. Thus, the effects on feed conversion need to be
better understood to make fermentation viable as a sustainable practice.

Regarding the bacteria counts in the guts of these Nile tilapia fed experimental diets,
an increase in the count of heterotrophic bacteria and LAB was observed in the intestines
of the fish with the use of fermented feeds. The intestinal microbial count parameter is an
indication of fish health [117]; thus, this increase in intestinal LAB agrees with the increase
in LAB count in the feeds and water samples, since there is generally a sound correlation
between the intestinal microbiota in fish and those of the environment [118]. A similar
modulation effect could have been observed in the reduction in Vibrio sp. through the
feed and biofloc particles. In addition, LAB have been described to phagocyte pathogenic
bacteria and produce immunostimulant and antimicrobial substances [119,120], which may
explain the above-mentioned reduction in Vibrio sp. abundance. Similarly, the ingestion of
soybean meal fermented with L. acidophilus has been reported to reduce the count of Vibrio
sp. in the intestines of catfish [84].

The morphometric characteristics of the tilapia epithelium fed the FPB6 and FBB18
diets were similar to those fed the CFM diet. In relation to the plant-based diet (CPB), there
was a reduction in villus height, which can be attributed to the presence of antinutritional
factors in soybean meal, such as insoluble fibers and antigenic proteins [121–125]. However,
dietary fermentation could have somewhat offset the aforementioned effects of the plant-
based diet. These results can be attributed to an improvement in intestinal condition due
to the probiotic effect of fermented aquatic feeds and their greater abundance of LAB.
Furthermore, dietary LAB has been described to positively modulate intestinal mucosa and
villous condition [123]. For example, the use of plant-based diets with fermented soy for
tilapia showed an increase in this parameter compared to a diet containing fishmeal [39].
Regarding the intestinal goblet cells, their number was greater in the fish fed the FPB6 diet.
These secretory cells lining the intestinal epithelium are responsible for the production of
mucins [124] associated with intestinal health and protection [71], as well as non-specific
intestinal immunity [125]. Increased goblet cell concentration may be associated with
improved gut health, supported by increased beneficial bacteria counts and increased villus
size, results that may be linked to the potential probiotic effect of fermented feeds. In
this regard, several studies have revealed that consumption of foods containing LAB can
increase the number of goblet cells in the intestines of Nile tilapia due to the probiotic
effect of LAB [126]. Similarly, different levels of fermented soy in aquafeeds for Nile tilapia
resulted in an increase in goblet cell density [39].

In this study, fermentation of plant-based feeds did not modulate the activity of diges-
tive and antioxidant enzymes in the gut of Nile tilapia. During fermentation, digestive and
antioxidant enzymes are produced by L. acidophilus [22,82,127], although their contribution
to the host’s condition is doubtful. Dietary inclusion of fermented ingredients may improve
the activity of digestive [35] and antioxidant enzymes in fish [128], but changes in these
activities are not always observed [82,102,129]. In this study, it is worth highlighting that
enzymatic activity was not negatively affected by any treatment, even by the CPB diet,
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especially when considering that soybean meal may contain enzyme inhibitors that could
have negatively affected the digestive process [130] and antioxidant response [131].

5. Conclusions

Fermentation with L. acidophilus increased the LAB count and soluble protein con-
centration of the plant-based feed, as well as causing a decrease in pH. The FPB6 diet
increased fish survival. Fermentation also increased feed intake but reduced feed efficiency.
In general terms, the use of fermented feeds like the FPB6 and FPB18 diets increased the
abundance of beneficial bacteria (LAB) counts and reduced the pathogenic bacteria in the
water of the BFT system and in the fish’s guts. Fermented diets could promote intestinal
conditions by inducing an increase in villus size (FPB6 and FPB18) and goblet cell number
(FPB6). The results of this study are promising and show the potential of using plant-based
fermented feeds in fish feeding. Fermentation was successfully conducted, and promising
results were obtained for the intestinal microorganism count and histomorphometry. This
is a promising technology that can be applied both before and after processing and could
potentially be used in the production of sustainable fish feed without components of animal
origin. Fermentation is a process that can be carried out easily, enabling the adoption of
this technology by fish producers, who could apply it to already-processed feeds, reducing
production costs. There is a demand for research and development in this field, as it is a new
topic with potential impact in fish aquaculture. The prospect of different microorganisms
and the effects of fermented feeds on different types of pathogens still need to be evaluated.
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