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Highlights:  1 

• Honeycrisp tree productivity is drastically affected by rootstock choice. 2 

• Fruit size, bitter pit, soluble solids, biennial bearing and zonal chlorosis are all affected by 3 
rootstocks. 4 

• Rootstock choice can have very large economic impact when considering tree density, productivity 5 
parameters and fruit quality. 6 
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Abstract 19 

A field experiment with 31 rootstocks representing a genetically diverse group of rootstocks 20 

featuring ‘Honeycrisp’ as the scion was planted in 2010 at Geneva, NY USA. Rootstocks included 21 

three from the Malling series (UK), nine from the Budagovsky series (Russia), 16 from the Cornell 22 

Geneva series (USA) and three from the Pillnitz series (Germany). Over the first 8 years (2010-23 

2017) we measured final tree size (trunk cross-sectional area: TCA) and cumulative yield. In the 24 

last 4 years we measured fruit soluble solids, bitter pit incidence, biennial bearing, and leaf zonal 25 

chlorosis. Tree size varied dramatically with the largest trees on B.70-20-20 and smallest trees on 26 

B.71-7-22. Setting the most vigorous rootstock at 100% we categorized rootstocks into 5 size 27 

categories: sub-dwarfing class (10-25%), dwarfing class (25-35%), semi-dwarfing class (35-50%), 28 

semi-vigorous category (50-70%) and vigorous class (70-100%). Cumulative yield varied 8 fold 29 

between the highest yielding rootstock (CG.3001) and the lowest yielding rootstock (B.71-7-22). 30 

We calculated theoretical yield per ha by multiplying cumulative yield per tree by a theoretical 31 

optimal tree density (trees/ha) based on tree size (TCA). The dwarfing rootstocks G.814, G.41TC, 32 

G.11 and B.10 had the highest yields per hectare while the most vigorous rootstocks B.70.20.20 33 

and B.71-7-22 were the least productive. Theoretical cumulative yields varied from a high of 400 34 

t/ha to a low of 50 t/ha, an 8-fold difference. Rootstock also influenced the incidence of bitter pit 35 

with the lowest levels of bitter pit with the rootstocks B.10, CG.2034, B.71-7-22, G.41N, CG.4003, 36 

G.202N, G.214, and Supporter 3. Considering bitter pit, yield, and optimum tree density, the 37 
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theoretical yield of bitter pit free fruit varied from a high of 340 t/ha to a low of 35 t/ha, almost a 38 

10-fold difference. The dwarfing rootstocks B.10, G.11, G.41TC, G.214 and G.814 had the highest 39 

yields per hectare of bitter pit free fruit. Rootstocks B.9 and M.26 had significantly lower 40 

cumulative bitter pit free yield/ha. These data indicate that rootstock not only has a large influence 41 

on mature tree cumulative yield but also bitter pit incidence which combine to create a large 42 

economic impact of rootstock choice on the long-term economic result of an orchard. This leads 43 

to the need for “designer rootstocks” which combine the rootstock characteristics needed to 44 

maximize the economic potential of each scion cultivar. 45 

Keywords: yield, yield efficiency, biennial bearing, tree vigor, leaf zonal chlorosis, fruit soluble 46 

solids, bitter pit 47 

1. Introduction 48 

The large majority of apple trees planted in modern orchards are composites of two or three 49 

genotypes (rootstock, interstem and scion) combined by grafting. Most commercial orchards make 50 

use of clonally propagated rootstocks and interstems to induce dwarf trees and to increase 51 

productivity per unit of land. The most widely used clonal rootstock in the world is ‘Malling 9’ 52 

(M.9) and its sport mutations, it is also the oldest dwarfing rootstock technology to be adopted by 53 

apple growers as some of the original clones may have been planted as early as the 1700’s under 54 

the name of ‘Paradis Jaune de Metz’ (Wertheim, 1998). Other apple rootstocks, derivatives of M.9, 55 

are also popular but suffer from some of the same drawbacks as M.9 clones such as susceptibility 56 

to the apple replant disease complex, fire blight caused by Erwinia amylovora Burill, and insect 57 

pests such as the woolly apple aphid (Eriosoma lanigerum Hausmann) (Fazio, 2014; Fazio et al., 58 

2015). A set of more contemporary rootstocks emerging from the Budagovsky and Geneva® 59 

breeding programs are being evaluated in the NC-140 collaborative rootstock testing project in 60 

North America (Autio et al., 2013; Autio et al., 2017). One such trial that includes 31 apple 61 

rootstocks with ‘Honeycrisp’ as the grafted scion was planted in the year 2010 at 11 sites in the 62 

