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Abstract 19 
The overarching objective of this study was to produce a disaggregated SMOS Soil Moisture (SM) 20 
product using land surface parameters from a geostationary satellite in a region covering a diverse 21 
range of ecosystem types. SEVIRI data at 15 minute temporal resolution were used to derive the 22 
Temperature and Vegetation Dryness Index (TVDI) that served as SM proxy within the 23 
disaggregation process. West Africa (3 °N 26°W; 28 °N 26°E) was selected as a case study as it 24 
presents both an important North-South climate gradient and a diverse range of ecosystem types. The 25 
main challenge was to set up a methodology applicable over a large area that overcomes the 26 
constraints of SMOS (low spatial resolution) and TVDI (requires similar atmospheric forcing and 27 
triangular shape formed when plotting morning rise temperature versus fraction of vegetation cover) 28 
in order to produce a 0.05° resolution disaggregated SMOS SM product at the sub-continental scale. 29 
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Consistent cloud cover appeared as one of the main constraints for deriving TVDI, especially during 30 
the rainy season and in the southern parts of the region and a large adjustment window (105×105 31 
SEVIRI pixels) was therefore deemed necessary. Both the original and the disaggregated SMOS SM 32 
products described well the seasonal dynamics observed at six locations of in situ observations. 33 
However, there was an overestimation in both products for sites in the humid southern regions; most 34 
likely caused by the presence of forest. Both TVDI and the associated disaggregated SM product was 35 
found to be highly sensitive to algorithm input parameters; especially for conditions of high fraction 36 
of vegetation cover. Additionally, seasonal dynamics in TVDI did not follow the seasonal patterns of 37 
SM. Still, its spatial heterogeneity was found to be a good proxy for disaggregating SMOS SM data; 38 
main river networks and spatial patterns of SM extremes (i.e. droughts and floods) not seen in the 39 
original SMOS SM product were revealed in the disaggregated SM product for a test case of July-40 
September 2012. The disaggregation methodology thereby successfully increased the spatial 41 
resolution of SMOS SM, with potential application for local drought/flood monitoring of importance 42 
for the livelihood of the population of West Africa.   43 

 44 

Keywords: TVDI; SMOS; disaggregation; downscaling; soil moisture; SEVIRI; sensitivity analysis 45 
 46 
1. Introduction 47 
Complex interactions of energy exchange are taking place between different components of the Earth 48 
system, notably between the atmosphere, hydrosphere and biosphere (Bonan 2008). A better 49 
understanding of such interactions is of high societal relevance for improving assessment of carbon 50 
and water fluxes as well as for preventing, monitoring and forecasting extreme events. However, it 51 
implies the accurate assessment of essential climate variables, such as soil moisture (SM) that is key 52 
to determining the water fluxes between the land surface and the atmosphere (Vinukollu et al. 2011). 53 
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Since the 1970s, data from Earth Observation (EO) satellite platforms have been used to overcome 54 
the limitations of ground sensors thereby providing timely information on the spatial distribution of 55 
SM. Soil moisture affects the emission and absorption of electromagnetic radiation in different 56 
regions of the spectrum: 1) MicroWave (MW) backscattered or emitted energy from the ground 57 
surface, particularly in the low-frequency microwave range, from 1 to 10 GHz, allows the dielectric 58 
constant to be related to SM (Schmugge 1978; Stisen et al. 2008); 2) When the soil is wet the energy 59 
balance of the surface is controlled by evaporation from the soil surface and vegetation transpiration 60 
and lower surface temperatures are expected in wet soils than in drier soils during daytime (Schmugge 61 
1978). This effect can be captured in the Thermal InfraRed (TIR) region of the electromagnetic 62 
spectrum. Additionally, if multiple observations of the land surface are acquired at different times 63 
throughout the day, diurnal variability in emitted radiation can be related to the soil thermal inertia (a  64 
property that describes the resistance of a material to temperature change) (Wang et al. 2006) and 65 
consequently serves as a good indicator of evapotranspiration and SM (Minacapilli et al. 2009; Stisen 66 
et al. 2008); and 3) in the optical domain (350-2500 nm), an increase of SM produces an overall 67 
decrease in albedo (Bach and Mauser 1994) and specific absorption features in the Short-Wave 68 
Infrared Region (SWIR) (Sadeghi et al. 2015). 69 
Each of these spectral regions have advantages and disadvantages for mapping SM (Kerr 2007; 70 
Moran et al. 2004). Microwave sensors are insensitive to atmospheric disturbances, but they usually 71 
require larger pixel sizes than sensors in the optical or thermal infrared domain, due to the lower 72 
emitted energy in this region. This is the case for the Soil Moisture and Ocean Salinity (SMOS) 73 
(average pixel size 43 km) (Kerr et al. 2012) and the Soil Moisture Active Passive (SMAP) (30km) 74 
(Panciera et al. 2014) missions dedicated to monitor SM, rendering such products less suited for 75 
spatially explicit studies of the hydrological cycle at the local scale. Unlike MW sensors, optical and 76 
TIR sensors are greatly affected by the atmosphere, and allows a higher spatial resolution of 77 
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measurements. The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument aboard the 78 
geostationary satellite Meteosat Second Generation (MSG) is an optical and TIR sensor centred over 79 
Africa that scans the full Earth disk every 15 min. This high temporal resolution is a major advantage 80 
since it allows estimates of soil thermal inertia (morning rise temperature; dTS) (Stisen et al. 2008) 81 
and it increases the probability of obtaining cloud free observations for areas with frequent cloud 82 
cover. 83 

Given the advantages/disadvantages of different EO retrievals, combining high and low spatial 84 
resolution data for improving the SM spatial variability has received considerable scientific attention 85 
recently (Malbéteau et al. 2016; Merlin et al. 2012; Peng et al. 2017; Wang et al. 2016). Methods for 86 
disaggregation of SM products can be classified into three major groups: (1) satellite based methods; 87 
(2) methods using an array of geoinformation data and (3) model based methods (Peng et al. 2017). 88 
Among satellite based methods, an integration of coarse spatial resolution microwave observations 89 
with optical/thermal EO retrievals using a downscaling factor is most commonly used (Peng et al. 90 
2017; Wang et al. 2016). One example of an optical/thermal remote sensing metric closely related to 91 
SM variability is the Temperature-Vegetation Dryness Index (TVDI) (Sandholt et al. 2002) based on 92 
the triangle/trapezoid (hereinafter called triangle) method, since it empirically delimits the triangle 93 
formed when plotting the Land Surface Temperature (LST) or dTS versus a Vegetation Index (VI) 94 
(Figure 1)  (Carlson et al. 1995; Carlson et al. 1990; Moran et al. 1994; Sandholt et al. 2002; Stisen 95 
et al. 2008; Sun et al. 2012; Tang and Li 2017). TVDI is most commonly calculated as: 96 
 97 
TVDI =  ୐ୗ୘ି ୐ୗ୘ౣ౟౤

୐ୗ୘ౣ౗౮ି ୐ୗ୘ౣ౟౤                                                                                                           (1) 98 

where LST is the LST for a given pixel; LSTmin is minimum LST extracted empirically from the 99 
lower boundary of the triangle (the wet edge); and LSTmax is maximum LST extracted empirically 100 
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from the upper boundary of the triangle (the dry edge) for the vegetation index value of the specific 101 
pixel (Figure 1) (Sandholt et al. 2002). The dry edge represents dry soils with low evaporation rates 102 
causing LST to be at its maximum as a function of the vegetation fraction whereas the wet edge 103 
represents wet soils where the evaporation rate occurs near its potential and thus LST is at its 104 
minimum and close to the air temperature. Between these two edges, all intermediate conditions can 105 
occur, and all SM conditions can consequently be represented within the LST-VI triangle space 106 
(Figure 1) (Sandholt et al. 2002).   107 

The triangle approach has been used in several attempts to disaggregate low spatial resolution 108 
microwave SM retrievals. At a field site in the north eastern Tibetan plateau, Wang et al. (2016) 109 
investigated the applicability of the TVDI  for determining a downscaling factor for multiple source 110 
microwave based SM data from the European Space Agency (ESA) Climate Change Initiative (CCI) 111 
(Dorigo et al. 2012). At the Iberian peninsula, SMOS SM have been disaggregated using the triangle 112 
technique with MODerate resolution Imaging Spectroradiometer (MODIS) LST as input data (Piles 113 
et al. 2011; Piles et al. 2014), and in an attempt to overcome the issue of frequent cloud cover MSG 114 
SEVIRI LST at 15-min temporal resolution was also used (Piles et al. 2016). Another common 115 
approach for disaggregation of SMOS SM is to use the DisPATCH (Disaggregation based on Physical 116 
And Theoretical scale CHange) model, which combines thermal and optical imagery in a contextual 117 
algorithm to derive Soil Evaporative Efficiency (SEE), and then relate SEE to SM through a 118 
physically based model (Djamai et al. 2015; Malbéteau et al. 2016; Merlin et al. 2010; Merlin et al. 119 
2012). 120 

