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Pristine vs. human-altered Ebro Delta habitats display contrasting resilience to RSLR 1 
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ABSTRACT 3 

River deltas are ecologically and economically valuable coastal ecosystems but low 4 

elevations make them extremely sensitive to relative sea level rise (RSLR), i.e. the combined 5 

effects of sea level rise and subsidence. Most deltas are subjected to extensive human 6 

exploitation, which has altered the habitat composition, connectivity and geomorphology of 7 

deltaic landscapes. In the Ebro Delta, extensive wetland reclamation for rice cultivation over 8 

the last 150 years has resulted in the loss of 65% of the natural habitats. Here, we compare the 9 

dynamics of habitat shifts under two departure conditions (a simulated pristine delta vs. the 10 

human-altered delta) using the Sea Level Affecting Marshes Model (SLAMM) under the 4.5 and 11 

8.5 RCP (Representative Concentration Pathways) scenarios for evaluating their resilience to 12 

RSLR (i.e. resistance to inundation). Results showed lower inundation rates in the human delta 13 

(10 to 22% by the end of the century, depending on RCP conditions), mostly due to 4.5 14 

times lower initial extension of coastal lagoons compared to the pristine delta. Yet, inundation 15 

rates from 15 to 30% of the total surface represent the worst possible human scenario, 16 

assuming no flooding protection measures. Besides, accretion rates within rice fields are 17 

disregarded since this option is not available in SLAMM for developed dry land. In the human 18 

delta, rice fields were largely shifted to other wetland habitats and experienced the highest 19 

reductions, mostly because of their larger surface. In contrast, in the pristine delta most of the 20 

habitats showed significant decreases by 2100 (2 to 32% of the surface). Coastal 21 

infrastructures (dykes or flood protection dunes) and reintroduction of riverine sediments 22 

through irrigation channels are proposed to minimize impacts of RSLR. In the worst RCP 23 

scenarios, promoting preservation of natural habitats by transforming unproductive rice fields 24 

into wetlands could be the most sustainable option. 25 
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1. Introduction 27 

River deltas are among the most productive and highly vulnerable ecosystems in the world 28 

(Olson and Dinerstein, 1998; Syvitski et al., 2009). They constitute diverse ecosystems 29 

integrated by many different types of wetlands and coastal habitats that provide an array of 30 

ecological services such as protection from coastal storms, nutrient cycle regulation, water 31 

filtration and fish and wildlife habitat (Wright, 1978). However, river deltas also provide highly 32 

productive lands and have been widely used for rice agriculture during centuries (Czetch and 33 

Parsons, 2002), thus altering the diversity of natural habitats across vast areas. Today, deltas 34 

are seriously threatened by sediment deficit due to dam construction and impoundment, 35 

leading to land loss due to coastal erosion and enhanced subsidence during the last 50 to 60 36 

years (e.g., approx. 3.9 km2 of the surface of the Ebro River mouth; Ramírez-Cuesta et al., 37 

2016, and 20% of the Indus delta plain; Giosan et al., 2014). Besides, their location within or 38 

near the range of daily tides expose them to climate change impacts from accelerating rates of 39 

Sea Level Rise (SLR) (Ericson et al., 2006), and are likely to be inundated by the end of the 40 

century (Syvitski et al., 2009). Because important ecogeomorphic processes such as organic 41 

matter accretion, sediment trapping efficiency, and subsidence are associated with vegetation 42 

(biomass, productivity and decomposition rates), net land elevation may be influenced by local 43 

habitat types (Morris et al., 2002; Nyman et al., 2006). In particular, variability in habitat 44 

responses may become especially important when comparing large cultivated areas subjected 45 

to biomass extraction and agricultural practices with wetland areas under natural soil 46 

dynamics. Although a general habitat conversion to higher salinity tolerance is expected (Day 47 

et al., 2000), the distinctive connectivity and ecological functions within altered agricultural 48 

systems might lead to a different habitat shift and/ or modify their capacity to compensate for 49 

RSLR (degree of inundation). Indirect effects from RSLR such as the extent of the salinity 50 

intrusion can also result in important economic losses of agricultural products such as paddy 51 

rice production (Genua-Olmedo et al., 2016) and prompt the abandonment of land. Therefore, 52 



3 

in order to preserve river deltas, it is essential to understand the consequences of RSLR on 53 

agricultural exploitation, and how such conditions deviate from pristine systems without 54 

human intervention.  55 

Original distribution of wetland habitats has been drastically reduced in world deltas 56 

(Coleman et al., 2008). As consequence, ecological modelling has been widely used in 57 

predictive studies aimed at reconstructing and forecasting habitat changes for conservation 58 

and biological diversity in the face of global change (Guisan and Zimmermann, 2000; Bellard et 59 

al., 2012). A number of wetland models incorporating digital elevation models (DEMs) and 60 

algorithms simulating local feedbacks of soil processes with broader scale spatial dynamics 61 

have been implemented to predict marsh responses to increased rates of RSLR (Rybczyk and 62 

Callaway, 2009). In particular, the Sea Level Affecting Marsh Model (SLAMM) was specifically 63 

developed to simulate wetland conversion and shoreline modification to assess habitat 64 

vulnerability for informing decision-making at local to regional scales. The different 65 

environmental processes that affect wetland vegetation are projected under different 66 

scenarios of RSLR, allowing marsh migration and producing spatial maps that forecast shifts 67 

across different types of marshes and wetland habitats (Clough et al., 2016a). Since its 68 

development in the mid-1980s, SLAMM has been successfully applied to multiple studies in 69 

Florida, Georgia, Washington, California, and South Carolina (review Mcleod et al., 2010), but 70 

is rarely adapted to datasets outside the United States (but see Akumu et al., 2011; Traill et al., 71 

