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Ppe.RPT/SSC‑1: from QTL 
mapping to a predictive KASP test 
for ripening time and soluble solids 
concentration in peach
Cassia da Silva Linge 1,2, Wanfang Fu 1, Alejandro Calle 1,3, Zena Rawandoozi 4, Lichun Cai 1, 
David H. Byrne 4, Margaret Worthington 5 & Ksenija Gasic 1*

Genomic regions associated with ripening time (RPT) and soluble solids concentration (SSC) were 
mapped using a pedigreed population including multiple  F1 and  F2 families from the Clemson 
University peach breeding program (CUPBP). RPT and SSC QTLs were consistently identified in two 
seasons (2011 and 2012) and the average datasets (average of two seasons). A target region spanning 
10,981,971–11,298,736 bp on chromosome 4 of peach reference genome used for haplotype analysis 
revealed four haplotypes with significant differences in trait values among different diplotype 
combinations. Favorable alleles at the target region for both RPT and SSC were determined and a 
DNA test for predicting RPT and SSC was developed. Two Kompetitive Allele Specific PCR (KASP) 
assays were validated on 84 peach cultivars and 163 seedlings from the CUPBP, with only one assay 
(Ppe.RPT/SSC‑1) needed to predict between early and late-season ripening cultivars and low and 
high SSC. These results advance our understanding of the genetic basis of RPT and SSC and facilitate 
selection of new peach cultivars with the desired RPT and SSC.

Peach [Prunus persica (L.) Batsch] is the third most cultivated temperate tree fruit in the world after apple and 
 pear1. The United States is the fifth largest peach producer in the world with an approximate production of 730 
thousand tons, behind China, Spain, Italy, and  Turkey2. Despite high production levels, variability in fruit quality 
has resulted in a significant decrease in US peach consumption in the last  decades3.

One of the main consumer complaints about peaches is the lack of sensory quality, which is mostly caused 
by harvesting fruits at an inadequate ripening  stage4. The process of fruit ripening plays an important role in 
improving peach organoleptic quality, including increases in the soluble solids concentration (SSC) to acid ratio, 
softening, and  aroma5,6. SSC, measured as °Brix, is often used to express sugar content and represents one of the 
main drivers affecting peach consumer  acceptance7. The amount of total SSC in ripe fruits combined with addi-
tional active compounds, such as pectin, salts, and organic acids, significantly increases consumer satisfaction 
in  peaches8,9. Medium and late season cultivars have a greater capacity to accumulate sugar compared to early 
season  cultivars4. Ripening time, however, affects the farm gate value of the crop with early ripening cultivars 
getting a higher price despite the SSC  levels10. Therefore, breeders aim to develop new peach cultivars tailored to 
specific ripening periods and with enhanced sensory characteristics that balance sensory quality and maturity 
at harvest to ensure consumer satisfaction and encourage consumption.

New genetic resources for peach have enabled several recent studies on genetic dissection of important traits 
including ripening time (RPT) and SSC. Quantitative Trait Loci (QTLs) and associated signals have been identi-
fied using different approaches such as bi-parental QTL  mapping11–14, pedigree-based analysis (PBA)15–17 and 
genome-wide association  studies18. In addition, genomic prediction models focusing on SSC were  developed19,20.

A large-effect QTL on chromosome 4, discovered using a low-density linkage map, suggested a pleiotropic 
effect between SSC and  RPT11. Further studies also highlighted a QTL hotspot in the same region using dif-
ferent genetic backgrounds and mapping  approaches15,18. Although QTLs for several traits including SSC and 
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RPT have been discovered, the conversion into practical breeding tools is still scarce. Trait-predictive DNA tests 
could be used to rapidly identify valuable parents as well as to remove inferior seedlings that do not possess a 
target characteristic. Thus, applying these genetic assays in breeding programs could significantly enhance the 
efficiency of the cultivar development  process21,22.

In peach, rapid and accurate DNA tests for predicting bacterial spot severity in fruit and chilling requirement 
were recently  developed23,24. Additional tests for peach skin  blush25, fruit  pubescence26,  subacid27 and flesh  color28 
are also available. Most of the existing tests were developed using PCR-based simple sequence repeat (SSR) tech-
nology. Single nucleotide polymorphism (SNP) markers have replaced SSRs and other types of molecular markers 
due to the considerable cost-efficiency for genotyping and their precision, stability, and easy  detectability29–31. 
Kompetitive Allele-Specific PCR (KASP) assays are affordable, rapid, and robust tools to genotype SNPs of inter-
est and are widely used due to improved cost-effectiveness compared to other  technologies23,29,31,32.

The objective of this work was to showcase the whole process from QTL discovery to DNA test development 
for routine use in peach breeding for the simultaneous prediction of RPT and SSC. First, we mapped and vali-
dated the previously discovered large effect RPT and SSC QTLs on chromosome 4 within Clemson University 
peach breeding germplasm using a pedigree-based analysis (PBA) approach. Subsequently, we developed and 
validated a rapid KASP test using the target region obtained by the QTL mapping.