Several assumptions and prerequisites need to be taken into account when applying the triangle 121 
method: 1) the presence of all SM and vegetation cover conditions are needed within the spatial 122 
domain applied (Sandholt et al. 2002; Stisen et al. 2008); 2) the dimensions of the spatial domain 123 
have to be large enough to collect a sufficient amount of LST-VI cases to adequately define the 124 
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triangle shape (de Tomás et al. 2014); 3) factors like land cover type and topography should be taken 125 
into account to ensure the applicability of the method (Hassan et al. 2007); 4) variations in LST must 126 
simply reflect variability in SM, which requires other surface properties and atmospheric forcing to 127 
be homogeneous; e.g. available energy (net radiation minus ground heat flux), meteorological 128 
conditions over the studied area (solar radiation, total column water vapour, air temperature, and wind 129 
speed) as well as homogeneous surface roughness to ensure similar conditions affecting the turbulent 130 
heat transport (Gillies and Carlson 1995; Moran et al. 1994); and 5) the strong dependence on the 131 
endmembers forming the triangular shape implies that a specific TVDI is only comparable with TVDI 132 
estimates derived with the same endmember values. As taken together, these preconditions are 133 
difficult to fulfil over the entire triangle space (from bare soil to full vegetation cover; from humid to 134 
dry conditions), which limit the applicability of the TVDI approach to localized (spatially and 135 
temporally) scales (de Tomás et al. 2014; Garcia et al. 2014; Stisen et al. 2008; Tang and Li 2015) as 136 
when attempting to cover larger regions there is a high risk of violating these stated preconditions. 137 

Previous studies have used LST directly in the disaggregation process; however combining soil 138 
thermal inertia (dTS) based on MSG SEVIRI LST at 15-min temporal resolution with the TVDI 139 
approach allows for a more direct estimate of evaporative fraction (Stisen et al. 2008), which can be 140 
implemented in the physically based disaggregation methodology behind DisPATCH (Merlin et al. 141 
2012). The overarching objective of this study was to produce a high-resolution disaggregated SMOS 142 
SM product for a region covering a diverse range of ecosystem types. We aimed at doing so by 143 
disaggregation of low spatial resolution MW data (SMOS) using dTS based on higher spatial and 144 
temporal resolution optical data (SEVIRI). We applied the physically based disaggregation 145 
methodology behind DisPATCH (Merlin et al. 2012), thereby taking advantage of both types of EO 146 
retrievals for SM assessment and accounting for their respective inherent limitations. The main 147 
research questions addressed were:  148 
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How can TVDI derived from SEVIRI based dTS be implemented to resolve the SM spatial 149 
heterogeneity within a SMOS pixel when produced at sub-continental scale over West Africa? What 150 
are the methodological constraints to overcome in order to produce time series of high-resolution 151 
disaggregated SMOS SM product over regions covering a wide spectrum of ecosystem types ranging 152 
from desert to tropical forests? 153 

To address these research questions, time series of SMOS SM and time series of LST and Fractional 154 
Vegetation Cover (FVC) from the MSG SEVIRI instrument were acquired for the period 2010-2015. 155 
TVDI was estimated for tile-based adjustment windows on SEVIRI dTS and FVC. The TVDI 156 
estimates were incorporated into a disaggregation methodology to produce high resolution 157 
disaggregated SMOS SM product for West Africa. The sensitivity of TVDI and disaggregated SMOS 158 
SM to the input parameters were quantified. The original and the disaggregated SMOS SM products 159 
were evaluated against in situ SM from sites within the International Soil Moisture Network (ISMN). 160 
Finally, the spatial patterns of disaggregated SM products were evaluated for a specific case of 161 
extreme SM conditions (droughts and floods) in the Sahel 2012. 162 
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 163 Figure 1. Conceptual triangle space with the land surface temperature (LST) or morning rise 164 
temperature (dTS) on the y-axis and Fraction of Vegetation Cover (FVC) on the x-axis. The blue 165 
line is the wet edge (TVDI=0.00) and the red line is the dry edge (TVDI=1.00). The grey dotted 166 
lines are TVDI examples of 0.25, 0.50, and 0.75. The figure is adapted from Peng et al. (2017).  167 

 168 
2. Materials and Methods 169 
2.1.  Study area 170 

West Africa was selected as research area for this study (Figure 2) as the climate varies from hot 171 
desert in the north to tropical forest climate in the south. The area (3 °N 26°W; 28 °N 26°E) stretches 172 
from Senegal in the west to Chad in the east. The climate is controlled by the West African Monsoon 173 
and is characterized by a north-south gradient of increasing annual precipitation. The large gradient 174 
in precipitation totals is reflected by increasing biomass from north to south as reflected in the 175 
fractional vegetation cover (Figure 2).  The study area constitutes of 1.06×104 SMOS pixels and 176 
5.20×105 SEVIRI pixels. 177 
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 178 Figure 2. Study area with the location of the in situ validation sites. The averaged fraction of 179 
vegetation cover (FVC) for year 2011 is used as background to illustrate the important north-south 180 
gradient in vegetation cover. 181 

 182 
 183 

2.2.  Data collection and pre-processing 184 

2.2.1 SMOS soil moisture 185 

The SMOS mission includes a passive interferometric radiometer and is the first satellite mission 186 
operating at L-band (1.4 GHz). The L-band is less sensitive to green vegetation components and the 187 
SMOS multi-angular acquisition capability is additionally used to separate the soil and vegetation 188 
signal (Kerr 2007; Wigneron et al. 2007). The SMOS level 2 version-62x SM product was used in 189 
this study. We downloaded the SMOS data from 1 June 2010 until 31 December 2015 for the study 190 
area. SMOS SM is an average of SM at 0-5 cm depth. The revisiting time at the equator is every 3 191 
days for both ascending and descending passes, which are sun synchronous at 6 am ascending and 6 192 
pm descending. The geolocation accuracy of SMOS is 500 m. The sampling grid of the SMOS data 193 
is the Discrete Global Grid (DGG), and it has a node separation of 14.99 km. This is higher than the 194 
natural footprint size of SMOS, ranging from 30 to 90 km (average 43km) depending on viewing 195 
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angle. Data were reprojected to WGS-84 geographic coordinates using a bilinear resampling method. 196 
We used a 0.35° grid (~40 km; which is close to the average natural footprint size of SMOS and is 197 
easily dividable with the chosen SEVIRI pixel size) and averaged the SMOS SM estimates of the 198 
DGG nodes falling within a ±0.1° area in the centre of each pixel. We only used these central nodes 199 
as these are assumably least influenced by neighbouring pixels.  200 

2.2.2 Land surface temperature 201 

Land surface temperatures from SEVIRI from 1 January 2010 to 31 December 2015 were acquired 202 
following the procedure described in (Nieto et al. 2011; Rasmussen et al. 2011; Stisen et al. 203 
2007). SEVIRI LST fields are available every 15 minutes for the entire MSG disk centred at 0º 204 
longitude and with a native pixel sampling size of 3 km. For consistency with the retrieved FVC data 205 
(see below), it was resampled using nearest neighbour to a spatial resolution of 0.05°.  206 

LST was calculated based on SEVIRI channels centered at 10.8 and 12 μm. The EUropean 207 
organisation for the exploitation of METeorological SATellites (EUMETSAT) NoWCasting & very 208 
short range forecasting Satellite Application Facility (NWC SAF) software (version 2013) was used 209 
for converting data to top-of-atmosphere (TOA) brightness temperatures. TOA brightness 210 
temperatures were atmospherically corrected for surface emissivity, atmospheric attenuation along 211 
the path and emissivity of downward radiation. Spectral emissivity was estimated based on soil and 212 
vegetation emissivity endmember values, scaled by the Normalised Difference Vegetation Index 213 
(NDVI) and a look-up table (Trigo et al. 2008). SEVIRI NDVI was calculated from daily nadir 214 
Bidirectional Reflectance Distribution Function (BRDF)-adjusted reflectance corrected using the 215 
Simplified Method for Atmospheric Correction (SMAC) (Proud et al. 2010). The atmospherically 216 
corrected brightness temperatures were converted to LST following the generalized split window 217 
proposed by Wan and Dozier (1996) for the Advanced Very High Resolution Radiometer (AVHRR) 218 
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and MODIS, but adapted to SEVIRI response functions (Jimenez-Munoz and Sobrino 2008; Sobrino 219 
and Romaguera 2004). This data process was originally produced for (Nieto et al. 2011; Rasmussen 220 
et al. 2011; Stisen et al. 2007), and just applied in this study. For a closer data description we refer to 221 
these publications. Furthermore, a quality flag was produced for each LST value based on the cloud 222 
mask (PGE01) derived from the NWC SAF software, and quality flags related to clouds, unreliable 223 
data, sun-sensor geometry, and when the BRDF inversion failed (Proud et al. 2010; Proud et al. 2014).  224 

2.2.3 Fraction of vegetation cover 225 

Daily FVC derived from SEVIRI and distributed by the Land Surface Analysis Satellite Applications 226 
Facility (LSA SAF) were provided by Instituto Português do Mar e Atmosfera (IPMA), in the 227 
GLOBTEMP harmonised format (0.05° spatial resolution) for 1 January 2010 to 31 December 2015 228 
(GLOBTEMP 2014; Trigo et al. 2011). The FVC accounts for the amount of vegetation distributed 229 
in a horizontal perspective and is therefore an important structural property of a plant canopy, as well 230 
as a crucial proxy for studies relying on the partition between soil and vegetation contribution to 231 
surface emissivity and temperature. The daily FVC products are based on the k0 coefficient of a 232 
BRDF model for the red (600 nm), near infrared (800nm) and shortwave infrared (1600nm) channels, 233 
and is generated using an algorithm that relies on an optimised Spectral Mixture Analysis (SMA) 234 
technique (García‐Haro et al. 2005). The products also include quality control information that were 235 
used to mask out pixels that were not reliable or relevant for this study (i.e. continental water, clouds, 236 
snow, unrealistic input ranges, or failure of the algorithm.  237 