U.S. and Canada. ‘Honeycrisp’ apple has become an important new cultivar but it has a low vigor 63 

level in the scion which has caused problems filling allotted space in many growing areas of the 64 

world (Robinson et al., 2011; Rosenberger et al., 2001). The 2010 NC140 rootstock trial was 65 

designed to identify rootstocks that had sufficient vigor and productivity to maximize the 66 

performance of ‘Honeycrisp’. Results of the developmental years (1-5) of this study from all 11 67 

sites were included in the report by Autio et al., (2017). In addition individual cooperators have 68 

used this trial to evaluate rootstock induced phytohormone concentration changes in the scion 69 

(Lordan et al., 2017), and to measure leaf and fruit nutrient concentration during the initial orchard 70 

growth and establishment (Neilsen and Hampson, 2014). Here we present results on the 71 

horticultural performance of the 31 rootstocks at the mature phase (years 5-8) from only one 72 

location, the Geneva trial. Bitter pit is a physiological disorder of some apple varieties including 73 

‘Honeycrisp’ and ‘Fuji’ which manifests itself by small indentations (pits) that can be distributed 74 

uniformly on the surface of the apple (Prange et al., 2011; Raese and Drake, 1997). Sometimes the 75 

incidence of these pits is greater in areas more distant from the stem end (lower 1/3 of the apple or 76 

calyx end) (Jarolmasjed et al., 2016). The incidence and size of bitter pits may increase after apple 77 

are cold stored for weeks or months (Wargo and Watkins, 2004). Mineral nutrient concentrations 78 
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in apple fruit have been associated with the formation of bitter pits, where lower levels of calcium, 79 

higher levels of potassium and nitrogen may increase the incidence (Baugher et al., 2017; Ford, 80 

1979; Perring and Jackson, 1975). Larger fruit size which is positively correlated with low crop 81 

load is also associated with increase in bitter pit (Robinson and Lopez, 2012). Apple rootstocks, 82 

given their diverse effect on the nutrition of the canopy have been implicated in the physiology of 83 

bitter pit (Fazio et al., 2013; Fazio et al., 2018).   84 

Leaf vein chlorosis also referred to as zonal chlorosis is a physiological disorder of ‘Honeycrisp’ 85 

that appears as blotchy yellow colorations on leaves with no distinct border likely caused by 86 

overloading of sorbitol and starch products (Chen and Cheng, 2004). Low crop load and vegetative 87 

growth have been linked to the incidence of this leaf disorder (Fleck et al., 2011; Snyder-Leiby 88 

and Wang, 2008).  Inheritance of this disorder in ‘Honeycrisp’ progenies was localized to linkage 89 

group 9 of the apple genome near the MdMYB1 locus that controls red fruit color (Howard et al., 90 

2019). 91 

Alternate bearing also referred to as biennial bearing is a phenomenon common to some apple 92 

cultivars like ‘Fuji’ and ‘Honeycrisp’ where high crop load one year affects negatively flower 93 

induction and fruit set of the next year which is then followed by another high crop load year 94 

(Wunsche and Ferguson, 2005) thus resulting in trees that bear fruit on alternate years giving good 95 

yields biennially instead of annually (Samuoliene et al., 2016). Phenotypic and genetic differences 96 

in the tendency of some scion varieties to fall into alternate bearing mode were described in 97 

progeny from ‘(Red) Delicious’ (biennial) and ‘Granny Smith’ (strongly annual) where 98 

quantitative trait loci (QTLs) were detected on linkage groups 4, 8 and 10 of the apple genome 99 

(Durand et al., 2017; Guitton et al., 2012). The exact physiological pathway that controls alternate 100 

bearing is not yet known and may involve timing of flower initiation, the availability of 101 

carbohydrate and nutrient resources and the hormonal status of the tree when meristems are ready 102 

to change from vegetative to reproductive modes. Rootstocks from a diverse genetic background 103 

have been recently implicated in the ability to influence alternate bearing of some cultivars perhaps 104 

through the induction of different hormone levels (Lordan et al., 2017) or by changes in crop load 105 

and carbohydrate storage (Reig et al., 2019).  106 

Tree vigor in commercial apple orchards is largely controlled by the choice of rootstocks where 107 

some rootstocks can dwarf the tree all the way down to 10% of the growth of a normal tree on its 108 

own roots. The ability of rootstocks to dwarf apple trees has been leveraged to increase the 109 

productivity of orchards two to three-fold and reduce inputs (fertilizers, water, pesticides) and 110 

human accidents drastically. The dwarfing effect of apple rootstocks has been ascribed to 2-3 loci 111 

Dw1 and Dw2 and possibly a third locus (Fazio et al., 2014; Foster et al., 2015; Harrison et al., 112 

2016).  Dwarfing rootstocks have been shown to have a dramatic effect on the cumulative yield 113 

and yield efficiency (tree productivity/tree size) which determine the optimal spacing to capture 114 

light energy and convert it to fruit (Autio et al., 2013; Fallahi et al., 2018). 115 