Results
Phenotypic data
In this study, we have analyzed a pedigree-connected germplasm comprising cultivars, advanced selections, 
and seedlings from Clemson University peach breeding program (CUPBP), previously assembled under the 
RosBREED  project18,22. A breeding population containing a total of 288 seedlings, included multiple  F1 and 
 F2 families obtained from 19 parents (Supplementary Table S1), was chosen for mapping analyses. The breed-
ing population containing 288 seedlings from the CUPBP was evaluated for RPT and SSC over two seasons 
(2011–2012). The RPT ranged from 150 to 235 JD with a mean of 195 and 182 in 2011 and 2012, respectively. SSC 
varied from 7.4 to 19.8 °Brix with means of 12.3 and 11.7 in 2011 and 2012 (Supplementary Table S2). Accord-
ing to the Shapiro Wilk test, RPT did not follow a normal distribution in both seasons, whereas SSC exhibited a 
normal distribution only in 2012 (Supplementary Table S3). According to the non-parametric Wilcoxon signed 
rank test, significant differences were observed in the RPT and SSC averages between seasons with a delay in 
the RPT and a higher SSC mean value observed in 2011. Spearman’s rank correlation analysis demonstrated 
significant positive coefficients between RPT and SSC in 2011 (0.67) and 2012 (0.62). Considering the correlation 
between seasons, RPT had the highest coefficient (0.90) and SSC the lowest (0.41) (Supplementary Fig. S1). The 
narrow-sense heritability was 0.84 and 0.24 for RPT and SSC, respectively.

QTL analysis
The pedigree-connected germplasm used in this study was genotyped with the IPSC peach 9K SNP array  v133. 
A total of 1487 informative SNPs (Supplementary Table S4) were used for QTL mapping. The physical positions 
of the SNPs were obtained considering the peach reference genome  v234. We performed the QTL analysis using 
a Bayesian, pedigree-based QTL analysis (PBA) implemented in FlexQTL™ using the RPT and SSC phenotypic 
data from 2011 (RPT_2011 and SSC_2011), 2012 (RPT_2012 and SSC_2012) as well as the average values of 
both seasons (RPT_Ave and SSC_Ave).

The QTL analysis identified major QTLs associated with both RPT and SSC (Table 1, Supplementary Figs. S2, 
S3). The RPT QTL, qRPT_SC_4, was consistently mapped with decisive evidence (BF > 10) on LG4 in the over-
lapped genetic interval of 44–51 cM in both 2011 and 2012. Peak position of the qRPT_SC_4.1 was at 45–48 cM. 
The SSC QTL, qSSC_SC_4.1, was also consistently mapped in both seasons in a wider genetic interval (38–52 cM 
and 43–58 cM in 2011 and 2012, respectively) and exhibited a peak position varying from 44 to 49 cM. Overall, 
the qRPT_SC_4.1 and the qSSC_SC_4.1 were mapped in the same genetic interval forming a QTL cluster (Sup-
plementary Fig. S3). Based on the peak position mapped in both seasons and traits, an initial genetic interval 
comprising eight SNPs spanning from 44 to 49 cM (physical position from 10,981,971 to 12,523,245 bp) was 
highlighted and subsequently used for the phenotypic variance explained (PVE). The qRPT_SC_4.1 explained 
approximately 59% and 53% of the phenotypic variance in RPT 2011 and 2012, respectively, while the PVE for 
qSSC_SC_4.1 ranged from 26 (2011) to 35% (2012).

Table 1.  Summary of QTLs mapped on linkage group 4 in the Clemson University peach breeding program 
using FlexQTL™. RPT ripening time, SSC soluble solids concentration, LG linkage group, BF Bayes factor, 
Interval (bp − (peach reference genome  v234); Additive effect; PVE percentage of variance explained.

Trait QTL name LG Dataset BF Interval(cM) Interval (bp) Peak (cM) Additive PVE

RPT

qRPT_SC_4.1 4 2011 10.2 44–51 10,981,971–13,633,831 48 18.44 59.0

qRPT_SC_4.1 4 2012 27.2 44–50 10,981,971–12,971,285 46 16.2 53.2

qRPT_SC_4.1 4 Ave 28.9 44–47 10,981,971–11,654,504 45 17.4 53.8

SSC

qSSC_SC_4.1 4 2011 28.7 43–58 10,760,086–17,176,059 49 1.68 25.9

qSSC_SC_4.1 4 2012 31.7 38–52 9,617,585–13,882,450 44 1.47 34.5

qSSC_SC_4.1 4 Ave 29.9 41–49 10,280,095–12,546,297 45 1.51 36.0
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Datasets using the average of two seasons for both traits (RPT_Ave and SSC_Ave) were used in an independ-
ent FlexQTL™ runs and the overlapped peak position was detected at 45 cM, explaining approximately 54% and 
36% of the phenotypic variance observed in RPT and SSC, respectively (Table 2). Thus, we targeted the genetic 
interval from 44 to 45 cM (spanning a physical position from 10,981,971 to 11,298,736 bp) for further analysis 
of diplotype/genotype effects.