2.2.4 Surface roughness and atmospheric forcing 238 

In order to analyse the homogeneity of surface properties and atmospheric forcing in relation to the 239 
use of TVDI, we downloaded ERA 5 surface solar radiation downwards (SSRD; J m-2; accumulated 240 
at a 3-hour temporal resolution), forecast surface roughness (FSR; m; instantaneous at 12-hour 241 
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temporal resolution), total column water vapour (TCWV; kg m-2; instantaneous at 12-hour temporal 242 
resolution), wind speed at 100 m height (WS; m s-1; u and v wind components instantaneous at 12-243 
hour temporal resolution), and air temperature at 975hPa level (Tair; K; instantaneous at 12-hour 244 
temporal resolution)) with a spatial resolution of 0.1°×0.1° (interpolated using a bilinear method from 245 
31×31km spatial resolution) from 1 January 2010-31 December 2015 from the European Centre for 246 
Medium-Range Weather Forecasts (ECMWF 2017). Collected WS and Tair represents conditions 247 
from above the blending height, since near surface variability in these parameters is driven by local 248 
meteorological conditions and is therefore allowed to be heterogeneous at the scale required for the 249 
triangular shape to take form. SSRD was converted to W m-2 and all variables were averaged to daily 250 
values. 251 

2.2.5 In situ soil moisture 252 

In order to validate the disaggregation methodology we collected available in situ measurements of 253 
SM from eight sites within ISMN (Figure 2) (ISMN 2016). Available sites in West Africa with data 254 
2010-2015 were from the AMMA-Catch (Niger and Benin sites) and Dahra (Senegal site) network: 255 
Banizoumbou (Niger; 13.53 °N 2.66°E), Belefoungou-Mid (Benin; 9.80 °N 1.71°E), Belefoungou-256 
Top (Benin; 9.79 °N 1.71°E), Dahra (Senegal; 15.40 °N 15.43°E), Nalohou-Mid (Benin; 9.75 °N 257 
1.61°E), Nalohou-Top (Benin; 9.74 °N 1.61°E), Tondikiboro (Niger; 13.55 °N 2.67°E) and Wankama 258 
(Niger; 13.65 °N 2.63°E). In situ SM was collected using vertical sampling at all these sites to capture 259 
the rooting zone soil profile. For the best possible intercomparison with the SMOS SM soil depth 260 
(average 0-5 cm), we only used data collected at the shallowest depths (0.05 m depth for all sites but 261 
Nalohou-mid, where the shallowest depth was 0.10 m). The two locations of Belefoungou and 262 
Nalohou were averaged before the analysis. 263 
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The Niger and Senegal sites are located in the Sahel region characterised by a short rainy season 264 
between June and October. The Dahra field site and the Niger region receives around 400mm and 265 
500mm of rain, respectively (Louvet et al. 2015; Tagesson et al. 2015). The vegetation of the Niger 266 
sites are typical for cultivated areas of the Sahel, whereas the Dahra site is composed of open woody 267 
savannah (Louvet et al. 2015; Tagesson et al. 2016). The Benin sites are located further south in the 268 
Soudanian climate zone with an annual precipitation of ~1300mm (Louvet et al. 2015). These sites 269 
are thereby characterised by significantly denser vegetation, and woody savannah and tropical forest 270 
are typical of these sites (Louvet et al. 2015).  271 

The in situ SM observations are from low density networks consisting of one or two sites per pixel 272 
which introduces an uncertainty in the representativeness of the sites in relation to the validation of 273 
the SM products (Peng et al. 2017). However, sensors at these sites were installed specifically for 274 
satellite product evaluation, hence the location of the sites were chosen to be representative for the 275 
larger area, and they have previously been used for various satellite product assessments. The in situ 276 
SM measurements are thereby considered representative for the wider area and applicable in a 277 
validation of large-scale satellite based SM estimates.  278 

2.3.  Data analysis 279 

2.3.1. Temperature and Vegetation Dryness Index (TVDI) as soil moisture proxy 280 

The TVDI was developed by Price (1990) and later improved notably by Sandholt et al. (2002) and 281 
Stisen et al. (2008). It has been widely used for assessing SM and evapotranspiration (Garcia et al. 282 
2014; Han et al. 2010; Jiang et al. 2008; Li et al. 2010; Li et al. 2008; Mallick et al. 2009; Patel et al. 283 
2009; Wang et al. 2004). Several methodological refinements were applied in this study as compared 284 
to previous approaches to make it applicable for SMOS disaggregation at the sub-continental scale:  285 
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(1) The dTS was used as a substitute for LST as it was demonstrated to be a strong proxy for sensible 286 
heat fluxes, thereby improving the TVDI estimates as compared to those based on single (hourly or 287 
daily) LST (Stisen et al. 2008). The morning rise temperature was calculated as the change (i.e. slope 288 
coefficient (°C h-1)) in LST between sunrise and noon. A median Theil-Sen procedure was applied 289 
since it is known to be robust against non-normality, heteroscedasticity, and temporal autocorrelation 290 
(Alcaraz-Segura et al. 2010; Hirsch and Slack 1984; Vanbelle and Hughes 1984) and it is suggested 291 
for studies of trends based on time series of data (de Beurs and Henebry 2005). Furthermore, it is 292 
resistant to outliers and therefore suitable for assessing the rate of change in short or noisy time-series 293 
(Eastman et al. 2009). In order to minimise cloud contamination and erroneous data in the dTS and 294 
TVDI calculations, we filtered the FVC and LST data based on provided quality flags. We also 295 
excluded all dTS pixels using the following criteria: 1) temporal range of daily time-series <4 hours; 296 
2) sample size used in the fit < 5 cases; 3) dTS >10 °C h-1 and < 0 °C h-1; and 4) poor LST vs time fit 297 
(r < 0.70). Criteria 1 ensured that dTS was not calculated for pixels with clustered unfiltered data (i.e. 298 
only available for a short window of time during the day). Criteria 2 was set in order to ensure a 299 
sufficient number of observations. Criteria 3 and 4 were set to filter out observations with residual 300 
clouds.  301 
 (2) We used the algorithm proposed by Tang et al. (2010) to estimate the dry edge (LSTmax in 302 
equation 1) due to its low sensitivity to outliers (cloud residuals). In order to determine the upper edge 303 
of the triangle, we divided the dTS-FVC triangular space into bins with a FVC size of 2.5%. Each bin 304 
was separated into 5 subintervals and the maximum dTS of each subinterval was extracted. All 305 
subinterval maximum dTS < the average (dTSsub_mean) minus one standard deviation (δ) of these 5 306 
subinterval maximum dTS were removed and a new maximum dTS was calculated and used as the 307 
maximum for that specific bin. An ordinary least square linear regression was fitted through the 308 
remaining maximum dTS values and their corresponding FVC bins and used as the dry edge. These 309 
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were the main steps in the algorithm; for a closer description we refer to Tang et al. (2010).  The 310 
implementation of the algorithm was slightly modified compared to the original Tang et al. (2010) 311 
algorithm in that all bins to the left of the triangular maximum dTS and all dTS lower than wet edge 312 
(see below) were removed before the fitting.  313 

(3) The wet edge (LSTmin in equation 1) was calculated as the median of the 10th percentile dTS of 314 
the points included in the ten 2.5% FVC bins with highest FVC values. The 10th percentile was used 315 
instead of absolute minimum as it is less sensitive to outliers and therefore provides a more robust 316 
assessment of the wet edge. 317 

(4) The study region was separated into different tiles. The size of the tiles (i.e. the number of SEVIRI 318 
pixels considered to adjust the dTS-FVC triangle for a given SMOS pixel) was set in such way that 319 
it strictly coincided in location and number with a multiple of the SMOS pixel resolution. This 320 
ensured that the information on spatial heterogeneity within a given SMOS pixel will be based on 321 
TVDI estimates that were derived from the same triangle adjustment. In this way, a SMOS pixel 322 
never over-lapped two different TVDI tiles, thereby maximizing the accuracy of the downscaling.  A 323 
tile size of 105×105 SEVIRI pixels was selected for the final SMOS disaggregation (see results 324 
section).  325 

 (5) Furthermore the TVDI values were excluded based on quality of the dry edge fit (r>-0.7), dry 326 
edge intercept values >15 and <0, number of bins for estimating the dry edge <5, total number of 327 
points in triangle < 500, FVC range <0.3. These filtering criteria excluded entire 105×105 pixels-328 
tiles. With these criteria we aimed at ensuring the comparability and temporal consistency of the data, 329 
having representative points over a large enough range of FVC (FVC range and number of bins), 330 
excluding TVDI estimates influenced by possible residual clouds (dry edge intercept range and fit), 331 
as well as having enough pixels to calculate the edges of the triangle and removal of those dates in 332 
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which the cloud mask reduces the number of good quality pixels available for edge definition (total 333 
number of points and dry edge fit). 334 