2011). In addition, most of the environments where SLAMM has been applied are tide-72 

dominated estuaries (both macrotidal and mesotidal estuaries) in which tidal currents are the 73 

dominant force shaping the coastal geomorphology (e.g., Craft et al., 2009; Geselbracht et al., 74 

2011, 2015; Stralberg et al., 2011; Tabak et al., 2016). Hence, SLAMM default assumptions as a 75 

response of RSLR, such as the importance of overwash and erosion processes, might not be 76 

properly calibrated for Mediterranean estuaries and deltas subjected to microtidal ranges (in 77 

general less than 2 m, and particularly in those settings with a tide range less than 0.5 m; 78 
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Ibáñez et al., 2000) although further investigation is needed to test this hypothesis. 79 

Furthermore, concerns regarding the suitability of the model due to the uncertainty involved 80 

in selecting many of SLAMM’s empirical input parameters such as DEM vertical error, historic 81 

trend of sea level rise, and accretion rates have been expressed (Chu-Agor et al., 2011). Yet, 82 

the relatively simple implementation of SLAMM, the possibility of specifying accretion rates for 83 

some type of wetland habitats, and the detailed, high-resolution habitat maps generated could 84 

still provide a useful modelling tool. Here, we test SLAMM to compare the potential effects of 85 

RSLR in a region subjected to contrasting habitat distributions as departure conditions to 86 

inform management policies and future restoration goals. 87 

The Ebro Delta (Southern Catalonia, NW Mediterranean) constitutes an example of a highly 88 

modified human area, with ca. 65% of the salt marsh-estuarine ecosystems transformed to rice 89 

farming over the last 150 years. Rice fields provide an important seasonal habitat for aquatic 90 

birds, and fresh water inputs contribute to preventing the saline intrusion among other 91 

ecosystem services (e.g. sediment accretion; Calvo-Cubero et al., 2013). However, rice fields 92 

may display altered patterns of connectivity due to the presence of irrigation ditches and other 93 

man-made structures (Katano et al., 2003) as well as differential rates of vertical accretion 94 

(Ibáñez et al., 1997) due to seasonal extraction of ca. 50% of the plant biomass as rice grain. 95 

Besides, plant productivity patterns and the redistribution of sediments from the Ebro River 96 

into rice fields through the freshwater canal network might be enhanced at higher elevations 97 

close to the river levees rather than the classical bell curve shape between productivity and 98 

elevation described for natural tide systems (Morris et al., 2002). Instead, accretion in wave-99 

dominated deltas is more likely achieved through pulsing events of wetland flooding following 100 

great storms and leading to high sediment inputs (Day et al., 1995). Hence, rice fields might 101 

have a distinctive capacity to compensate for present-day rates of secular subsidence in the 102 

Ebro Delta (ca. 1-2 mm/yr; Ibáñez et al., 1997) resulting from retention of riverine sediments 103 

within upstream dams (Sánchez-Arcilla et al., 2008). It has been estimated that 1 to 4 million 104 
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tons/yr of riverine sediments would be necessary to compensate for the overall deficit within 105 

Ebro Delta rice fields and to maintain rice production (Ibáñez et al., 1997).  106 

In this study we employed the Sea Level Affecting Marshes Model (SLAMM) to compare 107 

inundation patterns (as an indicator of resilience) and habitat shifts due to RSLR under two 108 

contrasting scenarios: with and without human transformation of wetland habitats into 109 

farming areas (mostly rice fields). The potential distribution of Ebro Delta habitats under 110 

pristine conditions was obtained from the predictive habitat model by Benito et al., (2014).The 111 

human delta partially constitutes a irreversible state, since large areas of coastal lagoons were 112 

desiccated for rice farming purposes and cannot be returned to their original situation through 113 

restoration (see Prado et al., 2017). Both pristine and human-altered habitat maps of the 114 

deltaic system, a regionally-specific elevation map (current DEM), SLR projections under a 115 

range of future scenarios, and subsidence and accretion rates were used to produce 116 

simulations of wetland distributions under future SLR scenarios and to quantify the possible 117 

loss of wetland areas in each departing situation (distribution of current habitats under human 118 

influence vs. distribution of habitats in the pristine delta). Despite the presence of some soft 119 

(sand) dykes bordering the inner part of Ebro Delta bays and coastal lagoons that could help 120 

reducing inundation, there are no available maps of these infrastructures that could be 121 

included in the simulations. Therefore, for each RCP scenario, our model results represent the 122 

worst possible case assuming that no dyke protection or other infrastructures (roads, canals, 123 

etc.) are present. This comparative modelling approach (human vs. pristine habitat conditions), 124 

although with limitations, could be important for understanding whether or not returning to 125 

pristine conditions might help to mitigate for RSLR and for planning habitat restoration actions 126 

in the Ebro Delta.  127 

 128 

2. Materials and Methods 129 

2.1 Study Area 130 
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The Ebro Delta is one of the largest deltas (320 km2) in the north-western Mediterranean 131 

Basin. The inner limits of the Ebro Delta are defined by several aspects including changes in 132 

land composition (disappearance of riverine sediment deposition) and limit of rice cultivation, 133 

as well as an elevation increase of up to 5 m. These limits are conventionally used by the local 134 

administration and researchers (e.g., Benito et al., 2014; Genua-Olmedo et al., 2016). Although 135 

most of the present surface is devoted to rice farming (Fig. 1), the Ebro Delta Natural Park still 136 

integrates 30% of the remaining wetland surface and features a diverse mosaic of 137 

environments including coastal (beaches, coastal plains along two sand-spits, and Salicornia 138 

salt marshes), freshwater (Cladium marshes [river and riparian zone not included within the 139 

natural park]), and estuarine habitats (coastal lagoons, meadows, reeds and cane 140 

communities) hosting a great biodiversity of permanent and migratory birds that attract 141 

thousands of visitors per year (Sabater et al., 2010). It is a low-lying area with about 50% of the 142 

total surface below 0.5m above mean sea level, and a maximum of about 5 m close to the river 143 

by the town of Amposta (Genua-Olmedo et al., 2016). The vicinity of the Ebro River favors the 144 

development of agricultural activities, which are largely devoted to rice production. Also, the 145 

production of mussels and oysters in Ebro Delta bays constitutes another major economic 146 

activity in the territory (Fig. 1). The delta plain also contains numerous wetland habitats 147 

hosting diverse and abundant wildlife, which is protected by the European Union and as the 148 