To account for pleiotropic effect of RPT we also performed a QTL analysis using SSC_Ave (average of the 
two seasons) and the RPT as a cofactor. The QTL analysis revealed that both the BF (evidence of the presence 
of QTL) and PVE decreased in all three datasets containing the cofactor compared to the one where no cofac-
tors were included (Supplementary Table S5). The dataset using no cofactor showed a BF of 29.7 and explained 
approximately 35% of the observed phenotypic variance. The dataset using the phenotypic average of RPT as a 
cofactor had the lowest BF (8.4) and PVE (20.8), while the dataset incorporating the haplotype information of 
the RPT QTL interval exhibited the highest BF (29.4) and PVE (27.2).

QTL haplotype, genotype and predictive markers
In this study, the haplotype analysis was carried out by selecting the SNPs within the significant QTL interval con-
sidering the RPT and SSC average datasets. Three SNPs were located within the target region of the QTL interval 
from 44 cM (10,981,971 bp) to 45 cM (11,298,736 bp), which was detected in the average datasets (RPT_Ave and 
SSC_Ave). Out of the possible six, we observed four unique haplotypes (H1–H4) defined by three SNPs within the 
region in the analyzed material (Table 2, Fig. 1). The sources of each haplotype are shown in the Supplementary 
Table S6. The haplotype H4 was associated with an early ripening, lower SSC values and was attributed to the 
q allele. The H1–H3 haplotypes were associated with increase of both traits and were assigned to the Q allele. 
The SNP_IGA_411637 was determined as the predictive marker for distinguishing the Q and q alleles (Table 2). 
Three statistically different QTL genotypes (qq, Qq, QQ) were detected in the breeding population used for QTL 
mapping (Fig. 1). The allele Q was associated with late ripening and a higher SSC and the allele q with early 
ripening and lower SSC (Fig. 1). The seedlings carrying the QQ genotype (H3H2 or H2H2 diplotypes) averaged 
199 and 213 JD and 13.2 °Brix, while the seedlings with Qq genotypes (H4H2 or H1H4 diplotypes) ripened on 
average at 192 and 194 JD and had on average 12.4 and 12.5 °Brix. Lastly, seedlings with the qq genotype (H4H4) 
ripened on average at 180 JD and had an average of 11.1 °Brix (Fig. 1). The most frequent diplotype was H4H4 
(130 seedlings phenotyped for RPT and 129 for SSC) followed by H1H4 (63 seedlings phenotyped for RPT and 
49 for SSC). Seedlings carrying the Q allele with H2H2 (14 seedlings phenotyped for RPT and 12 for SSC) and 
H3H2 (8 seedlings phenotyped for RPT and SSC) diplotypes were less frequent in the population (Fig. 1).

Although three SNPs were selected to distinguish haplotypes in the QTL region, only one, SNP_IGA_411637, 
was necessary to discriminate early, mid, or late-ripening individuals (Fig. 2). Single linear regression (SLR) 
analysis of RPT and SSC at SNP_IGA_411637 revealed 27.7 and 16.6% PVE, respectively (Table 3). Thus, to 
further validate our findings, we compared the RPT and SSC for the three different genotypes (AA, AB, and BB) 
of the SNP_IGA_411637 in Arkansas (AR), South Carolina (SC), and Texas (TX) breeding materials (Fig. 2). 
The comparison of the phenotypic performance of different genotypes revealed significant differences (p < 0.05) 
in all three peach breeding programs with individuals homozygous for the ‘B’ allele showing the earliest RPT 
and lowest SSC, and individuals homozygous for the ‘A’ allele having the latest RPT and highest SSC (Fig. 2, 
Supplementary Table S7). On average, individuals homozygous for the ‘B’ allele ripened 12 (SC), 16 (TX) and 
17 (AR) days earlier than heterozygous individuals, and individuals homozygous for ‘A’ allele ripened 9 (SC) 
to 12 (AR) days later than heterozygous individuals (Supplementary Table S7). The AA genotypes were not 
observed in the TX material. For SSC, individuals homozygous for the ‘B’ allele had decreased SSC by 0.48 (TX) 
to 0.64 (SC) in comparison to the heterozygous individuals (AB). In contrast, individuals homozygous for the 
‘A’ allele had increased SSC by 0.2 (SC) to 1.3 (AR) in comparison to individuals with the AB genotype (Fig. 2, 
Supplementary Table S7.

KASP assay development and validation
In order to confirm the predictive SNP and reconstruct haplotypes (possible six and observed four), all three 
SNP markers (SNP_IGA_422637, SNP_IGA_412338 and SNP_IGA_412662) were used in the KASP assay devel-
opment and validation. The two KASP assays, Ppe.RPT/SSC-1.1 (SNP_IGA_411637) and Ppe.RPT/SSC-1.2 
(SNP_IGA_412338), were developed and successfully amplified and distinguished alleles in validation material 

Table 2.  QTL peach genotypes in ripening time (RPT) and soluble solids concentration (SSC) target region 
spanning 44 cM (10,981,971 bp) to 45 cM (11,298,736 bp). SNP names, position in bp (peach reference 
genome v2) and cM, haplotype names. Bolded = predictive SNP. PVE calculated by each marker using single 
linear regression analysis during the KASP test validation. *Illumina (A|B) nucleotide designation and actual 
nucleotides.