2.3.2. Fulfilment of the preconditions of spatial dimensions and homogeneity 335 

Surface properties (FSR) and atmospheric forcing (SSRD, TCWV, WS, Tair) should be homogenous 336 
within the triangular space for the dTS variability to accurately reflect SM variation. To test for 337 
homogeneous surface properties and atmospheric forcing within different sized tiles, we ran a three-338 
step procedure. Firstly, FSR, SSRD, TCWV, WS, and Tair data were filtered based on the criteria 339 
described under point 1 in subsection 2.3.1. Secondly, we estimated the dynamic range of daily 340 
averages of FSR, SSRD, TCWV, WS, and Tair by taking the difference between the 95th and the 5th 341 
percentile for different tile sizes covering the Dahra and the Nalohou field sites. These 2 sites were 342 
assumed to be representative for the dry and wet parts of the study area, respectively. The 95th and 343 
the 5th percentile were used to avoid influence from outliers. The analysis of data range as a function 344 
of tile sizes started from 1×1 SEVIRI pixels with an increment of 1 pixels up until 200×200 SEVIRI 345 
pixels. Finally, percentiles (from 1 to the 100th in steps of 1) from the full time-series were calculated 346 
for each analysed tile size. This was done to analyse the fraction of the time series affected by 347 
heterogeneity in FSR, SSRD, TCWV, WS, and Tair for the different tile sizes tested.  348 

Thereafter, to test the fulfilment of the stated precondition that the spatial dimensions was large 349 
enough to capture a sufficient amount of dTS-FVC cases for the triangular shape to take form, we ran 350 
the TVDI analysis for the Dahra and the Nalohou field sites using different tile sizes. The analysis 351 
started from 5×5 SMOS pixels (35×35 SEVIRI pixels) with an increment of 5 SMOS pixels to 25×25 352 
SMOS pixels (175×175 SEVIRI pixels). The forming of the triangular shape are dependent on a 353 
sufficient number of points included in the triangle, the quality of the dry edge (r), and the dynamic 354 
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range in FVC. To analyse the effect of tile size we estimated percentiles (from 1 to the 100th in steps 355 
of 1) of these parameters from the full time-series for each tile size analysed.  356 

2.3.3. Gap-filling of TVDI 357 

The calculated time-series of TVDI was gap-filled using two different approaches: (1) the excluded 358 
105×105 SEVIRI pixels-tiles were filled by using the non-filtered tile nearest in time. This secures 359 
gap-filling of the tiles excluded based on the TVDI statistics according section 2.3.1 above. (2) 360 
Remaining excluded pixels were filled using long-term average calculated as follow: 361 

TVDI୨,୲ = ୘୚ୈ୍ౠ
୘୚ୈ୍ۧభబఱۦ

 TVDI୲ۧଵ଴ହ        (2) 362ۦ

where TVDIjt is the TVDI at pixel (j) in a specific point in time (t) which is needing to be gap-filled; 363 
TVDI୨ is the TVDI for the pixel (j) averaged for the entire time-series; ۦTVDI୲ۧଵ଴ହis the TVDI averaged 364 
for the 105×105 pixels-tile for the point in time which needs to be gap-filled; and   ۦTVDIۧଵ଴ହ is the 365 
TVDI averaged for the 105×105 pixels-tile and averaged for the entire time series. This second gap-366 
filling procedure fills pixels that were excluded based on quality flags of the input data (excluded dTS 367 
and FVC data).  368 
 369 
2.3.4. Disaggregation methodology 370 

The SMOS SM was disaggregated following the methodology in Merlin et al. (2012) where spatial 371 
heterogeneity in surface SM within the SMOS pixel is linked with a heterogeneity in the soil 372 
evaporative efficiency (SEE). Merlin et al. (2012) chose SEE as high resolution data within the 373 
disaggregation methodology because of the strong correlation to surface SM (Anderson et al. 2007) 374 
and its stability during daytime under clear skies (Crago and Brutsaert 1996). The disaggregation 375 
relationship is expressed as:  376 
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SMୢ୧ୱୟ୥୥୰ୣ୥ୟ୲ୣୢ = SMୗ୑୓ୗ + பୗ୑ౣ౥ౚ౛ౢ
பୗ୉୉ (SEEୗ୉୚୍ୖ୍ − 〈SEEୗ୉୚୍ୖ୍〉ୗ୑୓ୗ)               (3) 377 

where SMୢ୧ୱୟ୥୥୰ୣ୥ୟ୲ୣୢ is the high-resolution SM product disaggregated from the original SMOS data 378 
(SMୗ୑୓ୗ); பୗ୑ౣ౥ౚ౛ౢ

பୗ୉୉  is the partial derivative of modelled SM on SEE; SEEୗ୉୚୍ୖ୍ is high-resolution 379 
SEE based on SEVIRI input data; and 〈SEEୗ୉୚୍ୖ୍〉ୗ୑୓ୗ is SEE averaged at SMOS scale.  380 

Merlin et al. (2010) tested the accuracy and robustness of the aggregation methodology using different 381 
formulations for modelling SEE. They concluded that the formulation of Noilhan and Planton (1989) 382 
was the most applicable when conditions for soil properties were unknown: 383 

SEE୫୭ୢୣ୪ = ଵ
ଶ − ଵ

ଶ cos ൬π × ୗ୑
ୗ୑౦൰                                          (4) 384 

where SEEmodel is modelled SEE, and SMp is a soil parameter in SM unit.  In Merlin et al. (2012) SMp 385 
was estimated by inverting Equation 4 at SMOS resolution:  386 

SM୮ = ஠×ୗ୑౏౉ో౏
ୟ୰ୡୡ୭ୱ(ଵିଶ〈ୗ୉୉౏ు౒౅౎౅〉౏౉ో౏)                                                    (5) 387 

By inverting equation 5, we got a model for estimating SM based on SEE: 388 

SM୫୭ୢୣ୪ = ୗ୑౦
஠ arccos(1 − 2SEE)                                          (6) 389 

Then, by taking the partial derivative of SM on SEE in equation 6, we get: 390 

பୗ୑ౣ౥ౚ౛ౢ
பୗ୉ = ଶቀ౏౉౦

ಘ ቁ
ඥଵି(ଵିଶୗ୉ )మ                                        (7) 391 

Merlin et al. (2012) showed a linear relationship between SEE and surface soil temperature using a 392 
physically based dual source energy budget model (Kustas and Norman 1999) and a synthetic data 393 
set. Given that TVDI was based on soil thermal inertia (dTS), it should be a strong proxy of the non-394 
evaporative fraction, and SEE then equals (1-TVDI). For a description of the mathematical derivation 395 
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of equations 5 and 7; we refer to Appendix A. For a mathematical derivation showing that (1-TVDI) 396 
equals SEE in the way it is implemented in the DisPATCH methodology, we refer to Appendix B. 397 
Finally, equation 7 was inserted into equation 3 and by setting SEE to (1-TVDI), we obtained a 398 
disaggregation model directly based on TVDI.  399 

SMୢ୧ୱୟ୥୥୰ୣ୥ୟ୲ୣୢ = SMୗ୑୓ୗ + ଶ൬ ౏౉౏౉ో౏౗౨ౙౙ౥౩൫భషమ〈(భష౐౒ీ )〉౏౉ో౏൯൰
ඥଵି(ଵିଶ(ଵି୘୚ ))మ ((1 − TVDI) − 〈(1 − TVDI)〉ୗ୑୓ୗ)         (8) 400 

2.3.5. Sensitivity of TVDI and disaggregated SMOS soil moisture to input data 401 

We analysed the sensitivity of TVDI to its input parameters using a synthetic data set with dTS 402 
varying from 0 to 10, and FVC varying from 0 to 1.0. TVDI was estimated by setting the wet edge to 403 
0, dry edge intercept to 10, and dry edge slope to 0.1 dTS 0.01FVC-1. We changed one input parameter 404 
at the time with ±10% of the total range included in the triangle at steps of 0.1% and recalculated 405 
TVDI. The input parameters changed included dTS (±1°C), FVC (±0.10), wet edge (±1°C), dry edge 406 
intercept (±1°C), and dry edge slope (±0.1°C 0.01FVC-1). The sensitivity of TVDI to the parameters 407 
was quantified by fitting an ordinary least square linear regression between recalculated TVDI and 408 
% error for each dTS-FVC combination.  409 

To quantify the sensitivity of disaggregated SMOS SM to errors in TVDI, we disaggregated SMOS 410 
SM using equation 8 with SMOS SM varying from 0 to 100%, TVDI varying from 0.0 to 1.0, and 411 
mean TVDI for each SMOS pixel (〈(TVDI)〉ୗ୑୓ୗ) set to 0.25, 0.50 and 0.75. We changed TVDI with 412 
±0.1 at steps of 0.01 and repeated the disaggregation procedure. The sensitivity of disaggregated 413 
SMOS SM to errors in TVDI was quantified by fitting an ordinary least square linear regression 414 
between disaggregated SMOS SM and the TVDI error for each SMOS SM, TVDI, and 415 
(〈(TVDI)〉ୗ୑୓ୗ) combination.  416 