Ebro Delta Natural Park and Biosphere Reserve (Natura 2000 site of UNESCO). Since 1950s, 149 

upstream water abstraction and damming for hydroelectric and irrigation purposes caused ca. 150 

40% decrease in river flow (particularly along the lower stretch) along with dramatic 151 

reductions (ca. 99%) in the amount of sediments available for deposition along the delta plain 152 

(e.g. Ibáñez et al., 2012; Rovira et al., 2012). Given the economic importance of the Ebro Delta 153 

for rice farming and this great vulnerability of the area to RSLR, engineered structures such as 154 

artificial levees were deployed around coastal lagoons and some parts of the shorefront 155 
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adjacent to rice fields, but elevation maps of these infrastructures are not yet available for 156 

modelling purposes (see later). 157 

 158 

2.2. Sea Level Affecting Marshes Model (SLAMM) 159 

Changes in the cover and composition of habitat types in the Ebro Delta in response to 160 

accelerated RSLR were modeled using the “Sea Level Affecting Marsh Model” (SLAMM version 161 

6.7). SLAMM employs a decision tree that incorporates geometric and qualitative relationships 162 

to simulate the main processes (inundation, erosion by wave action, saturation of the water 163 

table, accretion, and salinity) involved in shoreline alterations and conversions of wetland 164 

types under the different scenarios of sea-level rise (for more details see Clough et al., 2016b). 165 

There are some mandatory and some optional files that need to be uploaded by SLAMM in 166 

order to simulate habitat changes at selected RCP scenarios. The first minimum data file that 167 

SLAMM needs for functioning is habitat cartography, which included one of two possible 168 

habitats departure scenarios: (1) the 2010 CORINE (the Coordination of Information on the 169 

Environment program initiated by the EU) habitat distribution maps in the Ebro Delta available 170 

from Department of Planning and Sustainability of the Generalitat de Catalunya 171 

(http://territori.gencat.cat/ca/01_departament/12_cartografia_i_toponimia/bases_cartografiq172 

ues/medi_ambient_i_sostenibilitat/bases_miramon/territori/29_habitats_1_5000_perfulls/); 173 

and (2) a predictive map of the likely “pristine” distribution of wetland habitats (also with the 174 

CORINE classification) in the absence of human disturbance in the Ebro Delta built by Benito et 175 

al., (2014). Briefly, models of potential natural wetland habitats of the Ebro Delta were 176 

developed based on presence/pseudo-absence for each habitat modeled against 177 

ecogeographical predictors (surface elevation, distance from the coast, distance from the river 178 

and distance from the inner border of the deltaic plain) using Generalized Additive Models 179 

(GAMs). Although such pristine scenario might have a larger associated error than that of the 180 

human distribution of habitats, it was still considered a good approximation to habitat 181 
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occurrence (~60 to 98% accuracy, depending on the habitat; Benito et al., 2014). In both 182 

scenarios, minimum and maximum elevation values within each habitat were extracted using 183 

ArcGIS and entered into the SLAMM elevation inputs and analyses menu. CORINE habitats 184 

were assigned to the habitats of the National Wetlands Inventory (NWI) required by SLAMM 185 

(see Table 1). In all cases species composition of the habitats was used to ensure the correct 186 

equivalence among categories. Elevation and slope data (also mandatory files) were obtained 187 

from the Ebro Delta elevation dataset (DEM) built in 2010 by the Institut Cartogràfic i Geològic 188 

de Catalunya (ICGC).  189 

Among optional files, SLAMM 6.7 also provides the possibility to upload salinity values 190 

(available from Genua-Olmedo et al., 2016). This was, however, not possible because the 6.7 191 

version experienced running problems that need to be solved by SLAMM developers. Hence, 192 

default salinity options based on predicted salinities as a function of land-cover type were used 193 

(Clough et al., 2016b). 194 

Accretion and subsidence data for the main habitat types were available from unpublished 195 

data of the research team (see supplementary material files). The surface elevation table–196 

marker horizon (SET–MH) method was implemented in 75 points of the Ebro Delta, to 197 

determine changes in relative elevation, including sediment accretion, and shallow soil 198 

processes (subsidence and expansion due to root production; Cahoon et al., 1995). SETs were 199 

installed in 2009 and 2014 and attached to permanent benchmarks in order to achieve high 200 

precision measurements of relative wetland surface elevation following the methodology used 201 

in a previous setup (Ibáñez et al., 2010). Marker horizons (MH) were deployed using feldspar 202 

powder over 100 x 100-cm plots, with replicate plots at each sampling location. Plots were 203 

sampled twice a year (wet and dry season) for SETs and once a year for MH. Accretion values 204 

were considered those above the feldspar horizon due to vertical incorporation of sediments 205 

and plant biomass, and shallow subsidence was computed as the difference between total 206 

elevation change and vertical accretion. On average, this resulted in the following values of 207 
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accretion used in all SLAMM models: Regularly Flooded Marsh Accretion: 2.1 mm/ yr; 208 

Irregularly Flooded Marsh Accretion: 2.7 mm/ yr; and Inland Fresh Marsh Accretion: 1.9 mm/ 209 

yr. For beach sedimentation rate, we considered a conservative value of 4 mm/ yr coherent 210 

with current rates of SLR necessary to maintain current beach elevation through overwash 211 

processes. However, SLAMM does not allow for accretion values for the remaining habitats, 212 

including developed dry land, so default conditions have to be assumed. In the case of 213 

subsidence, available data points from the ICGC (Pérez –Aragüés and Pipia, 2015) were used to 214 

generate subsidence estimates for the whole Ebro Delta using the Kriging geostatistical 215 

procedure in ArcGIS 10.3. For the particular case of the Fangar and Banya sand spits where no 216 