SNP Nucleotides*

Position PVE (%)* Haplotypes

Physical (bp) Genetic (cM) RPT SSC H1 H2 H3 H4

SNP_IGA_411637 T|G 10,981,971 44.1 27.7 16.6 T T T G

SNP_IGA_412338 A|G 11,208,736 45.0 5.7 4.7 A G G G

SNP_IGA_412662 A|G 11,298,736 45.0 12.5 6.6 G A G A

QTL allele Q Q Q q
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(Table 3, Fig. 3). The SNP_IGA_412662 was unsuitable for conversion into a KASP assay, due to its flanking 
sequence not meeting criteria for primer design, and was subsequently discarded. Using 84 peach cultivars, the 
assay validation revealed four different clusters corresponding to each genotype (AA, AB, and BB) and non-
template controls (Fig. 3, Supplementary Table S8). The KASP had 93.1% accuracy in correct allele assignment 
compared to the 9K SNP array, with the discrepancies observed in four cultivars (China Pearl, Fantasia, Le 
Grand, and Saturn) (Supplementary Table S8). Additionally, end-point PCR for the same 84 peach cultivars 
showed similar performance to real-time PCR (Fig. 3), with only 3.2% samples needing to be repeated due to 
the lack of amplification.

Similarly, to the haplotype phenotype analyses above, the analysis of the phenotypic effect of the SNP_
IGA_411637 (Ppe.RPT/SSC-1.1) in the 84 peach cultivars suggested that the ‘A’ allele was associated with a delay 
of RPT and an increase of SSC, while the ‘B’ allele was related to the advancement of RPT and a decrease of SSC. 
The comparison between observed and predicted mean RPT (early, mid and late) in the validation material (84 
cultivars) explained 20% of the phenotypic variance observed and revealed a significant difference (Tukey test, 
p < 0.05) between early and late-ripening individuals (Fig. 4a). Individuals predicted as early and mid-season 
ripened on average 18 and 9 days before ‘Elberta’, respectively (Supplementary Table S9). In contrast, individuals 

Figure 1.  Ripening time (RPT; in Julian days, JD) (a), soluble solids concentration (SSC; in °Brix) (b) and 
haplotype effects in the Clemson University peach breeding material. Effects were based on diplotypes observed 
for qRPT_SC_4.1 and qSSC_SC_4.1 QTLs. Only diplotypes represented by eight or more individuals were 
included. N represents the number of individuals containing the phenotypic data for RPT and SSC observed 
in each dyplotype. Significantly different (Steele–Dwass, p < 0.05) phenotypic means are identified by different 
letters. 
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predicted as late season had, on average, a delay of 16 days compared to ‘Elberta’ (Supplementary Table S9). 
The comparison between observed and predicted mean of SSC, showed that 12% of phenotypic variance can 
be explained by Ppe.RPT/SSC-1.1. Individuals with low and mid predicted SSC revealed a significantly (Turkey, 
p < 0.05) lower mean of SSC when compared with individuals with high predicted SSC (Fig. 4b). No significant 
differences were observed between individuals with low and mid predicted SSC; however, individuals predicted 
to have low SSC exhibited lower observed SSC levels than those with mid predicted SSC. The same patterns were 
observed for the 163 individuals from the CUPBP and 26 commercial cultivars with known RPT and SSC in five 
evaluated seasons. In these materials, individuals with the AA genotype (predicted to have late RPT and high 
SSC) had the latest average RPT and highest average SSC in all five seasons (Fig. 5). These individuals ripened on 
average three and four weeks later than mid (AB genotype) and early (BB genotypes) season cultivars, respectively 

Table 3.  Primer specification for Kompetitive Allele-Specific PCR (KASP). SNP target for the assay in 
the 9K peach SNP array, annealing temperatures (Tm, °C), and primer sequences. FAM (F) and HEX (H) 
tag sequences are italicized. N = none, for the reverse primer. a The SNP_IGA_412662 was unsuitable for 
conversion into a KASP assay and was discarded.

Assay (SNP) Tm Tag Primer sequence (5ʹ → 3ʹ)

Ppe.RPT/SSC-1.1
 SNP_IGA_411637

61.6 F GAA GGT GAC CAA GTT CAT GCT GGT TCA GTA TAT GGT TGT GGT TGG ATGGGt

62.0 H GAA GGT CGG AGT CAA CGG ATT GGT TCA GTA TAT GGT TGT GGT TGG ATGGGg

60.4 N CCT GTC TGG AAA TCC AAG GCTGC 

Ppe.RPT/SSC-1.2
 SNP_IGA_412338

59.2 F GAA GGT GAC CAA GTT CAT GCT ATC GCA CCA AAT TGG GTC TATGCa

60.0 H GAA GGT CGG AGT CAA CGG ATT ATC GCA CCA AAT TGG GTC TATGCg

59.6 N GTT CAC ATT GGG CAC ATT TGC ATT TCC 

Figure 3.  Ppe.RPT/SSC KASP assays validation in 84 peach samples using real-time (a) and endpoint (b) PCRs. 
Yellow triangles, diamonds, squares, and circles indicate genotypes AA, AB, BB, and non-template controls, 
respectively.
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(Fig. 5, Supplementary Table S10). Regarding SSC, less significant differences according to Tukey test (p < 0.05) 
were observed in the CUPBP material between the three genotypes of Ppe.RD/SSC-1.1, with late-ripening indi-
viduals (genotype AA) having 1.0 and 0.6 °Brix more than early and mid-season cultivars, respectively (Fig. 5, 
Supplementary Table S10).