2.3.6. Evaluation of soil moisture products  417 
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We evaluated both the original and the disaggregated SMOS SM using the in situ based SM data sets 418 
from ISMN as independent data. The agreements between SMOS based SM and the in situ SM were 419 
quantified as the root mean square error (RMSE), the product-in situ ratio, and by goodness-of-fit 420 
when an ordinary least-square linear regression was fitted between SMOS based SM and daily in situ 421 
SM estimates. Spatial patterns of the disaggregated SMOS SM over West Africa were also evaluated 422 
for a specific case of extreme SM conditions (i.e. drought and flood). Monthly anomalies of SM were 423 
estimated by subtracting the 2010-2015 climatology from the monthly average SM. July to September 424 
(JAS) 2012 was selected as test case because both heavy rainfall events and dry conditions 425 
corresponding to the ending of the long-lasting drought of 2011-2012 were registered during that 426 
period (de Robert 2012; FEWSNET 2012a, b). Beside JAS also corresponds to growing season 427 
months in most West Africa, which makes it an interesting case for evaluating potential monitoring 428 
products of hydrological extremes from a food security and disaster management point of view.  429 

3. Results 430 

3.1Tile size selection and spatio-temporal variability of TVDI  431 

The dynamic range of the parameters affecting available energy within the triangular space differs 432 
slightly in their relation to tile size. The dynamic range in FSR was relatively stable over a large 433 
spectrum of tile sizes. It was found to increase rapidly to a value close to the maximum where after it 434 
remained stable (at ~0.5 and ~1.6 m for Dahra and  Nalohou, respectively) up to a tile size of ~ 435 
160×160 SEVIRI pixels (Figure 3 a). The dynamic range in SSRD, TCWV, WS and Tair increased 436 
more continuously with tile size (Figure 3b and 3c). Up until a tile size of 100×100 SEVIRI pixels, 437 
daily averaged SSRD was <30 W m-2 for ~85% and ~75% of the time series, and  daily averaged WS 438 
was <6 m s-1 for ~80% and ~98% of the time series for Dahra and Nalohou, respectively, (Figure 3 b 439 
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and 3d). Total colomn water vapour (TCWV) and Tair were more strongly affected by tile size with a 440 
larger fraction of the time series having a large dynamic range (Figure 3c and 3e).  441 

Both the sample size and the FVC range increased strongly with tile size (Figure 4). Using the defined 442 
filtering criteria for the sample size (>500) it can be seen that 40%, 22%, 11%, 4%, and 1% of the 443 
time series for Nalohou and 26%, 12%, 8%, 5%, and 3% of the time series for Dahra would be rejected 444 
for the different tested tile sizes (with increased tile size order). Tile size is thereby a trade-off between 445 
having a large enough sample size allowing for a sufficient amount of dTS-FVC cases,  but keeping 446 
it as small as possible not to induce uncertainty caused by heterogeneity in the available energy within 447 
the triangular space. Reaching a sufficient number of points was challenging during the rainy season, 448 
especially in the Southern parts of the study area due to the low number of eligible dTS/FVC pixels 449 
(e.g. cloud-free data and good dTS fits) (Figure 5a). As a compromise, when enlarging the tile size 450 
to 105 x 105 SEVIRI pixels, more pixels passed the filtering criteria (Figure 5c), and this tile size was 451 
chosen for the final analysis. 452 

 453 
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Figure 3. Dynamic range in surface properties and atmospheric forcing influencing the homogeneity 455 
of available energy within the triangular space. Influence of tile size (y-axis) on the percentiles of the 456 
time series (x-axis) of the dynamic range in daily averaged a) forecast surface roughness (FSR) (m); 457 
b), surface solar radiation downwards (SSRD) (W m-2); c) total column water vapour (TCWV) (kg 458 
m-2); d) wind speed at 100 m height (WS) (m s-1); and e) air temperature at the 975 hPa level (Tair) 459 
(K) for 1) the Dahra and 2) the Nalohou field sites. The percentiles on the x-axis gives an indication 460 
of the fraction of the time series for a given tile size having a dynamic range smaller than the value 461 
shown by the colour. For the z-axis, dark blue indicates high homogeneity (i.e. small dynamic range) 462 
in surface properties or atmospheric forcing, whereas yellow indicates low homogeneity. 463 

 464 
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Figure 4. Influence of tile size (y-axis) on the percentiles of the time series (x-axis) of the parameters 465 
influencing the triangular shape. a) Number of points including in the triangle (N); b) range in fraction 466 
of vegetation cover (FVC); and c) correlation coefficient of the dry edge slope (r) for 1) the Dahra 467 
and, 2) the Nalohou field sites. The percentiles on the x-axis gives an indication of the fraction of the 468 
time-series for a given tile size having a range smaller than the value shown by the colour.  469 
 470 
It can be seen that the amount of unfiltered input data (dTS and FVC) increased substantially with 471 
latitude (Figure 5a); the further south the higher the fraction of cloud cover and an almost linear loss 472 
of data is observed southwards from 20°N (Figure 5c). The amount of data excluded based on TVDI 473 
tile statistics had the opposite pattern; at the border between the Sahel and the Sahara the FVC range 474 
required for the triangular shape to take form starts to be too low (around 15°N) and above 17.5°N 475 
no TVDI retrievals are obtained (Figure 5c). As a result, the largest amount of eligible data for 476 
calculating TVDI was observed in the central part of the study area at ~13.5°N. In the spatial pattern 477 
of the average TVDI for the entire study period, clear borders between the different tiles can be seen 478 
(Figure 5d). However, when combining TVDI with SMOS SM using the disaggregation 479 
methodology, the blocky structure disappears and SM heterogeneity across the study area is revealed 480 
(Figure 5e; cf subsection 3.3 below).   481 
 482 
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 483 
Figure 5. (a) Fraction of data coverage for the input data (dTS and FVC) used in the TVDI calculations; (b) fraction of data coverage for 484 
the TVDI calculations when TVDI was filtered based on both TVDI tile statistics and quality flags in input data. (c) Average data exclusion 485 
fraction depending on latitude; blue is the fraction of rejected input data, red is the fraction rejected in relation to the TVDI calculation, and 486 
black is the total rejected fraction. Included are also: (d) average TVDI for the entire study period; and (e) disaggregated SMOS SM 487 
averaged for the entire study period. 488  489 
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Clear seasonality was observed in the FVC and dTS time series for the pixels covering the Dahra and 490 
the Nalohou field sites (Figure 6a,b,) whereas TVDI did not exhibit any sign of seasonal patterns and 491 
had a relatively large variability (Figure 6h). The FVC range observed in the adjustment window 492 
varied a lot throughout the year at the semi-arid Sahelian site; even though no clear seasonality was 493 
detected (Figure 6c1). For the southern humid Soudanian savanna site, FVC was also highly variable, 494 
but with a clear seasonality decreasing the FVC range during the rainy season (Figure 6c2). This was 495 
most likely caused by an increased vegetation cover throughout the tile during this part of the 496 
year.  The coefficient of determination (R2) of the dry edge fit remained high the entire year (> 0.75), 497 
but a larger variability was observed during the rainy season (Figure 6e).  498 
 499 
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 501 Figure 6. Time series of the input parameters, extracts from the TVDI calculation tiles, and final 502 
TVDI estimates for (1) Dahra and (2) Nalohou: (a,) fraction of vegetation cover (FVC);  (b) unfiltered 503 
(red) and filtered (black) morning rise temperature (dTS); (c) range of FVC in the TVDI tiles; (d) 504 
total number of points included in the triangle (N); (e) coefficient of determination (R2) for the dry 505 
edge fit; (f) wet edge; and (g) dry edge slope. Included are also (h) filtered (black) and gap-filled (red) 506 
TVDI estimates (black).   507 
 508 

3.2. Sensitivity of TVDI and soil moisture to input parameters  509 
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The sensitivity analysis of TVDI indicated that sensitivity is strongly dependent on the pixel location 510 
within the triangular space. Errors in the input parameters have a very strong impact on the estimated 511 
TVDI at the peak of the triangle (upper part of the FVC range) whereas TVDI is less affected close 512 
to the vertical catheter of the triangle (lower part of the FVC range) (Figure 7). The reason for this is 513 
the small dTS range at the peak of the triangle, resulting in a large sensitivity. An error in the input 514 
dTS data have the same impact throughout the entire TVDI range (Figure 7a).  As expected, TVDI 515 
values close to the dry edge (TVDI=1.0) are more sensitive to errors in the FVC, the dry edge slope 516 
and the dry edge intercept (Figure 7b-d) than TVDI values close to the wet edge (Figure 7e). The 517 
opposite is the case close to the wet edge (TVDI=0.0) where TVDI values are insensitive to errors in 518 
the above mentioned parameters (FVC, the dry edge slope and intercept) but more sensitive to an 519 
error in the wet edge. 520 
For low SMOS SM values, disaggregated SM remain low throughout the entire TVDI range (Figure 521 
8 a1-c1) and the disaggregation procedure is thereby rather insensitive to errors in TVDI for this 522 
SMOS SM region (Figure 8 a2-c2). However, as SMOS SM increases the range in disaggregated SM 523 
start to range from 0-100% (Figure 8 a1-c1), with implications for the sensitivity of the disaggregation 524 
procedure. The effect of a change in TVDI is strongest for combinations of low SMOS SM and low 525 
TVDI and high SMOS SM and high TVDI (seen in the colour change of Figure 8 a1- c1). For 526 
example, when 〈(TVDI)〉ୗ୑୓ୗ is set to 0.75 disaggregated SM goes from 0 to 100%Vol with a TVDI 527 
change from 1.0 to 0.8 (Figure 8c1). This pattern is also visible in the sensitivity of disaggregated 528 
SMOS SM to TVDI (Figure 8c2). The most sensitive parts of the triangular space for the 529 
disaggregation procedure are thereby close to the wet and dry edges where TVDI approaches 0.0 and 530 
1.0, respectively.  531 
 532 