SETs were deployed, an average of the closets points located on the same type of habitats was 217 

used. Both subsidence raster and excel file containing accretion values can be accessed as 218 

supplementary material. For each habitat departure scenario (current vs. pristine), the same 219 

model was run twice: with and without the generated subsidence raster file in order to 220 

evaluate the sensitivity of SLAMM 6.7 to subsidence and to assess the interaction effects with 221 

initial habitat types.  222 

The 30-60-90 day inundation levels (m above the mean tidal level (MTL)) and the 10 year 223 

and 100 year storm interval parameters were considered as H1-H3= 0, H4= 0.4, and H5= 0.8 224 

using the DEM file and historical photographs and reports of storm frequencies (Jiménez et al., 225 

2005; Garriga-Sala et al., 2008). The wave erosion model was built with wind-rose angles of the 226 

dominant winds taken at 10 min intervals available from the network of oceanographic and 227 

meteorological instruments of the Catalonian government (Xarxa d'Instruments Oceanogràfics 228 

i Meteorològics (XIOM); Bolaños et al., 2009). The regular and irregular flood-collapse (vertical 229 

loss of elevation when regular and irregularly flooded marshes are converted to other habitats; 230 

see Clough et al., 2016b for details) was considered as ca. -12.7 mm from data on similar 231 

habitats by Cahoon (2006). Great Diurnal Tide Range (difference between MHHW (mean 232 

higher high water) and MLLW (mean lower low water)) was considered as 0.4 m (Mestres et 233 
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al., 2003); and Historic trend (historic rate of sea level rise) as 2 mm/ year (Church and White, 234 

2011). 235 

Although DEM dataset was available at 1 m precision SLAMM 6.7, a cell-based model, was 236 

run at 10 m resolution (see also Craft et al., 2009; Stralberg et al., 2011 for resolutions ranging 237 

from 5 to 30 m) due to limitations in the analytical equipment for simulation runs. Model 238 

simulations included different IPCC concentration paths of greenhouse gases by the end of the 239 

21st century. The two selected scenarios were the RCP 4.5 (Mean and High) and RCP 8.5 240 

(Mean, High, and Upper) included in the AR5 (Church et al., 2013). The RCP 4.5 is a medium 241 

emissions pathway (4.5 Wm−2 radiative forcing) that corresponds to a global warming 242 

exceeding 2˚C, whereas the RCP 8.5 is more pessimistic (8.5 Wm−2 radiative forcing) and results 243 

in a global average warming at the end of the century of about 4˚C (Church et al., 2013). In 244 

addition, we considered the upper limit scenario indicated by Jevrejeva et al., (2014), with a 245 

5% probability of being exceeded. SLR for each RCP and the upper limit scenario is indicated in 246 

Table 2 (Genua-Olmedo et al., 2016). Scenarios were run with a time step of 20 years from 247 

2025 (except for the first time step of 15 years; i.e., 2025, 2040, 2060, 2080, and 2100) in order 248 

to allow for observable changes and progressive differences in wetland habitats. In all 249 

analyses, SLAMM default elevation distributions for each habitat –calibrated under macrotidal 250 

regimes– were corrected with local distribution data extracted by superposing digital maps 251 

with the DEM dataset in ArcGIS (see Table 3). 252 

 253 

2.3. Sensitivity Analysis 254 

Uncertainty analysis provides information about the possible range of habitat changes and 255 

the level of certainty in the projected changes (Tabak et al., 2016). Errors that might arise due 256 

to the model’s inputs parameters include inaccuracies in the experimentally measured values 257 

used to feed the model (e.g., constant accretion rates for each habitat, degree of inundation, 258 

wind erosion, great diurnal tidal range, etc.), and errors in the projected values of SLR for the 259 
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simulated years and scenarios (see values in Table 2) were investigated through a sensitivity 260 

analysis. The SLAMM 6.7 provides a built-in function employing a Monte Carlo method in 261 

which model parameter values are randomly selected from user-defined probability 262 

distributions as "multipliers" of existing parameter values for a specified number of model 263 

iterations (Clough et al., 2016a, b). We ran sensitivity analyses for the human delta under the 264 

most extreme possible scenario (RCP 8.5 Upper by 2100). Quantitative variables from the 265 

SLAMM site parameters menu (great diurnal tide range, irregular fresh marsh accretion, 266 

regular fresh marsh accretion, salt elevation, beach sedimentation rate, regular and irregular 267 

flood collapse and inundation levels H1 to H5) were subjected to deviations of ±10%, 20%, 268 

60%, 100% and 250% of the base input value of each variable. All results and the level of 269 

consensus among these iterations were examined in order to determine the magnitude of 270 

possible changes and the overall confidence of projected changes. 271 

 272 

3. Results 273 

3.1. Subsidence effects 274 

The inclusion of the subsidence raster showed negligible effect in SLAMM models. In both 275 

models departing from the current , human-altered and pristine delta, average annual 276 

deviations in percent habitat cover (all habitats excluding the open ocean) between 277 

subsidence and no subsidence results ranged between 0.01 and nearly zero (5E-9%). 278 

Differences within habitat types (all years and scenarios pooled) were higher, particularly for 279 

developed dry land (2.4 ± 1.5% variation), estuarine open water (1 ± 0.5%), regularly flooded 280 

marsh (0.8 ± 0.5%), tidal flat (0.6 ± 0.4%), ocean flat (0.4 ± 0.2%), transitional salt marsh (3.3 ± 281 