The objective of this study was to study the effect of a genetically diverse set of 31 rootstocks for 116 

their potential to maximize the performance of ‘Honeycrisp’ apple with emphasis on mature tree 117 

size, cumulative yield, cumulative yield efficiency, biennial bearing, leaf zonal chlorosis, fruit size 118 

and, bitter pit incidence. 119 
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2. Materials and Methods 120 

2.1. Trees and design 121 

A rootstock field trial was planted in 2010 at the New York State Agricultural Experiment Station 122 

(Geneva, NY, USA), using ‘Honeycrisp’ as the scion cultivar (Autio et al., 2017). Trees were 123 

planted in a randomized complete block design, with 4 replications and with each block containing 124 

2-3 trees of each rootstock. Blocking was done by initial tree diameter. Tree spacing was 1.2 m  125 

3.5 m. Rootstocks included three from the Malling series: M.26EMLA, M.9T337, and M.9Pajam2; 126 

nine from the Budagovsky series: B.10 (B.62-396), B.64-194, B.67-5-32, B.7-20-21, B.7-3-150, 127 

B.70-20-20, B.70-6-8, B.71-7-22, and B.9 (Kazlouskaya and Samus, 2011); six Cornell Geneva® 128 

released rootstocks: G.11, G.41N, G.41TC, G.935N, G.935TC, G.202N, G.202TC, G.214, G.222 129 

and G.814 where the “N” and “TC” distinctions refer to normal propagation and tissue culture 130 

propagation respectively; six experimental Geneva rootstocks: CG.2034, CG.3001, CG.4003, 131 

CG.4004, CG.4013, CG.5087; and three rootstocks from the Pillnitz series: Piau51-11, Piau9-90, 132 

Supporter 3 (Supp. 3). Table 1 describes the origin, parentage and vigor class of each rootstock. 133 

 134 

2.2. Tree performance measurements and fruit quality analysis 135 

Tree trunk circumference (30 cm above the graft union), yield, and number of fruits were assessed 136 

every year. Trunk-cross-sectional area (TCA) and fruit size were then calculated. We calculated a 137 

theoretical yield/ha by multiplying cumulative yields per tree by a theoretical optimal tree density 138 

(trees/ha) coefficient based on tree size (TCA) (500 trees/ha for seedling size rootstocks to 5,000 139 

trees/ha for sub-dwarfing rootstocks). Tree height from the ground and tree spread (average of tree 140 

spread in the alley and in the row) were measured in the Fall of 2017. Biennial bearing was 141 

calculated as follow: (year 1 yield) - (year 2 yield)|/(year 1 yield + year 2 yield), where 0 indicates 142 

no alternate bearing and 1 complete alternate bearing. Yield efficiency represents yield (kg) by 143 

TCA (cm2). Near harvest the severity of leaf zonal chlorosis was evaluated by visually assessing 144 

the percentage of leaves with chlorosis. 145 

At harvest for the 1st and 2nd picks, a 30-fruit sample was collected for each rootstock replicate, 146 

from 2014-2017. Ten of the fruits in each sample were then used to assess soluble solids (Brix). 147 

The remaining 20 apples of each sample were preconditioned 1 week at 10°C and then stored at 148 

3°C for six months. After storage, all of the apples contained in each sample were individually 149 

examined for any external signs of superficial bitter pit. The incidence of biter pit of each sample 150 

was calculated as the percentage of fruit with bitter pit symptoms. 151 

Climatic data were recorded for each year from the closest automatic weather station. Tree 152 

transpiration from May through October was calculated using a modified Penman-Monteith 153 

equation (NEWA.org) (Robinson et al. 2017). The trees were trickle irrigated as needed during the 154 

growing season using the Cornell apple irrigation model (NEWA.org). 155 

2.4 Data analysis 156 
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Statistical analyses of the data were performed with a one-way ANOVA with rootstock genotype 157 

as the main effect and replicate as a random effect in a randomized  complete block analysis. Mean 158 

separation was determined using least significant difference test (LSD) with a P value of 0.05. 159 

Pearson correlation was carried out to study correlations among all the traits evaluated. Rootstock 160 

genotype means were used in multivariate analysis to generate two-way similarity cluster diagrams 161 

based on genotype similarity and variable similarity. The Ward’s minimum variance criterion was 162 

used. Data were analyzed using the JMP statistical software package (Version 12; SAS Institute 163 

Inc., Cary, North Carolina) for the calculation of genotypic means, multivariate cluster analysis 164 

and correlation. 165 

3. Results 166 

3.1 Tree vigor 167 

‘Honeycrisp’ tree size measured by the size of the trunk-cross-sectional area (TCA) in the fall of 168 