 533 
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 534 
Figure 7. Sensitivity of TVDI to input data and equation parameters: a) morning rise temperature 535 
(dTS; °C); b) fraction of vegetation cover (FVC); c) dry edge intercept (DI); d) dry edge slope (DS); 536 
and e) wet edge (W). The % for the temperatures (dTS, DI, and W) and the FVC is a % change in 537 
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relation to the range of the triangle. During the analysis we changed one parameter at the time and 538 
the rest remained stable.  539 
 540 

 541 
Figure 8. Sensitivity of disaggregated SMOS soil moisture (SM; %Vol) to changes in TVDI.  542 
Average TVDI in equation 8 was set to a) 0.25, b) 0.50 and c) 0.75. First row (1) shows the actual 543 
disaggregated SM for each original SMOS SM -TVDI case and second row (2) shows the changes in 544 
disaggregated SM for each 0.01 error in TVDI for each SM -TVDI case.  545  546 
3.3. Evaluation of the SMOS soil moisture products 547 

The original SM product from SMOS generally describes the seasonal dynamics well for the 6 sites 548 
(Figure 9). The SMOS SM were on average 8.41%Vol whereas in situ SM was on average 6.33%Vol 549 
and it can be seen that SMOS SM is overestimated at some of the sites (Belefoungou and Nalohou). 550 
This overestimation generated a relatively high RMSE (6.26%Vol) between SMOS SM and in situ 551 
SM (Table 1). The sites with the highest overestimation are located in the southern humid parts of the 552 
study area (Figure 9). The linear function fitted between SMOS SM and in situ SM also indicated a 553 
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general overestimation by SMOS, but high SMOS SM has an even higher overestimation (Figure 10; 554 
Table 1; slope: 1.26; intercept: 0.77; R2: 0.73). 555 

 556 
 557 

Figure 9. Time series of in situ measured soil moisture (SM (%Vol)) (thin black line) and Soil 558 
moisture and Ocean Salinity (SMOS) SM (grey dots) for: a) Banizoumbou; b) Belefoungou; c) Dahra; 559 
d) Nalohou e) Tondikiboro; and f) Wankama. The location of the different sites is shown in Figure 2. 560 

 561 
 562 
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 563 
Figure 10. Relationship between in situ and both original (1) and disaggregated (2) Soil Moisture 564 
and Ocean Salinity (SMOS) soil moisture (SM; %Vol) for the pixels used in the evaluation of the 565 
disaggregation methodology. The subplots are: a) Banizoumbou; b) Belefoungou; c) Dahra; d) 566 
Nalohou; e) Tondikiboro; f) Wankama; and g) all sites combined. The grey line is the ordinary least 567 
square linear regression and the black line is the one-to-one ratio. Statistics of the slopes are given in 568 
Table 1. The location of the sites can be seen in figure 2. 569 

 570 
 571 
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 572 
Table 1. Comparative statistics for the in situ validation of the original SMOS and disaggregated SMOS soil moisture. The ratio was the 573 
product-in-situ ratio and it was calculated as original and disaggregated SMOS SM divided by the in situ measurements. The analysis was 574 
conducted for individual sites and with all data combined.  575 

Validation site 
Original SMOS Disaggregated SMOS 

Slope Intercept  
(%Vol) 

R2 Mean bias Ratio RMSE 
(%Vol) 

Slope Intercept 
(%Vol) 

R2 Mean bias Ratio RMSE 
(%Vol) (%Vol) (%Vol) 

Banizoumbou (BAN) 1.32 0.35 0.58 -1.36 1.44 4.45 1.30 0.19 0.59 -1.13 1.36 4.18 
Belefoungou (BEL) 0.95 4.87 0.71 -4.19 1.25 7.81 0.86 4.57 0.67 -2.77 1.10 6.93 
Dahra (DAH) 1.03 -1.88 0.58 1.76 0.59 3.21 1.06 -2.03 0.55 1.74 0.59 3.42 
Nalohou (NAL) 1.19 6.35 0.68 -8.13 1.80 10.21 1.22 6.44 0.66 -8.39 1.76 10.61 
Tondikiboro (TON) 1.07 0.22 0.61 -0.49 1.13 4.03 1.03 0.17 0.61 -0.28 1.07 3.87 
Wankama (WAN) 1.11 1.16 0.59 -1.5 1.45 4.41 1.12 1.10 0.59 -1.47 1.43 4.36 
All 1.26 0.77 0.73 -2.38 1.33 6.26 1.21 0.86 0.69 -2.09 1.25 6.13 

 576 
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In order to compare the original SMOS SM with the disaggregated SMOS SM, we filtered the SM 577 
products (original and disaggregated SMOS SM) so that only days included in both time-series were 578 
included in the evaluation (Figure 10). Disaggregated SMOS SM had a slightly lower correlation than 579 
original SMOS SM to in situ SM (Figure 10; R2 in Table 1). However, disaggregated SMOS had a 580 
lower bias, a ratio closer to 1.0, a lower RMSE, and it was slightly closer to the one-to-one ratio (slope 581 
1.21 and 1.26) (Table 1, Figure 10). The largest discrepancy between SMOS SM and the in situ SM 582 
was seen for the sites in the southern part of the study area (Belefoungou and Nalohou; Table 1, 583 
Figure 10). These are the sites generating the high SMOS SM in the low in situ SM region of Figure 584 
10g. These high SMOS SM values were mainly from the dry season when in situ SM was relatively 585 
low (Figure 9b, d).  586 

Spatial patterns of disaggregated and original SMOS SM were also evaluated for the entire West 587 
Africa (Figure 11). Major river networks (e.g. Niger, Senegal, Hadejia, etc.) are visible in the 588 
disaggregated product whereas they are not on the original product (Figure 11b). To assess the 589 
potential of the disaggregated SM products for monitoring climate extremes, SM anomalies were 590 
estimated for the period July to September (JAS; growing season months in most of West Africa) 591 
2012 (Figure 11c). Both cases of drought and flooding were observed during that period in West 592 
Africa, and negative SM anomalies are seen in most Senegal and Mali, whereas large patterns of 593 
positive SM anomalies are observed in Central Mali (Figure 11c).  594 
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  595 
Figure 11. SM 2010-2015 average derived from the disaggregated SMOS product over West Africa 596 
(a). Main river networks were not visible in the original (non-disaggregated) products (b1), whereas 597 
they became apparent after disaggregation (b2). SM extremes (flood and drought) were also captured 598 
for the test case of JAS 2012 (c). Filtered and no data are represented in white. The blocky structure 599 
observed in the disaggregated products are caused by the original SMOS pixel resolution. 600 
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 601 
4. Discussion 602 

The use of a higher spatial resolution SM proxy to disaggregate SMOS SM is of high interest as there 603 
is a stringent mismatch between the spatial scale at which SM information is provided (e.g. ~ 40 km 604 
for SMOS) and the scale of the studied process  (Collow et al. 2012). Besides the question of the 605 
representability of in situ measurements for validating such coarse dataset has often been raised 606 
(Dorigo et al. 2015), suggesting that the development of a disaggregated product would grant a more 607 
accurate in situ validation (Malbéteau et al. 2016). However, if a systematic bias is present in the 608 
original SMOS SM (such as seen for the southern sites (Figure 9), seen in the blocky structure of the 609 
final disaggregated product (Figure 5e and Figure 11), and as reported by Collow et al. (2012)), the 610 
uncertainty will propagate during the disaggregation process, regardless of the quality of the 611 
information used for the disaggregation. One large source of uncertainty for SMOS SM is the 612 
presence of forest, being the most likely explanation to the systematic bias in the southern sites 613 
(Leroux et al. 2013). The disaggregation of SMOS using TVDI as input data improved the 614 
relationship for most sites, suggesting that the TVDI spatial heterogeneity is adequately capturing 615 
SM heterogeneity within each SMOS pixel.  616 