0.4%), inland open water (0.2 ± 0.1%), and irregularly flooded marsh (0.1 ± 0.08%) in the 282 

human delta. In the pristine delta variability was lower, ranging from 0.1 ± 0.05 to 0.004 ± 283 

0.001%.  284 

 285 
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3.2. Overall inundation 286 

The departing habitat distribution and surface in the human-altered delta and the pristine 287 

delta was very different (Fig. 2 to 7). In the human delta, a vast extension of the original 288 

coastal lagoons (approx. 15% of the surface) has been desiccated and clogged with sediments 289 

for rice farming purposes over the last 150 years and caused enhanced resilience towards 290 

inundation across simulations. In the pristine delta simulations, the presence of these large 291 

coastal lagoon areas (approx. 20% of the Ebro Delta surface) greatly favored the connectivity 292 

with the open sea (Alfacs Bay) under the different RCP scenarios of SLR and resulted on 293 

increased inundation of the delta surface by the end of the century (RCP 4.5: 9.7 and 10.4% 294 

higher respectively for the Mean and High scenarios; RCP 8.5: 12, 12.3, and 22% higher, 295 

respectively for the Mean, High and Upper scenarios). Yet, model results for the human delta 296 

still predict a great loss/ naturalization of agricultural lands (see next section) to RSLR by the 297 

end of the century.  298 

 299 

3.3. Habitat effects 300 

In the initial human delta, the most important habitat was that of developed dry land 301 

(76.8% of rice fields and other minor agricultural land and villages) with minor contributions of 302 

other habitats (0 to 7.2%). In contrast, the initial pristine delta mainly included transitional salt 303 

marsh (41.7%), inland open water (ca. 20%), and inland fresh marsh (ca. 10%). Under the 304 

departing situation of the human delta, open estuarine waters gained 15 to 30% of the delta 305 

surface to the other habitats (RCP 4.5 mean to 8.5 Upper), whereas in the case of the pristine 306 

delta the increase was considerably higher ranging between 25 to 52% by 2100.  307 

For the human delta, the most affected habitat was developed dry land which decreased 308 

from 31.4 to 62.9% by the end of the century across RCP scenarios (Fig. 2 to 7). To a lesser 309 

extent, other decreasing habitats were inland open water (4.5% in all scenarios), ocean flats 310 

(from 3.6 to 7.2%), riverine tidal (1.9 to 2.2%), and irregularly flooded marsh (1.9 to 3%). In 311 
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contrast, the habitats increasing their surface to a greatest extent were estuarine open water 312 

(15.1 to 30.2%), regularly flooded marsh (13.6 to 15.1%), tidal flat (7.9 to 27%) and transitional 313 

salt marsh (6.4 to 9.1%). The surface cover of ocean beach increased slightly from RCP 4.5 314 

mean to RCP 8.5 mean (0.1 to 0.2%) but decreased in the more extreme RCP scenarios (0.2 to 315 

1.1%).  316 

In the case of the pristine delta (Fig. 2 to 7), the main decreasing habitats from initial 317 

conditions by the end of the century were inland open water (18 to 19.7%) and transitional salt 318 

marsh (4 to 32.4%), followed by ocean flat (4 to 6.5%), inland fresh marsh (2 to 7.6%), riverine 319 

tidal (2% in all scenarios) and ocean beach (1 to 6%). The main increasing habitat was 320 

estuarine open water (25 to 52.2%), followed by tidal flats (3 to 17.6%) and regularly flooded 321 

marsh (5 to 6.2%).  322 

 323 

3.4. Sensitivity analyses 324 

Results from sensitivity analyses tested for 2100 under the most extreme scenario (RCP 8.5 325 

Upper) showed different effects depending on the investigated variable, percent deviation 326 

from initial conditions, and type of habitat. For great diurnal tidal range resulting changes were 327 

small (ca. 0-3%), except for estuarine beach and ocean flat habitats at deviations of 100 and 328 

250% from initial values (ca. 7-59% change; Suppl. Table 1). In contrast, variability in irregularly 329 

flooded marsh accretion showed noticeable effects in the cover of inland fresh marsh habitats 330 

(IFM) (from ca. 20 to 1933% variation at 10 to 250% deviations from initial conditions), but had 331 

minor influence in all other habitats. Similarly, variations of 10 to 250% in the initial values of 332 

regularly flooded marsh accretion resulted on estuarine beach variations of 8.7 to 73% when 333 

values were increased and on variations of 0 to 25% when values were decreased, but had 334 

little influence in the remaining habitats (Suppl. Table 1). The salt elevation parameter (the 335 

elevation at which dry land and fresh water wetlands begin; SLAMM 6.7 user manual) was the 336 

most influential factor across habitats, but was also particularly high for the EB and IFM 337 
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habitats, and for deviations of 40 to 60% from initial conditions. For sand sedimentation, 338 

increasing deviations from initial conditions had a very important effect on EB (30.4 to 339 

217.4%), ocean beach (OB; 4.4 to 320.8%), and OF (18.7 to 8516.7%). In contrast, both 340 

irregular and regular flood collapse SLAMM variables showed almost no effects in any habitats, 341 

excepting in EB when deviations from initial conditions increased by 250% (Suppl. Table 1). 342 

 343 

4. Discussion 344 

For all RCP scenarios, the resilience (resistance to inundation) of the human delta to RSLR 345 

was found to be greater than that of the pristine delta conditions (approx. 10 to 22% less 346 

flooded area by the end of the century). The initial variation in the extension of coastal lagoons 347 