2017 (end of 8th year) was strongly influenced by rootstock genotype (Figure 1). Using the size of 169 

the largest trees (B.70-20-20 rootstock) as 100% we categorize rootstocks into 5 size categories. 170 

Rootstocks B.71-7-22, CG.2034 and B.9 were in the smallest group (sub-dwarfing class - 10-25% 171 

of B.70-20-20), while G.11, G.41, B.10, M.9-T337, Supporter 3, G.935, M.9-EMLA, M.9-Pajam2, 172 

CG.4003 and G.214 were larger (25-35%) and fell into the dwarfing class. In the semi-dwarfing 173 

class (35-50%) were CG.5087, G.814, G.222, G.202 and CG.3001, while rootstocks Piau51-11, 174 

CG.4013, B.67-20-21, Piau-9-90, B.7-3-150, B.70-6-8 fell in the semi-vigorous category (50-175 

70%).  Rootstocks B.64-194 fell into the vigorous range (70-100% of B.70-20-20). Tree height 176 

and tree canopy spread measured in the fall of 2017 were 0.83 (P<0.001) and 0.96 (P<0.001) 177 

correlated respectively to the TCA (data not presented). 178 

3.2 Cumulative yield and yield efficiency 179 

Cumulative yield per tree over the first 8 years was greatest for CG.3001(120 kg/tree) followed by 180 

G.814 (110 kg/tree) (Figure 2). Following the top 2 rootstocks was a large group of rootstocks that 181 

had a cumulative yield between 80 and 100 kg/tree (B.7-3-150, CG.4004, B.64-194, CG.5087, 182 

B70-6-8, G.214, G.202N, B.70-20-20, G.41N, G.202TC, B.7-20-21, B.10, G.935N, PiAu51-11, 183 

G.41TC, G.222, G.11, M.9T337, Supp3, G.935TC). There was a smaller group of rootstocks that 184 

yielded 70-80 kg/tree (M.9Pajam2, PiAu9-90, CG.4013, B.67-5-32, CG.4003 and M.26EMLA), 185 

while the lowest yielding rootstocks were B.71-7-22, CG.20134 and B.9 with less than 55 kg/tree.  186 

Cumulative yield efficiency was highest with rootstocks G.11, B.9 and G.41TC, followed by B.10, 187 

G.41N, M.9T337, G.214 and G.814 (Figure 3). The lowest yield efficiencies were measured on 188 

rootstocks B.70-20-20, Piau9-90, B.67-5-32, B.64-194, B.70-6-8, B.70-20-21, B.7-3-150, 189 

CG.4013 and Piau51-11. The intermediate yield efficiency group in this experiment featured well 190 

known rootstocks like M.9-Pajam2, and both G.935 and G.202 either N or TC, and experimental 191 

rootstocks such as CG.4004, CG.5087 and CG.4003. 192 

The calculated theoretical yield per ha obtained by multiplying cumulative yields per tree by a 193 

theoretical optimal tree density (trees/ha) coefficient based on tree size (TCA) showed that the 194 

dwarfing rootstocks G.814, G.41TC, G.11 and B.10 had the highest yields per hectare while the 195 

most vigorous rootstocks B.70.20.20 and B.71-7-22 were the least productive (Figure 4). 196 
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Theoretical cumulative yields varied from a high of 400 t/ha to a low of 50 t/ha, an 8-fold 197 

difference. 198 

3.3 Biennial bearing 199 

Mean biennial bearing index (BBI) measured over six years was lowest (<0.5) in G.41TC, 200 

CG.4003, G.814 and G.202N (Figure 5).  It was highest (>0.7) in rootstocks B.67-5-32, Piau9-90, 201 

B.71-7-22 and CG.4013.  The intermediate group (>0.5 and <0.7) featured the rest of the rootstocks 202 

in this trial. Biennial bearing indices, where not very correlated with tree vigor as dwarfing 203 

rootstocks Supporter 3, M.9 Pajam2 and B.9 exhibited fairly high yield fluctuations. 204 

3.4 Leaf zonal chlorosis 205 

Leaf zonal chlorosis measured over three years (2014, 2015 & 2017) was influenced by apple 206 

rootstocks (Figure 6).  While environmental conditions influenced the overall rating for this 207 

physiological disorder, there was strong correlation between years according to rootstocks 208 

(between 2014 and 2017 r=0.59; P<0.001). Higher values (red in Figure 6) were observed in the 209 

lower cluster of rootstocks (G.814, CG.2034, PiAu9-90, and CG.5087), whereas lower values of 210 

zonal chlorosis (blue in Figure 6) were observed by the rootstocks cluster of B.7-20-21, B.70-6-8. 211 