Discussion
The phenotypic mean values of RPT observed in this study were higher than those reported by Rawandoozi 
et al.17 and Nuñez-Lillo et al.13 and in agreement with the mean values observed by Eduardo et al.10. On the other 
hand, the mean values of SSC reported in this study were slightly lower than the values described by Nuñez-Lillo 
et al.12 and similar to the mean values observed by Rawandoozi et al.16. The differences in phenotypic means for 
RPT and SSC, observed in this study compared to previous works, could be attributed to the different germplasm 
evaluated and the focus of the breeding program. For example, the dataset analyzed by Rawandoozi et al.17 
corresponded to seedlings from seven F1 low to medium chill full-sib families, where the RPT occurs earlier 
compared to the seedlings analyzed in this study. We observed significant differences between seasons in the 
mean values of RPT and SSC. However, moderate (0.41) to high (0.90) correlation coefficients between seasons 
were recorded for SSC and RPT, respectively.

Pedigree based QTL mapping using FlexQTL™ enabled the successful mapping of stable QTLs with decisive 
evidence (BF > 10) for RPT and SSC. The qRPT.1 and qSSC_4.1 detected in both seasons in an overlapped genetic 
interval formed a QTL cluster on LG4 and confirmed the QTLs and associated signals identified in previous stud-
ies using different germplasm and  approaches11,13–15,18. The RPT and SSC QTL cluster initially covered a genetic 
region from 44 to 49 cM (from 10,981,971 to 12,523,245 bp) and comprised eight SNPs that could be used for 

Figure 4.  Comparison of the predicted and observed phenotypes for ripening time (RPT) (a) and soluble solid 
concentration (SSC) (b) in 84 peach cultivars used for assay development and validation. Phenotypic means that 
were significantly different (Tukey, p < 0.05) are represented by different letters. White triangles represent mean 
phenotypic values. Black horizontal lines represent median phenotypic values.
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haplotype analysis. Recent genome re-sequencing and transcriptome analyses of this region revealed polymor-
phisms in two NAC genes (PpNAC1 and PpNAC5) suggesting that they might be good candidates for controlling 
fruit  ripening35. For PpNAC1, a nonsynonymous G/A SNP in the third exon, and for PpNAC5, a 9-bp insertion 
in the third exon, were suggested as the most likely causal mutations linked to differences in ripening  times12,35. 
Thus, the genetic region was narrowed down to 44–45 cM (physical position from 10,981,971 to 11,298,736 bp) 
and three SNPs using the peak position of the RPT and SSC QTLs in the FlexQTL™ outputs in the average 
datasets. Average datasets have been frequently used for determining the genetic region for further haplotype 
analysis using FlexQTL™16,17,36. The target region comprised three SNPs and allowed the identification of QTL 
genotypes with different effects of increasing/decreasing RPT and SSC (Fig. 1, Table 3). In addition, a predictive 
marker (SNP_IGA_411637) distinguished the allele associated with increasing (A) and decreasing (B) of the 
RPT and SSC in the breeding populations. These findings suggested that the marker-assisted selection (MAS) 
with the SNP_IGA_411637 could efficiently be used for selecting parents/seedlings for targeted RPT and SSC.

Previous RPT and SSC QTL mapping in peach focused mainly on identifying marker-trait association with 
candidate genes analysis in the mapped QTL interval. In this study, our primary goal was not only to map or 
validate QTLs, but also to convert the findings into a diagnostic DNA test for routine application in breeding. The 
complexity of RPT and SSC traits due to their polygenic nature and environmental  influence37 made develop-
ment of breeding tools for MAS difficult. However, quantitative traits were recently targeted in peach for DNA 
test development resulting in tools such as the Ppe.CR.1 designed for predicting chilling  requirement24. RPT and 
SSC display similar patterns to chilling requirements, where multiple genes control the phenotype and the major 
QTL explained more than 30% of the phenotypic variation. Thus, the findings obtained from the QTL mapping 
and haplotype analysis performed in this study suggested that it was feasible to develop a DNA test for predict-
ing RPT and SSC in peach. The Ppe.RPT/SSC-1 was designed using a recently reported KASP approach for fruit 
response to Xanthomonas arboricola pv. pruni23 and chilling  requirement24 prediction in peach. In combination 
with crude DNA  extraction38, this technology provides an inexpensive, trustworthy, and user-friendly tool for 
accurately predicting SNP  genotypes29,39.