(approx. 4.5 times higher under pristine conditions) appears to be the central component 348 

determining differences in inundation surface between the two models. In the human delta, 349 

areas of large coastal lagoons were desiccated and transformed into rice fields over the last 350 

century thereby reducing their connectivity with the bay (Prado et al., 2017). Besides, 351 

inundations of 15.1 to 30.2% of the human delta surface are likely overestimated since they 352 

represent the worst possible human scenario, assuming that no protection measures are taken 353 

to prevent RSLR and disregarding accretion rates into rice fields. Reductions in the cover of 354 

inland fresh marsh towards more salinity tolerant habitats were also observed in both delta 355 

scenarios as reported in other regions (see Day et al., 2000). For the human delta, developed 356 

dry land (i.e., rice fields) was the main declining habitat (ca. 31 to 63% by 2100 depending on 357 

RCP conditions) and was partly transformed into other wetland habitats. In contrast, in the 358 

pristine delta most habitats excepting regularly-flooded marshes and tidal flats would be 359 

subjected to sharp decreases by the end of the century (see also Genua-Olmedo et al., 2016). 360 

Overall, our results suggest that unless active human actions are implemented to minimize 361 

RSLR ca. 31 to 63% of agricultural areas will be naturalized or directly lost due to estuarine 362 

open water due to RSLR. These adaptation measures could be implemented in the inner part 363 
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of the bays and around coastal lagoons, thus protecting rice fields immediately adjacent to the 364 

sea (Nicholls and Minura, 1998). In the frontal part of the Delta, which is subjected to 365 

enhanced erosion processes, the best approach would be enhancing the arrival of riverine 366 

sediments retained within water reservoirs (Ibáñez et al., 1997; Sánchez-Arcilla et al., 2008). 367 

The supply of riverine sediments through irrigation channels could also provide higher 368 

elevation throughout the delta (Rovira and Ibáñez, 2007). Although rice farming constitutes 369 

the most important socio-economic activity for the region, the creation of new wetland areas 370 

could also be an economically viable alternative, granted by the development of an 371 

environmentally sustainable touristic industry focused on nature conservation (Figueras et al., 372 

2011). Other local economic activities such as bivalve production might also be altered in more 373 

extreme scenarios due to changes in water mass residence time and in the primary production 374 

of the bays following the reduction of sand spit areas. 375 

 376 

4.1. Habitat changes from initial conditions 377 

The initial configuration of habitats appeared to be the most important factor determining 378 

differences in the degree of inundation between human and pristine deltas. Results suggest 379 

that a larger coastal lagoon adjacent to the Alfacs Bay may raise the flooding risk because it 380 

increases the connectivity with or the open sea, whereas both scenarios showed similar effects 381 

on sand-spits’ loss. In the pristine delta, the presence of a major coastal lagoon system 382 

connected to the Alfacs Bay through a thin salt marsh fringe (Benito et al., 2014; Prado et al., 383 

2017) could result in 10 to 12% higher estuarine open water inundation for the 4.5 mean to 8.5 384 

high RCP scenarios and up to 22% at the 8.5 Upper scenario by 2100. This result suggests that 385 

lateral marsh edge erosion due to the effect of wind could be a key process favoring the 386 

expansion of an initially larger surface area and controlling patterns of sediment deposition 387 

(Hopkinson et al., 2018). In the case of the human delta, a plausible hypothesis is also that 388 

wetland loss due to reclamation causes concentration of incoming resuspended sediments in 389 
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the remaining natural areas thus providing locally enhanced resilience to SLR. Alternatively, 390 

given that most of the habitats occur at elevations that are below sea level, habitat change 391 

could be also controlled by the degree of connectivity with the sea and the distribution of 392 

habitats accordingly to their salinity tolerance (Rogel et al., 2000). For instance, important 393 

areas of inland fresh marsh in the pristine delta were transformed into more salinity tolerant 394 

habitats such as transitional salt marsh across RCP scenarios (Day et al., 2000). Also, the role of 395 

flood defenses may be a determinant factor controlling habitat distribution and coastal 396 

flooding through the effect of coastal squeeze (Rupp-Armstrong and Nicholls, 2007). Hence, 397 

the present existence of soft (sand) dykes around coastal lagoon areas and along the inner 398 

shoreline of the bays constitutes a limitation in the predictive capacity of the model, which 399 

may overestimate patterns of wetland loss by inundation. Some flood protection in both 400 

scenarios might have been achieved thanks to the availability of ocean beaches with well-401 

developed dunes (Froehle, 2012), but they declined significantly under the most extreme 402 

scenarios thus favoring the increase of estuarine open waters.  403 

In the human delta, the most dramatic change aside from inundation was the 404 

transformation of ca. 31 to 63% of rice fields into wetland habitats as expected in lands 405 

abandoned to the encroaching sea (FitzGerald et al., 2008). Genua-Olmedo et al. (2016) 406 

showed that rice production rates in the Ebro Delta followed an opposite gradient to soil 407 

salinity, with reductions between 6.6 and 28.3% from 2010 to the end of the century 408 

depending on each RCP scenario. Hence, the abandonment of rice fields at soil salinities of 3-409 

3.6 psu (Genua-Olmedo et al., 2016) may occur before than habitat changes unless more 410 

salinity tolerant genetic varieties are developed to aid crop endurance (Normile, 2008). 411 

Although SLAMM assumes that developed dry lands will be always protected against RSLR, our 412 

results for the human delta predict that most of these rice fields will be transformed –unless 413 

other economic activities such as aquaculture are developed– into transitional salt marsh, 414 

regularly flooded marsh, and tidal flat (combined increases from 28 to 51% of the original Ebro 415 
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Delta surface across RCP scenarios). The unaccounted presence of sand dykes around coastal 416 

lagoons could also impede inland migration of intertidal habitats (Rupp-Armstrongt and 417 

Nicholls, 2007) and reduce rice field transformations, altering to some extent our obtained 418 

results. Yet, saltwater intrusion into rice fields is expected to occur in spite of the presence of 419 

dykes and is indicated as the central factor controlling the abandonment of rice fields (Genua-420 