While higher rootstock vigor seems to be slightly associated with the lack of zonal chlorosis, there 212 

are dwarfing rootstocks that also displayed low to average (gray in Figure 6) levels of this disorder 213 

(G.222, M.9-T337, B.10 and CG.4003). 214 

3.5 Fruit size, and soluble solids 215 

Rootstock had a significant effect on fruit size (Figure 7). Fruit size was small (blue in Figure 7) 216 

for rootstocks B.71-7-22, B.9, CG.2034 and CG.4003, while CG.5087 and B64-194 had larger 217 

fruit size (red in Figure 7). Years 2015 and 2017 were more similar than 2016 which was a very 218 

dry year, cumulated rainfall from May through October was ~4000 m3/ha vs 1400 m3/ha, 2015-219 

2017 vs 2016 respectively (Figure 8). 220 

Rootstock influenced fruit soluble solids (brix) values (Figure 9). Certain rootstocks (G.11 221 

CG.2034, B.9, G.935TC, G.41N, G.202N CG4004 and Supp. 3) seemed to induce consistently 222 

lower soluble solids (blue in Figure 9) over 3 harvest years, whereas CG.4003 PiAu51-11, and 223 

PiAu9-90 had consistently high soluble solids (red in Figure 9). There was generally good 224 

consistency between results in 2015 and 2016 but often opposite results with 2017. In the first 2 225 

years, B.71-7-22, CG.3001, CG.5087, G.41N and G.935TC had low soluble solids but in 2015 and 226 

2016 they all had high soluble solids in 2017.  227 

3.6. Fruit bitter pit incidence 228 

Rootstock influenced fruit bitter pit incidence (Figure 10). One cluster with somewhat consistent 229 

low bitter-pit (blue in Figure 10) featured rootstocks B.10, CG.2034, B.71-7-22, G.41N, CG.4003, 230 

G.202N, G.214, and Supp. 3. A second cluster of low to medium bitter-pit levels featured 231 

rootstocks M.9-T337, G.814, G.11 and G.935N. Consistently high bitter-pit levels (red in Figure 232 

10) were observed on rootstock B.70-20-20, B.7-3-150, CG.3001, CG.4013, and PiAu9-90. B.9 233 
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generally had low incidence of bitter pit but in the very dry year of 2016 it had high incidence of 234 

bitter pit. 235 

Using the percent bitter pit incidence we calculated yield of bitter pit free fruits. Rootstock had a 236 

significant influence on yield of bitter pit free fruits (Figure 2) Cumulative yield of bitter pit free 237 

fruit over the first 8 years was greatest for G.814, followed by G.214, G.202N, B.10, G.202TC, 238 

G.41TC, G.11 and CG.5087 (red bars in Figure 2). Following the top rootstocks was a large group 239 

of rootstocks that had a cumulative yield of bitter pit free fruit between 60 and 80 kg/tree. The 240 

rootstocks with the lowest yields of bitter pit free fruit were B.71-7-22, CG.2034 and B.9 which 241 

were also the smallest trees.  242 

Considering both tree size and bitter pit incidence we calculated the theoretical yield of bitter pit 243 

free fruit per ha (obtained by multiplying cumulative yields per tree by percentage of bitter pit free 244 

fruit and by the theoretical optimal tree density (trees/ha) coefficient based on tree size (TCA). 245 

Theoretical cumulative yields/ha of bitter pit free fruit varied from a high of 340 t/ha to a low of 246 

35 t/ha, almost a 10-fold difference (Figure 4). The dwarfing rootstocks B.10, G.11, G.41TC, 247 

G.214 and G.814 had the highest yields per hectare of bitter pit free fruit (blue bars in Figure 4). 248 

A second group included G.41N, G.935TC and N, M.9T337, CG.5087, Supp. 3, M.9Pajam2, 249 

G.202TC and N, CG.4004 and G.222. Rootstocks B.9 and M.26 had lower cumulative bitter pit 250 

free yield/ha along with several other un-released rootstock selections. The most vigorous 251 

rootstocks B.70.20.20 and B.71-7-22 had the lowest yield of bitter pit free fruit.  252 

4. Discussion 253 

4.1 Tree size and yield 254 

Our results of mature tree size were similar to what Autio et al. 2017 reported at the end of year 5, 255 

where sub-dwarfing rootstock B.71-7-22 and vigorous (standard seedling size) B.70-20-20 256 

represented the ends of the spectrum of rootstocks. The classes of dwarfing potential described in 257 

Autio et al. 2017 are congruent with the findings in this experiment. The highest cumulative yield 258 

per tree (2011-2017) was obtained on rootstock CG.3001, however the highest bitter pit free yield 259 

was produced by G.814 with G.214 and B.10 as second and third respectively. When the per tree 260 

yields were adjusted to how many trees could be planted per hectare of land based on the dwarfing 261 

capacity the theoretical cumulative yield per hectare for each rootstock, G.814, G.11, G.41TC, 262 