One of the major challenges here was to produce a time series of TVDI estimates at sub-continental 617 
scale in order to best serve the disaggregation process. Commonly TVDI has been used to evaluate 618 
SM or evapotranspiration conditions over regions of limited spatial extent (i.e. hydrological basin, 619 
sub-national administrative entities, etc.) (de Tomás et al. 2014; Garcia et al. 2014; Stisen et al. 2008). 620 
Here TVDI was estimated using a tile approach of 105 by 105 SEVIRI pixels. By fitting TVDI for 621 
such tiles the impact of heterogeneous atmospheric and surface condition were alleviated as much as 622 
possible and at the same time made TVDI applicable across the subcontinental study area. 623 
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It is important to note that TVDI values can only be compared within a given tile (Figure 5d). The 624 
exact TVDI value estimated for a certain pixel depends on the location of the wet and dry edge and a 625 
specific TVDI value will not represent similar local hydrological conditions when fitted over a tile 626 
covering humid tropical forest as over a tile covering semi-arid savanna. Besides, TVDI is not only 627 
affected by the exact region used for fitting the triangle, but the size of the tile also has a strong 628 
influence (Long et al. 2012). With an increase in tile size more humid and dry conditions are included 629 
in the triangular space and the wet and dry edge thereby moves up- and down-wards, respectively, 630 
with a strong impact on the TVDI estimates (Figure 7) (Long et al. 2012). Additionally, a small tile 631 
size causes large uncertainties in the calculation of the wet and dry edges due to the low number of 632 
available pixels (Figure 4) (de Tomás et al. 2014), whereas a large tile size induce uncertainty in 633 
relation to heterogeneity of surface roughness and atmospheric forcing (Figure 3). As a compromise 634 
we used a relatively large tile size as this was deemed necessary to fulfil the requirements of sufficient 635 
amount of data-points for TVDI calculations within parts of the study region (Figure 5c). 636 

It is not only challenging to compare TVDI values originating from different tiles but also values 637 
derived at the same location but under different meteorological conditions. Indeed, short-term 638 
variability in meteorological parameters (e.g. rainfall, temperature, incoming radiation, wind, cloud 639 
cover) is likely to impact the temporal variability in TVDI. If we hypothesize that SM temporal 640 
variability can be captured by TVDI time series, rainy season TVDI should be substantially lower 641 
than dry season TVDI. As this pattern is not observed (Figure 6), it leads to the questioning of the 642 
applicability of TVDI as proxy for monitoring the SM temporal variability. This finding however do 643 
not disqualify TVDI as proxy for assessing the spatial variability of SM within a given tile. Here the 644 
tile size was set so that a SMOS pixel is never overlapping two different tiles; and each pixel only 645 
uses the TVDI heterogeneity within a tile and at a certain point in time for disaggregation of SMOS 646 
SM. Future research related to the improvement of the temporal patterns of TVDI could possibly 647 
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focus on the use of the newly launched geostationary satellite GOES-R with 1-km spatial resolution 648 
which will improve the ability to acquire pure pixels for a comparable smaller area  or by using data 649 
from constellations of polar orbiting sensors (e.g. MODIS, VIIRS and Sentinel-3) ensuring higher 650 
spatial resolution in combination with an adequate temporal resolution. 651 

The TVDI retrievals were found to be very sensitive to errors in the input parameters at the upper 652 
range of FVC, challenging the applicability of the TVDI approach for the high FVC regions needed 653 
to shape the triangular space. Indeed, it has previously been shown that DisPATCH in the form that 654 
it was implemented in this study performs better over semi-arid areas than over temperate zones 655 
(Malbéteau et al. 2016). It has also been found that the triangular method underestimates 656 
evapotranspiration because the surface temperature of empirically retrieved dry and wet edges are 657 
usually under- and overestimated, respectively (Tang and Li 2015). In reality, the evapotranspiration 658 
and SM should reach a minimum and maximum level at surface temperatures higher than and lower 659 
than what the actual observations show (Tang and Li 2015). This is specifically the case for the upper 660 
part of the FVC range (Tang et al. 2010). Incorporating a theoretical dry and wet edge higher and 661 
lower than the actual measured level would decrease the sensitivity of the disaggregated product to 662 
the input parameters, given that the wet and dry edge would be displaced from the observed values. 663 
Tang and Li (2017) developed a physically based model for estimates of endmembers of a trapezoid 664 
for evapotranspiration estimates based on both data from earth observation and in situ measurements 665 
(meteorology, incoming short and longwave radiation, and vegetation height). It is possible that this 666 
approach could be adjusted and applied to earth observation and gridded meteorological and 667 
vegetation data for estimating endmembers giving such theoretical dry and wet edges. Possibly, this 668 
would also result in larger temporal (seasonal) dynamics in TVDI since high FVC observations (i.e. 669 
growing season conditions) would be more influenced than low FVC observations (dry season 670 
conditions). 671 
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Despite these inherent limitations of the TVDI approach, TVDI is found to be a valuable approach 672 
for the purpose of disaggregating SM of a SMOS pixel as implemented here. The accuracy of the 673 
disaggregated products (RMSE 3.4-10.6 %Vol) were at a similar level as previously published 674 
disaggregated SMOS SM products (RMSE varying between 3-11 %Vol) for a range of vegetation 675 
types covered here (semi-arid woody savannah, cultivated semi-arid regions, humid woody savannah 676 
and tropical forest) (Djamai et al. 2015; Malbéteau et al. 2016; Merlin et al. 2013; Peng et al. 2017; 677 
Piles et al. 2016; Piles et al. 2014). Increased details related to major river networks confirms that the 678 
disaggregation method driven by the TVDI spatial heterogeneity was successful in improving the 679 
spatial representation of the hydrological landscape over West Africa (Figure 11). SM extremes were 680 
depicted adequately for the test case of JAS 2012 that coincided with a complex food security crisis 681 
in the Sahel. During that year, late, erratic rainfall, together with high food prices and chronic poverty 682 
pushed more than 19 million people into food insecurity in the Sahel (de Robert 2012). In August 683 
countries already affected by the drought were then hit by heavy rainfall (e.g. in Central Mali, and in 684 
several regions in Niger and Nigeria) causing flooding, destroyed infrastructure and damaged crop 685 
fields (FEWSNET 2012a, b). Despite the relatively short length of available time series (max. 5 686 
years), seasonal anomalies derived from the disaggregated SM product proved to be an adequate tool 687 
to identify both areas affected by extreme high and low SM content. Further investigations should 688 
focus on the evaluation of potential monitoring and early warning products at monthly or lower time 689 
scale derived from the disaggregated product.  690 

Overall it can be concluded that the disaggregation methodology successfully increased the spatial 691 
resolution of SMOS SM and that the disaggregated products can potentially be applied to local SM 692 
monitoring for drought/flood risks which is of significant importance for the livelihood of the 693 
population in West Africa. Initiatives such as the one set by the European Space Agency (ESA) Data 694 
User Element (DUE) GlobTemperature Project that aims at producing and distributing high quality, 695 
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consistent LST dataset are of high value for climate and hydrological studies, especially in remote 696 
areas with low density in situ SM networks. Further research effort should therefore continue the 697 
development and distribution of very high temporal time series of LST that are essential for specific 698 
activities related to the better understanding of the hydrological cycle, the monitoring, forecasting 699 
and early warning of extreme events. 700 
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 991 
 Appendix A. Mathematical derivations of Equation 5 and 7 992 
Equation 5 was derived from equation 4: 993 
SEE୫୭ୢୣ୪ = ଵ

ଶ − ଵ
ଶ cos ൬π × ୗ୑

ୗ୑౦൰                                          (4) 994 

Multiply both sides with -2:  995 
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−2SEE୫୭ୢୣ୪ = −1 + cos ቆπ × SM
SM୮

ቇ 996 

Add 1 to both sides: 997 

1 − 2SEE୫୭ୢୣ୪ = cos ቆπ × SM
SM୮

ቇ 998 

Multiply both sides with arccos: 999 

arccos (1 − 2SEE୫୭ୢୣ୪) = π × SM
SM୮

 1000 

Put SMp on the left side and put  arccos (1 − 2SEE୫୭ୢୣ୪) in the denominator on the right side and 1001 
equation 5 is derived: 1002 

SM୮ = ஠×ୗ୑౏౉ో౏
ୟ୰ୡୡ୭ୱ(ଵିଶ〈ୗ୉୉౏ు౒౅౎౅〉౏౉ో౏)                                                    (5) 1003 

Equation 7 was derived by taking the derivative of equation 6: 1004 
 1005 
SM୫୭ୢୣ୪ = ୗ୑౦

஠ arccos(1 − 2SEE)                                         (6) 1006 

The derivative of arccos(x) is: 1007 

பୟ୰ୡୡ  (௫)
ப୶ = − ଵ

√ଵି୶మ    1008 

Then, by setting x=(1-2SEE) and taking the derivative of x we get: 1009 

பୗ ౣ౥ౚ౛ౢ
ப୶ = −

౏౉౦
ಘ

√ଵି୶మ    1010 

Then by taking the derivative of SEE on x we get: 1011 
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ݔ∂
∂SEE = −2 1012 

Then by multiplying both sides with the derivative of SEE on x we get: 1013 

∂SM୫୭ୢୣ୪
∂x × ݔ∂

∂SEE = −
SM୮π

√1 − xଶ × −2     =>   ∂SM୫୭ୢୣ୪
∂SEE = 2 ൬SM୮π ൰

√1 − xଶ  1014 

Finally, by setting x= (1-2SEE) equation 7 is derived: 1015 

பୗ୑ౣ౥ౚ౛ౢ
பୗ୉୉ = ଶቀ౏౉౦

ಘ ቁ
ඥଵି(ଵିଶୗ୉ )మ   1016 

 1017 
Appendix B. Mathematical derivations indicating that TVDI is a proxy of SEE 1018 
According Merlin et al. (2012) SEE can be calculated as: 1019 
SEE =  ୘౩౥౟ౢ_ౣ౗౮ି ୘౩౥౟ౢ