Olmedo et al., 2016). In contrast, the predicted inundation of both sand spits might cause an 421 

important impact on the local production of bivalves (mussels and oysters) as a result of 422 

alterations in the residence time of water and in the capacity of bays to concentrate 423 

phytoplankton (Dame and Prins, 1997). 424 

 425 

4.2. Effects of tidal range and accretion rates 426 

The SLAMM model has been mostly used to model habitat changes in meso and macrotidal 427 

systems across the USA and Canada (e.g., Craft et al., 2009; Stralberg et al., 2011; Geselbracht 428 

et al., 2011, 2015; Tabak et al., 2016), but to our knowledge, it has never been applied to 429 

microtidal systems such as the Mediterranean Sea. The model assumes that tidal range (meso 430 

to macrotidal) determines the range of vertical elevations at which wetlands inhabit, although 431 

the 6.7 version allows entering local elevations for each habitat. Yet, when elevation ranges of 432 

habitat types overlap considerably (such as in the Ebro Delta), salinity is used to determine 433 

habitat switching functions (SLAMM 6.7 Technical Documentation). The accuracy of the salinity 434 

algorithm may account for small effects of great diurnal tidal range in sensitivity analyses, 435 

except for estuarine beach and ocean flat at deviations rates of 100 and 250% from initial 436 

conditions. Yet, macrotidal marshes (tidal range >4 m) have been indicated to have an order of 437 

magnitude greater adaptation to RSLR rates than microtidal marshes (tidal range <2 m) under 438 

the same availability of suspended sediment (Kirwan et al., 2010). Under this premise, marshes 439 

with low tidal range and low suspended sediment concentrations such as Mediterranean 440 

marshes under present conditions could be particularly sensitive to RSLR. According to our 441 
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results, for each RCP scenario approx. 15 to 30% of the initial human delta surface (including 442 

coastal lagoons) and 25 to 52% of the initial pristine delta was lost to RSLR by the end of the 443 

century. These values agree with other static landscape predictions by which 20 to 60% of the 444 

world’s coastal wetlands will be inundated by the end of the century due to accelerated RSLR 445 

(Nicholls et al., 2007; Craft et al., 2009). Recent more dynamic models, however, predict a 446 

lower wetland loss by inundation, ranging from 0 to 30% (Schuerch et al., 2018). For the Ebro 447 

Delta, sensitivity effects due to tidal regimes are difficult to evaluate because natural sediment 448 

deposition altered by the construction of many upstream dams that cause erosion in the 449 

deltaic plain (Sánchez-Arcilla et al., 2008), and current elevations for initial model conditions 450 

are below the sea level in some areas. Although the model showed certain robustness against 451 

variations in accretion (with some habitat effects that could be associated to variable 452 

inaccuracies in the experimentally measured SET values), pre-dam conditions may have 453 

involved even higher depositions than those considered in the sensitivity analysis. Prior to the 454 

dams’ construction and flow regulations, the amount of sediments arriving into rice fields 455 

through irrigation channels from the Ebro River was estimated to be between 3-5 mm/ yr, 456 

whereas current rates are possibly close to zero (Ibáñez et al., 1997). For the remaining 457 

habitats, our results from the SET-MH method showed similar rates than those reported by 458 

Ibáñez et al. (2010) using 210Pb dating (ca. 2-3 mm/ yr vs. 0.9-1.7 mm/ yr, respectively) so they 459 

were not able to compensate an estimated relative RSLR rate for the Ebro Delta of 5 to 8 mm/ 460 

yr (Ibáñez et al., 2010). In the deltaic fringe, sediments from eroding stretches are long-shore 461 

transported to feed accreting ones but strong erosion rates (exceeding 20 m/ year) in the 462 

mouth area are not compensated from upstream sediment supplies and hence constitute an 463 

important factor driving vulnerability to RSLR (Sánchez-Arcilla et al., 1998). For instance, the 464 

Ebro River mouth, one of the most affected areas by erosive coastal processes, has 465 

experienced a shoreline recession of over 2500 m and about 3.9 km2 over the last century 466 

(Palanques and Guillén, 1998; Ramírez-Cuesta et al., 2016).  467 
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 468 

4.3. Limitations of the approach 469 

Several other caveats associated with the tools and approaches we used deserve mention. 470 

First, the importance of Ebro Delta wetland loss predicted by SLAMM results under the 471 

different RCP scenarios need to be interpreted with caution. According to a meta-analysis 472 

conducted by Kirwan et al., (2016) with accretion and elevation data from multiple sites across 473 

Canada, the USA, UK, France, and Spain, static landscape models may be overestimating the 474 

impacts of RSLR. The main argued reason is that this type of models, including SLAMM, do not 475 

account for eco-geomorphic feedbacks allowing accelerated elevation changes to adapt to 476 

accelerated RSLR. Hence, the use of constant accretion and elevation rates based on historic 477 

trends can even result on dramatic predictions of wetland loss at sites where the marshland is 478 

actually expanding (e.g., Kirwan et al., 2016; Schuerch et al., 2018).  479 

Second, in the particular case of the human delta, SLAMM results display the worst possible 480 

case scenarios in which rice fields and some other minor agricultural lands are abandoned at 481 

the fate of habitat shifts. However, this scenario is unrealistic for socio-economic reasons. Rice 482 

agriculture in the Ebro Delta has been a very important economic activity over the last 150 483 

years, boosting different socio-environmental outcomes such as community-supported 484 

agriculture and fishery, the Ebro Delta Natural Park, infrastructure investment and population 485 

growth (Cardoch et al. 2002). Also, further elevation and extension of sand dykes bordering 486 

coastal lagoons and the internal coast of both Ebro Delta bays has been envisaged in order to 487 

prevent rice field inundation to RSLR, although the project was stopped due to the economic 488 

crises (Genua-Olmedo et al., 2016). Related to this issue, another important shortcoming of 489 