B.10, G.41N were the superior rootstocks where in the meta-analysis performed in Autio et al. 263 

2017, G.814 was the most efficient also. The low theoretical cumulative yield with the most 264 

vigorous rootstocks B.70-20-20 and B.71-7-22 indicates that it is counterproductive to try to 265 

increase vigor of a weak scion cultivar (‘Honeycrisp’) with non-precocious, vigorous rootstocks. 266 

Our results also indicate that if the rootstock is too dwarfing for a weak growing scion like 267 

‘Honeycrisp’ that even when planted very close theoretical yields are less than the best semi-268 

dwarfing rootstocks. These results show that when evaluating rootstocks it is not enough to rank 269 

them by yield efficiency which is the common way to rank rootstocks.  Although cumulative yield 270 

efficiency (kg of apples per cm2 of the trunk cross sectional area) is a way to capture how well the 271 

rootstock is partitioning photosynthesis product toward producing fruit instead of vegetative 272 

growth (vigorous rootstocks that produce less apples per TCA are considered yield inefficient 273 
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whereas dwarfing rootstocks that are able to produce more apples per TCA are yield efficient), it 274 

is also important to assess if the vigor of the rootstock is sufficient to fill the space and if the 275 

rootstock has high yield efficiency. A specific case was B.9 which was one of the most yield 276 

efficient rootstocks but because it was excessively dwarfing, its theoretical yield was less than half 277 

of the best rootstock’s theoretical yield (G.814). Further affecting the ranking of rootstocks for 278 

theoretical yield per ha was the incidence of bitter pit. Once that characteristic of ‘Honeycrisp’ 279 

was considered, the relative ranking of B.9 improved substantially, since it had low incidence of 280 

bitter pit, but it still had significantly less yield/ha of bitter pit free fruit (205 t/ha) compared to the 281 

best rootstocks (~330 t/ha) which were B.10, G.11, G.41TC, G.214 and G.814. Considering the 282 

high farm gate fresh market price for ‘Honeycrisp’ apples ($1.65/kg) (Lordan et al., 2018), the 283 

extra yield of the best rootstocks compared to B.9 would be worth ~$222,000 per ha. This large 284 

economic impact illustrates the practical importance of rootstock evaluation to find the rootstocks 285 

which have the best combination of vigor, productivity and fruit quality to match specific scions 286 

to maximize yield of bitter pit free fruit. It is likely that in each geographic region different 287 

rootstocks may be the optimum for ‘Honeycrisp’. Our results unfortunately are limited to the 288 

climate in the Northeastern USA. 289 

The tendency of some apple varieties to bear fruit heavily in one season and poorly the next season 290 

referred to as alternate or biennial bearing is dependent on the genetic components of each cultivar 291 

where ‘Honeycrisp’ and ‘Fuji’ are strongly biennial while ‘Gala’ is much less biennial (Guitton et 292 

al., 2012). Apple rootstocks can influence bieniality (Barritt et al., 1997) by means of influencing 293 

crop load, vigor, hormone concentration and gene expression of the scion (Jensen et al., 2012; 294 

Lordan et al., 2017; Tworkoski and Fazio, 2016). In this trial, G.41TC, CG.4003 and G.814 295 

displayed the lowest levels of alternate bearing, and CG.4013 (semi-dwarf) and B.71-7-22 (sub-296 

dwarf) displayed the highest levels of alternate bearing, indicating as in Barritt et al. 1997, that 297 

vigor control is not always related to the suppression of alternate bearing. More research is needed 298 

to fully understand all the variables that influence this trait that causes large losses in production 299 

in apple orchards worldwide.   300 

4.2 Fruit quality 301 

Rootstock did influence fruit soluble solids (brix) but the results varied between years. Fruit in the 302 

2015 season were harvested in two picks according to color maturity, suggesting that the trends 303 

observed in rootstocks were not due to differences in maturity, rather more correlated with crop 304 

load (Robinson and Lopez, 2012) and may be one of the reasons why apples may taste different 305 

when grown on different rootstocks. 306 

4.3 Zonal leaf chlorosis 307 

‘Honeycrisp’ trees are sensitive to a leaf physiological disorder caused by over-loading of 308 

carbohydrates in leaves that causes damage to the photosynthesis systems (Chen et al., 2010; Fleck 309 

et al., 2011; Snyder-Leiby and Wang, 2008) and often referred to as leaf zonal chlorosis.  310 