୘౩౥౟ౢ_ౣ౗౮ି ୘౩౥౟ౢ_ౣ౟౤        (B1) 1020 
where Tsoil is the soil temperature; Tsoil_min is minimum Tsoil; and Tsoil_max is maximum Tsoil. 1021 
Soil temperature and Tsoil_max can be calculated as (Merlin et al. 2010; Merlin et al. 2012):  1022 
Tୱ୭୧୪ =  ୐ୗ୘ି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯

ଵି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯                                   1023 

Tୱ୭୧୪_୫ୟ୶ =  ୐ୗ୘ౣ౗౮ି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯
ଵି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯                                                                                                             1024 

If we put these two into equation B1; we get: 1025 

SEE =  
ై౏౐ౣ౗౮షቀ ూ౒ి×౐౬౛ౝ౛౪౗౪౟౥౤ቁ

(భషూ౒ి) ି ై౏౐షቀ ూ౒ి×౐౬౛ౝ౛౪౗౪౟౥౤ቁ
(భషూ౒ి)

ై౏౐ౣ౗౮షቀ ూ౒ి×౐౬౛ౝ౛౪౗౪౟౥౤ቁ
(భషూ౒ి) ି ୘౩౥౟ౢ_ౣ౟౤

    => 1026 

SEE=
ై౏౐ౣ౗౮షቀ ూ౒ి×౐౬౛ౝ౛౪౗౪౟౥౤ቁ

(భషూ౒ి) ି ై౏౐షቀ ూ౒ి×౐౬౛ౝ౛౪౗౪౟౥౤ቁ
(భషూ౒ి)

ై౏౐ౣ౗౮షቀ ూ౒ి×౐౬౛ౝ౛౪౗౪౟౥౤ቁ
(భషూ౒ి) ି ౐౩౥౟ౢ_ౣ౟౤(భషూ౒ి)

(భషూ౒ి)
     => 1027 

SEE=୐ୗ୘ౣ౗౮ି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯ି ୐ୗ୘ା൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯
୐ୗ୘ౣ౗౮ି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯ି ୘౩౥౟ౢ_ౣ౟౤(ଵି୊୚େ)          => 1028 
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SEE= ୐ୗ୘ౣ౗౮ି ୐ୗ୘
୐ୗ୘ౣ౗౮ି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯ି ୘౩౥౟ౢ_ౣ౟౤(ଵି୊୚େ)                  => 1029 

SEE= ୐ୗ୘ౣ౗౮ି ୐ୗ୘
୐ୗ୘ౣ౗౮ି൫ ୊୚େ×୘౬౛ౝ౛౪౗౪౟౥౤൯ି ୘౩౥౟ౢ_ౣ౟౤ା൫ ୊୚େ×୘౩౥౟ౢ_ౣ౟౤൯                                                                                                                           1030 

Given that  vegetation temperature (Tvegetation) is approxiamately the same as minimum soil 1031 
temperature (Tsoil_min) (Merlin et al. 2010), and that Tsoil_min can be estimated as minimum LST within 1032 
a window tile (the wet edge) (Merlin et al. 2010) this leads us to:  1033 
 1034 
SEE ≈ ୐ୗ୘ౣ౗౮ି ୐ୗ୘

୐ୗ୘ౣ౗౮ି ୘౩౥౟ౢౣ౟౤
≈ ୐ୗ୘ౣ౗౮ି ୐ୗ୘

୐ୗ୘ౣ౗౮ି ୐ୗ୘ౣ౟౤ = (1 − TVDI)                                      1035 

  1036 
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Figure Captions         1037 
Figure 1. Conceptual triangle space with the land surface temperature (LST) or morning rise 1038 
temperature (dTS) on the y-axis and Fraction of Vegetation Cover (FVC) on the x-axis. The blue 1039 
line is the wet edge (TVDI=0.00) and the red line is the dry edge (TVDI=1.00). The grey dotted 1040 
lines are TVDI examples of 0.25, 0.50, and 0.75. The figure is adapted from Peng et al. (2017).  1041 
 1042 
 1043 
Figure 2. Study area with the location of the in situ validation sites. The averaged fraction of 1044 
vegetation cover (FVC) for year 2011 is used as background to illustrate the important north-south 1045 
gradient in vegetation cover. 1046 
 1047 
 1048 
Figure 3. Dynamic range in surface properties and atmospheric forcing influencing the homogeneity 1049 
of available energy within the triangular space. Influence of tile size (y-axis) on the percentiles of the 1050 
time series (x-axis) of the dynamic range in daily averaged a) forecast surface roughness (FSR) (m); 1051 
b), surface solar radiation downwards (SSRD) (W m-2); c) total column water vapour (TCWV) (kg 1052 
m-2); d) wind speed at 100 m height (WS) (m s-1); and e) air temperature at the 975 hPa level (Tair) 1053 
(K) for 1) the Dahra and 2) the Nalohou field sites. The percentiles on the x-axis gives an indication 1054 
of the fraction of the time series for a given tile size having a dynamic range smaller than the value 1055 
shown by the colour. For the z-axis, dark blue indicates high homogeneity (i.e. small dynamic range) 1056 
in surface properties or atmospheric forcing, whereas yellow indicates low homogeneity.                                           1057 
 1058 
Figure 4. Influence of tile size (y-axis) on the percentiles of the time series (x-axis) of the parameters 1059 
influencing the triangular shape. a) Number of points including in the triangle (N); b) range in fraction 1060 
of vegetation cover (FVC); and c) correlation coefficient of the dry edge slope (r) for 1) the Dahra 1061 
and, 2) the Nalohou field sites. The percentiles on the x-axis gives an indication of the fraction of the 1062 
time-series for a given tile size having a range smaller than the value shown by the colour.  1063 
 1064 
Figure 5. (a) Fraction of data coverage for the input data (dTS and FVC) used in the TVDI 1065 
calculations; (b) fraction of data coverage for the TVDI calculations when TVDI was filtered based 1066 
on both TVDI tile statistics and quality flags in input data. (c) Average data exclusion fraction 1067 
depending on latitude; blue is the fraction of rejected input data, red is the fraction rejected in 1068 
relation to the TVDI calculation, and black is the total rejected fraction. Included are also: (d) 1069 
average TVDI for the entire study period; and (e) disaggregated SMOS SM averaged for the entire 1070 
study period. 1071 
 1072 
Figure 6. Time series of the input parameters, extracts from the TVDI calculation tiles, and final 1073 
TVDI estimates for (1) Dahra and (2) Nalohou: (a,) fraction of vegetation cover (FVC);  (b) unfiltered 1074 
(red) and filtered (black) morning rise temperature (dTS); (c) range of FVC in the TVDI tiles; (d) 1075 
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total number of points included in the triangle (N); (e) coefficient of determination (R2) for the dry 1076 
edge fit; (f) wet edge; and (g) dry edge slope. Included are also (h) filtered (black) and gap-filled (red) 1077 
TVDI estimates (black).   1078 
 1079 
Figure 7. Sensitivity of TVDI to input data and equation parameters: a) morning rise temperature 1080 
(dTS; °C); b) fraction of vegetation cover (FVC); c) dry edge intercept (DI); d) dry edge slope (DS); 1081 
and e) wet edge (W). The % for the temperatures (dTS, DI, and W) and the FVC is a % change in 1082 
relation to the range of the triangle. During the analysis we changed one parameter at the time and 1083 
the rest remained stable. 1084 
 1085 
Figure 8. Sensitivity of disaggregated SMOS soil moisture (SM; %Vol) to changes in TVDI.  1086 
Average TVDI in equation 8 was set to a) 0.25, b) 0.50 and c) 0.75. First row (1) shows the actual 1087 
disaggregated SM for each original SMOS SM -TVDI case and second row (2) shows the changes in 1088 
disaggregated SM for each 0.01 error in TVDI for each SM -TVDI case.  1089 
 1090 
Figure 9. Time series of in situ measured soil moisture (SM (%Vol)) (thin black line) and Soil 1091 
moisture and Ocean Salinity (SMOS) SM (grey dots) for: a) Banizoumbou; b) Belefoungou; c) Dahra; 1092 
d) Nalohou e) Tondikiboro; and f) Wankama. The location of the different sites is shown in Figure 2. 1093 
 1094 
Figure 10. Relationship between in situ and both original (1) and disaggregated (2) Soil Moisture 1095 
and Ocean Salinity (SMOS) soil moisture (SM; %Vol) for the pixels used in the evaluation of the 1096 
disaggregation methodology. The subplots are: a) Banizoumbou; b) Belefoungou; c) Dahra; d) 1097 
Nalohou; e) Tondikiboro; f) Wankama; and g) all sites combined. The grey line is the ordinary least 1098 
square linear regression and the black line is the one-to-one ratio. Statistics of the slopes are given in 1099 
Table 1. The location of the sites can be seen in figure 2. 1100 
 1101 
Figure 11. SM 2010-2015 average derived from the disaggregated SMOS product over West Africa 1102 
(a). Main river networks were not visible in the original (non-disaggregated) products (b1), whereas 1103 
they became apparent after disaggregation (b2). SM extremes (flood and drought) were also captured 1104 
for the test case of JAS 2012 (c). Filtered and no data are represented in white. The blocky structure 1105 
observed in the disaggregated products are caused by the original SMOS pixel resolution. 1106 
 1107 