SLAMM is that accretion values can only be entered for a selection of wetland habitats, leaving 490 

out categories such developed dry land. However, in the particular situation of the Ebro Delta 491 

and other similar Mediterranean deltas (Giosan et al., 2014), this is not a realistic scenario 492 

because rice fields are exposed to some degree of sediment deposition (possibly < 1 mm/ yr 493 

https://link.springer.com/article/10.1007/s13157-014-0541-2#CR6
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after dams construction). Besides, straw addition is seasonally conducted by local farmers 494 

prior to the beginning of each growing season and other management options such as a 495 

sediment by-pass from the dammed area to lower stretches of the river could be also possible 496 

(Ibáñez et al. 1997, 2010). In a more realistic scenario, SLAMM would also take into account 497 

the lack of riverine sediments (Ramírez-Cuesta et al., 2016) and the interplay with other input 498 

parameters such as tidal amplitude and local winds, to compute overall losses in surface area. 499 

Finally, we found that SLAMM showed nearly negligible sensitivity to the addition of a 500 

spatially variable subsidence GIS layer, which was also optional for simulations. Although there 501 

are no substantial human activities in the Ebro Delta that could enhance subsidence rates 502 

(Galloway et al., 1999), the natural compaction of sediments across the different local habitats 503 

may account for a vertical height loss of 1-3 mm year (Ibáñez et al., 1997; Sayol and Marcos, 504 

2018), which is not such a minor value. Also importantly, in the absence of a proper 505 

functioning for the salinity input raster for the SLAMM version 6.7 our results might be 506 

affected to some extent by the default salinity options of the model, which does not allow for 507 

a sensitivity analysis on this variable. Despite all of these limitations, results of the different 508 

time steps and RCP scenarios are coherent with the results of other local projections for the 509 

Ebro Delta (e.g., Genual-Olmedo et al., 2016; Sayol and Marcos, 2018), suggesting the overall 510 

reliability of the model.  511 

 512 

5. Conclusions 513 

The presence of large, connected coastal lagoons areas to the sea (semi-enclosed bays) is a 514 

major factor determining the degree of inundation under the different RSLR scenarios. For the 515 

human delta, subjected to historical desiccation and vertical accretion for rice field 516 

exploitation, the model predicts a lower degree of inundation than in the pristine delta, with a 517 

progressive transformation of agricultural lands into wetland systems. Similar comparative 518 

exercises could be also very useful prior to conducting habitat restoration in other areas 519 
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threatened by SLR, in order to identify natural habitats and spatial distributions that could be 520 

more sensitive to inundation. Among major model criticisms, SLAMM lacks the possibility of 521 

entering accretion values for developed dry lands, which may nonetheless occur in agricultural 522 

systems such as rice fields, and is based on deterministic input variables that tend to 523 

overestimate the impacts of RSLR (Kirwan et al., 2016; Schuerch et al., 2018). Although major 524 

local towns are located in inner areas relatively protected from RSLR, rice farming, the major 525 

local socio-economic activity will be greatly impacted, particularly at salinities of 3-3.6 psu 526 

(Genua-Olmedo et al., 2016). Protection measures such as dykes (already implemented in part) 527 

and flood protection dunes (Froehle, 2012), as well as other potential palliative measures such 528 

as reintroduction of riverine sediments (Ibáñez et al., 1997; 2010) are recommended, so 529 

inundation and, to a lesser extent habitat shifts, will probably have a smaller influence. In more 530 

extreme scenarios, unproductive rice fields could be transformed into wetlands for the 531 

implementation of alternative activities that could be more economically sustainable given the 532 

also important interest of the Ebro Delta as a wildlife refuge in the context of the 533 

Mediterranean region (e.g., bird watching). Nonetheless, it is largely unknown how the 534 

abandonment of rice fields and the changes in the connectivity between bays and the open 535 

ocean might affect the dynamics of this coupled human-environmental system, so the 536 

modeling of social, ecologic and economic interactions warrant future studies.  537 
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Fig. 1. Map of the Ebro Delta showing the distribution of rice fields and natural habitats 724 

(including coastal lagoons, river and wetlands). Human settlements and infrastructures 725 

(network irrigation systems and local deployment of mussel and oyster farming structures) are 726 

also shown. 727 
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Fig. 2. Percent cover of habitats in the human delta (H) and the pristine delta (P) at each RCP scenario from initial conditions (IC; 2010) to the end of 

the century. DDL= Developed Dry Land; IFrM= Inland-Fresh Marsh; TSM= Transitional Salt Marsh; RFM= Regularly-Flooded Marsh; EB= Estuarine 

Beach; TF= Tidal Flat; OB= Ocean Beach; OF= Ocean Flat; IOW= Inland Open Water; RT= Riverine Tidal; EOW= Estuarine Open Water; IFM= Irregularly 

Flooded Marsh; IS= Inland shore. 
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RCP 4.5 Mean  

Fig. 3. Distributions of Ebro Delta habitats under the RCP 4.5 Mean scenario departing from human and pristine conditions until the end of 

the century. Habitat abbreviations as in Fig. 1. 
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RCP 4.5 High  

Fig. 4. Distributions of Ebro Delta habitats under the RCP 4.5 High scenario departing from human and pristine conditions until the end of 

the century. Habitat abbreviations as in Fig. 1. 
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RCP8.5 Mean 

Fig. 5. Distributions of Ebro Delta habitats under the RCP 8.5 Mean scenario departing from human and pristine conditions until the end of 

the century. Habitat abbreviations as in Fig. 1. 
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RCP8.5 High 

Fig. 6. Distributions of Ebro Delta habitats under the RCP 8.5 High scenario departing from human and pristine conditions until the end of 

the century. Habitat abbreviations as in Fig. 1. 
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RCP8.5 Upper 

Fig. 7. Distributions of Ebro Delta habitats under the RCP 8.5 Upper scenario departing from human and pristine conditions until the end of 

the century. Habitat abbreviations as in Fig. 1. 
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