The validation of the Ppe.RPT/SSC-1 breeding tool revealed concurrence between the outcomes of real-time 
and endpoint PCRs, indicating that endpoint PCRs can be utilized to improve throughput. Additionally, the Ppe.
RPT/SSC-1 assay developed for SNP discrimination successfully predicted the genotypes previously obtained 
from the 9K SNP array with disagreement in only four accessions. From those, two accessions (‘Fantasia’ and 
‘Saturn’) have already demonstrated discrepancies between the SNP array and KASP genotypes in validation 
of Ppe.CR.1 for prediction of chilling  requirement24. This result supports the hypothesis that the discrepancies 

Figure 5.  Comparison of the predicted and observed phenotypes for ripening time (a) and soluble solid 
concentration (b) in the Clemson University peach breeding program’s breeding materials across five 
different seasons and BLUP values. Phenotypic means that were significantly different (Tukey test, p < 0.05) 
are represented by different letters. Black triangles represent mean observed trait values, and horizontal lines 
represent median observed trait values.
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could be due to the incorrectly called array genotypes or different DNA sources used in the array (genotyping 
carried out by the RosBREED  project22) and KASP genotyping. However, the peach array is no longer available 
for genotyping, making it impossible to genotype this material and identify the real cause of the discrepancy. 
Nevertheless, name ‘Saturn’ is often used to refer to flat peaches in general, which suggests high possibility of 
two different flat peaches carrying the same name being genotyped with the SNP array and the KASP assay.

Although two KASP assays were developed to distinguish haplotypes in the QTL target region (10,981,971 bp 
to 11,298,736 bp), only one (Ppe.RPT/SSC-1.1) was needed to distinguish the early and late-season ripening 
cultivars, confirming the results obtained from the haplotype analysis that indicated the SNP_IGA_411637 as a 
predictive marker. The predictive ability of Ppe.RPT/SSC-1.1 for RPT of materials from different genetic back-
grounds and environments (AR, SC, and TX) highlighted the usefulness of this tool for breeding. Moderate to 
high correlation between RPT and SSC were detected in this work. However, the predictive ability of Ppe.RPT/
SSC-1 was lower for SSC in comparison to RPT. Possible explanations for the lower prediction values could be due 
to the majority of the QTL effect observed in the SSC being attributed to RPT. This hypothesis was confirmed by 
the SSC QTLs runs where the RPT was used as cofactor and resulted in a lower BF (evidence of the presence of 
QTL) and the PVE. Effect of other QTL regions on different chromosomes associated with the genetic control of 
 SSC13,15,18,40 could also affect prediction. For example, the major QTL for SSC was mapped on the chromosome  516 
in the Texas material, where the lowest prediction of SSC was observed. The Ppe.RPT/SSC-1.1 developed in this 
study, did not account for other regions, which could explain the lower SSC prediction when compared to RPT. 
Lastly, the strong influence of environmental conditions on the final sugar  content37 or the possibility that fruits 
in different ripening stages (under-ripened) could have skewed SSC values as only five fruits were considered for 
juice extraction and SSC determination. Thus, further studies focusing on DNA tool development accounting 
for other chromosomal regions associated with SSC and the appropriate ripening stage of the fruits selected for 
°Brix determination are required to obtain a high predictive accuracy for SSC.

Conclusion
We successfully mapped/validated a stable QTL cluster on LG4 associated with RPT and SSC using a pedigree-
connected germplasm comprising 288 individuals. In addition, we identified statistically different QTL genotypes 
in the target genetic interval selected for haplotype analysis. We also developed an accurate KASP assay for RPT 
and SSC identifying the correct genotype for 93% of samples with known genotypes and validated the assay on 
individuals from different genetic backgrounds and environments (AR, SC and TX). Furthermore, a prediction 
accuracy of the KASP assay and an ability to distinguish between early and late-season ripening and low and high 
SSC cultivars was obtained. The low-cost and quick crude DNA extraction combined with the KASP approach 
reported here provide relevant information to breeders for large-scale genotyping in breeding programs, saving 
time, and resources and efficiently accelerating the selection of desired individuals. Given the narrow genetic 
base of the peach germplasm and the fact that majority of modern peach breeding programs in the world share 
the same few cultivars in the pedigree of their breeding germplasm, suggest high relevance and utility of the 
KAPS assay developed in this study to peach breeding programs in the US and world. The results of this work 
will be extremely helpful for strengthening the bridge between academic research and breeding applications and, 
consequently, for peach genetic improvement.

Methods
Plant material
The material used in this study was comprised of pedigree connected germplasm with cultivars, advanced 
selections, and seedlings from Clemson University peach breeding program (CUPBP), which were previously 
assembled under the RosBREED  project18,22. A breeding population containing a total of 288 seedlings, which 
included multiple  F1 and  F2 families obtained from 19 parents (Supplementary Table S1), was chosen for mapping 
analyses. The parents and seedlings were maintained at the Clemson University Musser Fruit Research Center, 
in Seneca, South Carolina (Latitude: 34.639038, Longitude: − 82.935244, Altitude 210 msl), under warm, humid, 
temperate climate and standard commercial practices for irrigation, fertilization, and pest and disease control. 
The trees were grafted on ‘Guardian®’ rootstock, and either planted at 4 × 6 m and trained to open center or at 
1.5 × 4 m and trained to perpendicular V.

Phenotypic data
Phenotypic data for QTL mapping and DNA test development were recorded over two seasons (2011–2012). 
Ripening time (RPT), in Julian days (JD), was determined when 20% of fruits were at commercial harvest by 
visually inspecting for the presence of a few soft fruits in the field for maturity twice per week. Representative 
fruit sample from each accession was harvested at the determined RPT. Juice was extracted from a composite 
sample, comprised of one approximately 2 cm wide longitudinal slice from each of five fruits, and SSC (°Brix) 
was measured using a digital refractometer. Statistical analysis (descriptive, normality test, Spearman’s rank cor-
relation, and Wilcoxon signed rank test) was performed using R Statistical Software (version 4.1.2).