Rootstocks have also been shown to have an influence on this physiological disorder, with the 311 

degree of influence affected by season and perhaps management practices (Autio et al., 2017). In 312 

our study zonal chlorosis is less prevalent with the more vigorous rootstocks. This indicates that 313 
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in conditions where vegetative growth is more active these vegetative sinks can utilize 314 

carbohydrates produced in the leaves thus limiting the buildup of starch granules which cause cell 315 

rupture and the zonal chlorosis (Cheng and Robinson, 2006). However, some semi-dwarfing 316 

rootstocks (G.222, M.9-T337, B.10 and CG.4003) also had low values for zonal chlorosis 317 

indicating an unknown rootstock mediated mechanism to prevent the buildup of starch granules in 318 

the leaf. 319 

5. Conclusion 320 

This experiment using a genetically diverse set of rootstocks showed dramatic differences in tree 321 

size, yield, yield efficiency, biennial bearing and bitter pit incidence on the fruit which were 322 

induced by the rootstock. However, in ranking rootstocks for a particular climate and a particular 323 

scion variety, it is important to not only consider yield efficiency but also the vigor of the rootstock 324 

which must be sufficient to fill the space rapidly and combined with high yield efficiency. Our 325 

data also indicate that rootstock not only has a large influence on mature tree cumulative yield but 326 

also bitter pit incidence which combine to create a large economic impact of rootstock choice on 327 

its long-term economic result of an orchard. The best rootstocks had theoretical yields of bitter pit 328 

free fruit of 10 times the poorest performing rootstocks. A final important factor is that when scion 329 

cultivar vigor is low as with ‘Honeycrisp’ the best rootstock may not be the same as for a more 330 

moderate vigor scion cultivar or even a vigorous scion cultivar which need more dwarfing power 331 

from the rootstock compared to weak scion cultivars (Reig et al., 2018). This leads to the need for 332 

“designer rootstocks” which combine the rootstock characteristics needed to maximize the 333 

potential of each scion cultivar in a particular climate. 334 
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Tables 

Table 1. Apple rootstocks in the NC-140 Trial planted in 2010 with ‘Honeycrisp’ as the scion in Geneva, NY. 

Rootstock Type Origin Parentage Tree size References 

B.62-396 Dwarf Michurinsk College, Russia B.13-14 x B.9 M.9-M-26 U.S. PP 21223P3 

B.64-194 Semi-Dwarf Michurinsk College, Russia Unknown M.7-MM.106 Kazlouskaya, Z.A. and V.A. Samus, 2011 

B.67-5-32 Semi-Dwarf Michurinsk College, Russia Unknown M.7 Kazlouskaya, Z.A. and V.A. Samus, 2011 

B.7-20-21 Semi-Dwarf Michurinsk College, Russia Unknown M.7 Kazlouskaya, Z.A. and V.A. Samus, 2011 

B.7-3-150 Semi-Dwarf Michurinsk College, Russia Unknown M.7-MM.106 Kazlouskaya, Z.A. and V.A. Samus, 2011 

B.70-20-20 Vigorous Michurinsk College, Russia 57-469 x 57-344 Seedling U.S. PP 25500P3 

B.70-6-8 Semi-Dwarf Michurinsk College, Russia Unknown M.7-MM.106 Kazlouskaya, Z.A. and V.A. Samus, 2011 

B.71-7-22 Super Dwarf Michurinsk College, Russia Unknown M.27 Kazlouskaya, Z.A. and V.A. Samus, 2011 

B.9 Dwarf Michurinsk College, Russia Unknown B.9 Kazlouskaya, Z.A. and V.A. Samus, 2011 

CG.2034 Dwarf Geneva Res. Station, New York, USA Dolgo crab x Malling 27 M.27 Personal comunication (Fazio G.) 

CG.3001 Dwarf Geneva Res. Station, New York, USA P.2 x Robusta 5 M.9 Personal comunication (Fazio G.) 

CG.4003 Dwarf Geneva Res. Station, New York, USA (Antonovka Kamienaja × Ottawa 3)×Robusta 5 M.26 Norelli et al., 2003 

CG.4004 Dwarf Geneva Res. Station, New York, USA 722506-004 x OP M.26 Personal comunication (Fazio G.) 

CG.4013 Dwarf Geneva Res. Station, New York, USA Ottawa 3 × Robusta 5 M.26 Norelli et al., 2003 

CG.5087 Dwarf Geneva Res. Station, New York, USA Ottawa 3 × Robusta 5 M.26 to M.7 Norelli et al., 2003 

G.11 Dwarf Geneva Res. Station, New York, USA M.26 × Robusta 5 M.9 Norelli et al., 2003 

G.202N Dwarf Geneva Res. Station, New York, USA M.27 × Robusta 5 M.26 Norelli et al., 2003 

G.202TC Dwarf Geneva Res. Station, New York, USA M.27 × Robusta 5 M.26 Norelli et al., 2003 

G.214 Dwarf Geneva Res. Station, New York, USA Ottawa 3 × Robusta 5 M.26 Norelli et al., 2003 

G.222 Semi-dwarf Geneva Res. Station, New York, USA M.27 × Robusta 5 M.26 Personal comunication (Fazio G.) 