The narrow-sense heritability  (h2) was estimated considering the two seasons (2011–2012) using the R pack-
age  Sommer41 and the vpredict function:

where object represents a model fitted with the mmer function; transform is the formula to calculate the function.

vpredict
(

object, transform
)

,

mix < −mmer(Trait ∼ Year, random =∼ vsr(Selection,Gu = K), rcov =∼ vsr(dsr(Year), units), data = Trait),
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where “K” refers to the additive relationship matrix. The formula included in the function was:

where “VA” is the additive genetic variance; “VP” is the phenotypic variance.

Genotyping and linkage map
Samples were genotyped with the IPSC peach 9K SNP array  v133. The SNP data curation was performed using 
the workflow for high-resolution genetic marker data described in Vanderzande et al.21. A total of 4005 SNPs 
was retained after the data curation process. Following linkage disequilibrium analysis and removal of redundant 
SNPs, a total of 1487 informative SNPs (Supplementary Table S4) were considered for building the linkage map 
used in the pedigree-based QTL mapping in FlexQTL™ software. The genetic positions of the retained SNPs were 
calculated using the physical position of the peach reference genome v2.034 and a conversion factor where every 
1 Mb corresponded to 4 cM, as described by Vanderzande et al.21.

QTL mapping
The QTL mapping was performed using FlexQTL™ software (version 0.1.0.42)42 which implements pedigree-
based QTL analysis via Markov Chain Monte Carlo (MCMC) simulation. The analysis was run at least twice for 
both seasons (2011 and 2012), as well as for the datasets RPT_Ave and SSC_Ave (average of the two seasons), 
until reaching the effective chain size (ECS) criterion for convergence (≥ 100). The MCMC length for RPT ranged 
from 700,000 to 900,000 iterations to store 1000 samples with a thinning between 700 and 900 under mixed 
genetic model. However, 200,000 iterations with a thinning of 200 under additive genetic model were adequate 
to achieve ECS ≥ 100 for SSC. Inference on the number of QTLs was based on a pairwise comparison of models 
(1/0, 2/1, 3/2, and so on) using twice the natural log of the Bayes factor (2lnBF) statistic. The Bayes factor (BF) 
parameter was interpreted as: non-significant (0–2), positive (2–5), strong (5–10), or decisive (> 10) evidence 
for the presence of  QTLs43.

In this study, we reported only stable QTLs. A QTL was considered “stable” when: the BF was decisive (> 10) 
and the significant effect was located in overlapping positions between the two seasons. The stable QTLs were 
named as “q” + trait name abbreviation + data set + scaffold + number of the chronological QTL for this trait 
reported on this chromosome (e.g. qRPT_SC_4.1).

To narrow down and re-define the QTL intervals, further analysis was carried out in FlexQTL™ using the 
‘MQTRegions.new’ file considering the supporting data files ‘Post_genome.csv’ and ‘marker map’. The newly 
generated output files were used to recalculate the phenotypic variance explained (PVE) for the stable QTLs and 
to update information for QTL intensity, interval, and mode positions.

FlexQTL™ obtained the additive variance (σ2
A(trt)) for each trait by subtracting the residual variance (σ2

e) from 
the phenotypic variance (σ2

P). The phenotypic variance explained (PVE) for a particular QTL considering an 
additive model was calculated using the following equation:

where σ 2
A(qtl)

 is the additive variance of QTL.
Regarding the mixed model, genetic variance ( σ 2

G ), was calculated by subtracting the residual variance ( σ 2
e  ), 

from the phenotypic variance ( σ 2
P ), and the PVE was calculated as follows:

where σ 2
A(qtl)

is the additive variance of QTL and σ 2
D(qtl)

is the dominant variance of QTL.

A pleiotropic effect of RPT and other quality traits, including SSC, has been previously  reported11. There-
fore, QTL analysis for SSC_Ave (average of the two seasons) was also performed using the RPT information as 
a covariate, which was integrated as a nuisance variable in the data file used in FlexQTL™. Separate runs using 
a mixed model, with the same number of seeds and MCMC length (1,200,000), were carried out in FlexQTL™ 
using the RPT information in four different datasets: 1. Dataset where no covariate was included; 2. Dataset where 
the corresponding phenotypic average of RPT (in Julian days) was included as a cofactor; 3. Dataset where the 
haplotype information of the RPT QTL interval was included as a cofactor; 4. Dataset where both the phenotypic 
average of RPT (in Julian days) and haplotype information of the RPT QTL interval were included as cofactors.