G.41N Dwarf Geneva Res. Station, New York, USA M.27 × Robusta 5 M.9 Personal comunication (Fazio G.) 

G.41TC Dwarf Geneva Res. Station, New York, USA M.27 × Robusta 5 M.9 Personal comunication (Fazio G.) 

G.814 Dwarf Geneva Res. Station, New York, USA Ottawa 3 × Robusta 5 M.26 Norelli et al., 2003 

G.935N Dwarf Geneva Res. Station, New York, USA Ottawa 3 × Robusta 5 M.26 Norelli et al., 2003 

G.935TC Dwarf Geneva Res. Station, New York, USA Ottawa 3 × Robusta 5 M.26 Norelli et al., 2003 

M.26 Dwarf HRI-East Malling, UK M.16 x M.9 M.26 Preston, 1954, 1970; Rogers, 1958: Proctor et al., 1974 

M.9-Paj2 Dwarf Reselected at HRI-East Malling, UK Unknown M.9 Halton, 1917; Van Oosten, 1977, 1986; Webster and 

Hollands, 1999 

M.9-T337 Dwarf Reselected at HRI-East Malling, UK Unknown M.9 Halton, 1917; Van Oosten, 1977, 1986; Webster and 

Hollands, 1999 

PiAu.51-11 Semi-Dwarf Pillnitz, Germany M 4 open pollinated M.7 Norelli et al., 2003 

PiAu.9-90 Semi-dwarf Pillnitz, Germany Unknown M.7  

Supp.3 Semi-dwarf Pillnitz, Germany Unknown M.9  

 



 14 

Figures 

 

Figure 1.  Genotypic means for the trunk cross sectional area (TCA) (which correlate to the whole 

tree size) for 31 rootstocks after 8 years when grown at Geneva, NY.  LSD for TCA = 10.3. 
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Figure 2. Genotypic means for cumulative yield (blue) and bitter-pit free cumulative yield per tree 

(red) for 31 rootstocks after 8 years when grown at Geneva, NY.  LSD for Yield/tree=18.6. LSD 

for Bitter Pit free Yield/tree=18.1. 
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Figure 3.  Genotypic means for cumulative yield efficiency (kg of apples per cm2 of the trunk cross 

sectional area) for 31 rootstocks after 8 years when grown at Geneva, NY.  LSD for Yield 

Efficiency=1.05. 
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Figure 4.  Genotypic means for cumulative yield and bitter pit free yield (t/ha) (calculated by 

multiplying cumulative yields per tree by a theoretical optimal tree density (trees/ha) based on tree 

size potential (500 trees/ha for seedling size rootstocks to 5,000 trees/ha for sub-dwarfing 

rootstocks) of ‘Honeycrisp’ apple grown on 31 rootstocks after 8 years at Geneva, NY.  LSD for 

Theoretical cumulative yield/ha=59.4 and LSD for Theoretical Bitter Pit free yield/ha=52.3. 
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Figure 5. Genotypic means for biennial bearing index (BBI) of ‘Honeycrisp’ apple grown on 31 

rootstocks over 6 years (3rd-8th years) at Geneva, NY.  LSD for Biennial Bearing Index=0.21. 
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Figure 6.  Two-Way similarity cluster analysis of zonal chlorosis genotypic means over three 

growing seasons of ‘Honeycrisp’ apple grown on 31 rootstocks at Geneva, NY.  Higher values are 

red whereas lower genotypic means are blue and average values are gray. 
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Figure 7.  Two-Way similarity cluster analysis of fruit size as affected by apple rootstocks of 

‘Honeycrisp’ apple grown on 31 rootstocks at Geneva, NY. Higher values are red whereas lower 

genotypic means are blue and average values are gray. 
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Figure 8.  Cumulative rainfall and tree transpiration (m3/ha) from May through October at Geneva 

Ny. Tree transpiration was calculated using a modified Penman-Monteith equation (NEWA.org) 

(Robinson et al. 2017). 
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Figure 9.  Two-Way similarity cluster analysis of genotypic means for fruit brix or soluble solid 

content of different harvest years and storage conditions of ‘Honeycrisp’ apple grown on 31 

rootstocks at Geneva, NY. Higher values are red whereas lower genotypic means are blue and 

average values are gray. 
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Figure 10. Two-Way similarity cluster analysis of rootstock induced mean percent bitter-pit 

incidence for years 2015-2017 of ‘Honeycrisp’ apple grown on 31 rootstocks at Geneva, NY.  

Higher values are red whereas lower genotypic means are blue and average values are gray. 