Haplotype analysis and predictive SNP
As described by Rawandoozi et al.16, the haplotype analysis was carried out by selecting SNPs within the signifi-
cant QTL interval considering the RPT and SSC average datasets. We used the output files ‘MQTRegionsGTP.csv’ 
and ‘mhaplotypes.csv’ generated by FlexQTL™ to perform the haplotype analysis. Haplotypes were constructed 
in the dataset using PediHaplotyper R  package44. The effects were determined from combinations of diplotypes. 
The nonparametric multiple comparison Steele–Dwass test (p < 0.05) was applied to assess significant differences 
between diplotype effects. QTL allele genotypes (Q or q) were assigned to haplotypes based on the direction of 
their effects (increasing or decreasing RPT and SSC, respectively). The statistical analysis was performed using 

h2 =
VA

VP
,

PVE additive model =
σ 2
A(qtl)

σ 2
P

× 100,

PVEmixed model =
σ 2
A(qtl)

+ σ 2
D(qtl)

σ 2
P

× 100,
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the JMP Pro Version 13.2 (SAS Institute Inc., Cary, NC, 2016). Illumina codes for nucleotides, where A = A or 
T, and B = C or G, were used as marker designation in  haplotypes34.

Phenotypic variation explained (PVE) by each informative SNP within the significant QTL interval was 
estimated using single linear regression (SLR) analysis in R Statistical Software (version 4.1.2). The phenotypic 
performance of different genotypes of the predictive marker was further validated in peach breeding populations 
comprising 128, 290 and 139 individuals from Arkansas (AR), South Carolina (SC) and Texas (TX), respectively.

KASP marker development and validation
Two informative SNPs capable of distinguishing haplotypes for the main RPT and SSC QTL on LG4 (10,981,971 
to 11,298,736 bp) were used for developing the Ppe.RPT/SSC-1 KASP assay. The SNP_IGA_412662 was unsuit-
able for conversion into a KASP assay due to its flanking sequence not meeting the criteria for primer design 
and was subsequently discarded. Primers were designed for each of the two SNPs (Table 3) and reaction mix-
tures and PCR conditions for the KASP assays were determined following Fleming et al.22. Eighty-four peach 
cultivars representing the diversity of fresh-market US germplasm, 51 of which had known genotypes from 
the 9K SNP  array33, were chosen for the development and validation of the assay (Supplementary Table S3). 
Phenotypic data for RPT were obtained from  literature45, while the SSC data were obtained from two databases: 
Clemson University Variety evaluations database (https:// www. clems onpea ch. org/), and the Genome Database 
for  Rosaceae46. The variety evaluation data from Musser fruit research farm, were collected within 2015–2021, 
and the publicly available GDR peach data (GRIN_PEACH and Peach RosBREED Public), were collected during 
three and seven seasons, within  RosBREED22 project and GRIN, respectively. The average SSC for each cultivar 
was calculated and used in the validation of the assay. DNA for these cultivars was extracted using the protocol 
described in Edge-Garza et al.38.

Three replicates of non-template controls and positive controls for homozygous (AA and BB) and heterozy-
gous (AB) genotypes were tested in a 96 well-plate for each assay. Positive controls were selected from the DNA 
samples with known genotypes from the 9K SNP array (Supplementary Table S11). Amplifications were con-
ducted in a Bio-Rad CFX Connect Real-Time PCR thermocycler under a standard protocol (15 min at 94 °C; 
10 cycles of 20 s at 94 °C and 60 s at 61 °C with a 0.6 °C decrease in temperature per cycle; 40 cycles at 94 °C 
for 20 s; 60 s at 55 °C, and 30 s at 23 °C), and cycle 25 of real-time PCR was selected for each KASP assay to 
maximize separation between genotypes. A template spreadsheet designed by Fleming et al.23 was used to assign 
the genotypes to each sample based on the relative fluorescence unit values from this cycle. For routine use, 
end-point PCR was tested on Bio-Rad T100 thermocycler using the same cultivars and positive controls for all 
assays, with slightly modified protocol. The number of cycles at the SNP specific temperature was decreased to 
25 and the last cycle of the standard protocol (30 s at 23 °C) and plate reading were omitted. End-point reactions 
were read on the Bio-Rad CFX Connect Real-Time PCR thermocycler using Bio-Rad CFX Maestro™ software.

The newly developed Ppe.RPT/SSC-1 KASP assays were validated by screening 163 seedlings from the CUPBP 
and 26 commercial cultivars (Supplementary Table S12) with end-point PCR. The validation set included 15 
seedlings from QTL mapping germplasm. Phenotypic data was collected in the CUPB program. The best linear 
unbiased predictions (BLUPs) for each individual were obtained for the RPT and SSC values recorded across 
five seasons (2017 to 2021) using the R package ‘lme4’47 with year selected as a random effect:

where Yij is the trait of interest, µ is the overall mean, gi is the genetic effect of ith genotype, yj is the effect of the 
jth year, and gyij as the interaction effect of ith genotype with jth year, ɛ is the residual of the model.

DNA samples for these individuals were obtained using a rapid crude DNA extraction protocol described 
by Noh et al.48. The template spreadsheet designed by Fleming et al.23 was employed to automatically assign 
genotypes. Statistical differences between classes were evaluated using one-way ANOVA, followed by the Tukey 
test for multiple comparisons in SPSS.

Experiments involving plants
Relevant guidelines and regulations have been followed for all experiments involving plants. Plants subject to 
these experiments were created in the co-authors breeding programs and belong to them so the permission or 
license to use them is not needed.

Data availability
The datasets presented in this study can be found in online repositories. The names of the repository/repositories 
and accession number(s) can be found below: www. rosac eae. org.
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