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27 Abstract

28 Fipronil is a phenylpyrazole insecticide widely used to control pests in agriculture even 

29 though evidence of harmful side effects in non-target species has been reported. A 

30 comprehensive study on the effects of dietary administration of Regent®800WG (80% 

31 fipronil) in European sea bass juveniles was carried out under two temperature regimes: 

32 a) natural conditions, and b) 3 ºC above the natural temperature (an increase predicted 

33 for the NW Mediterranean by the end of this century). Fipronil was added to the fish 

34 food (10 mg fipronil /Kg feed) and the effects were studied at several time points 

35 including right before administration, 7 and 14 days after daily fipronil feed and one-

36 week after the insecticide withdrawal from the diet (depuration period). A wide array of 

37 physiological and metabolic biomarkers including feeding rate, general condition 

38 indices, plasma and epidermal mucus metabolites, immune response, osmoregulation, 

39 detoxification and oxidative-stress markers and digestive enzymes were assessed. 

40 General linear models and principal component analyses indicated that regardless of 

41 water temperature, fipronil resulted in a significant alteration of several of the above 

42 listed biomarkers. Among them, glucose and lactate levels increased in plasma and 

43 decreased in epidermal mucus as indicators of a stress response. Similarly, a depletion 

44 in catalase activity and higher lipid peroxidation in liver of fipronil-exposed fish were 

45 also indicative of an oxidative-stress condition. Fipronil induced a time dependent 

46 inhibition of Cytochrome P450-related activities and an inhibition of phase II 

47 glutathione-S-transferase.  Moreover, fipronil administration was able to reduce the 

48 hypo-osmoregulatory capability as shown by the increase of plasmatic osmolality and 

49 altered several digestive enzymes including trypsin, lipase, alpha amylase and maltase. 

50 Finally, analyses in bile and muscle confirmed the rapid clearance of fipronil but the 

51 persistence of the metabolite fipronil-sulfone in bile even after the 7-day depuration 
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52 period. Altogether, the results reveal a notable impact of this compound on the 

53 physiological condition of the European sea bass. The results should be considered in 

54 future environmental risk assessment studies since fipronil could be hazardous to fish 

55 species, particularly those inhabiting estuarine ecosystems exposed to the discharge of 

56 agriculture runoffs where this pesticide is mainly used.

57

58 Keywords: fipronil, sea bass, biomarkers, CYP metabolism, oxidative stress, climate 

59 change.
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77 1. Introduction

78 The phenylpyrazole fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-

79 (trifluoromethylsulfonyl)pyrazole-3-carbonitrile) has been classified as moderately 

80 hazardous (Class II) by the World Health Organisation (WHO, 2009). It is one of the 

81 most used broad-spectrum insecticides in crops worldwide, being even effective against 

82 pests resistant to pyrethroids, organophosphates and carbamate insecticides (Simon-

83 Delso et al., 2015). In Europe, fipronil is mainly used in crops of maize, rice and in 

84 sunflower seed treatment. However, its use in agriculture was severely restricted by the 

85 European Union in 2013 (Comission Implementing Regulation (EU) Nº 781/2013) due 

86 to its high acute toxicity for honeybees (European Food Safety Authority EFSA, 2013). 

87 There is strong evidence that soils, aquatic systems and plants in agricultural 

88 environments and their neighbouring areas are contaminated with fipronil and other 

89 fipronil-related substances (US Environmental Protection Agency, 1996; Bonmatin et 

90 al., 2015). Nevertheless, Spain, the largest fipronil end-user on sunflower crops in 

91 Europe, is reluctant to adhere to the European directive alluding to the existence few on-

92 site studies evidencing its toxicity.

93 Fipronil and its main metabolites are toxic to non-target aquatic species (Schlenk et al., 

94 2001; Stefani Margarido et al., 2013; Gripp et al., 2017). This compound exerts its 

95 insecticidal activity by binding to the gamma-aminobutyric acid (GABA) receptors and 

96 acting as a non-competitive blocker of GABA-gated chloride channels in the central 

97 nervous system, inducing neuronal hyperexcitation, paralysis and death (Simon-Delso et 

98 al., 2015; Huang et al., 2019). Although fipronil is generally more toxic to invertebrates 

99 than to vertebrates, due to differential affinity towards target receptors, a recent study on 

100 bighead carp (Hypophthalmichthys nobilis) showed that the affinity of this chemical to 

101 fish GABA receptors is similar to that found in insects, suggesting that it could also be 
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102 highly toxic to fish (Zhang et al., 2018). Besides this, its main degradation products, 

103 which include fipronil-sulfone, fipronil-sulfide and fipronil-desulfinyl, are less specific 

104 than the parent compound, display higher insecticidal activity and also account for 

105 toxicity in vertebrates (Hainzl et al., 1998; Zhao et al., 2005; Lu et al., 2010; Gupta, 

106 2014; Gripp et al., 2017). 

107 Human activities, including  the input of pesticides into the environment, have been 

108 considered as the main cause for the present world climate change scenario (CC) 

109 (Hansen et al., 2006). Current consensus alerts that significant temperature increases, 

110 acidification and greater salinity fluctuations of marine water bodies will occur around 

111 the globe in the upcoming decades (IPCC, 2014). These changes can exert a direct 

112 impact on the physiology of marine poikilotherms (Makrinos and Bowden, 2016; 

113 Boltana et al., 2017; Navarro et al., 2019). On the other hand, indirect effects caused by 

114 CC in marine fish are still poorly known, especially those related to their potential 

115 interaction with foreign chemicals (Schiedek et al., 2007; Hooper et al., 2013). For 

116 instance, changes in physical conditions and chemical exposure can act synergistically 

117 magnifying the consequences of such exposures in aquatic organisms, since the former 

118 can imply changes in the availability and action of chemicals (Sokolova and Lannig, 

119 2008; Jacquin et al., 2019). The Mediterranean region is especially sensitive to the 

120 alterations induced by CC due to its particular characteristics, such as small size, 

121 relatively shallow average water depth, oligotrophy and high biological diversity, 

122 among others (Calvo et al., 2011). 

123 The European sea bass, Dicentrarchus labrax (Linnaeus, 1758) (FAO, 2005) is one of 

124 the most appreciated cultured fish species in the Mediterranean. Concerns are raised 

125 regarding its physiology and reproduction that could be compromised by the 

126 temperature increases predicted in a CC scenario (Almeida et al., 2015). Specifically, 
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127 changes in water temperature are known to adversely affect a wide number of biological 

128 functions in this species including sex ratios, reproduction, growth, immune response, 

129 osmoregulatory capacity, xenobiotic biotransformation and antioxidant defences, among 

130 others, making the fish more vulnerable to additional stressors (Almeida et al., 2015; 

131 Samaras et al., 2018). Furthermore, metabolic alterations in muscle, liver and brain in 

132 response to a 4 ºC increase were enhanced after exposure to methylmercury in the 

133 European sea bass, raising the possibility for a synergistic effect between both stressors 

134 (Maulvault et al., 2017). 

135 To the best of our knowledge, no studies have assessed potential toxic effects of fipronil 

136 in D. labrax. However, this insecticide is known to act as endocrine disrupter in several 

137 other fish (Mnif et al., 2011; Bencic et al., 2013; Sun et al., 2014), to induce oxidative-

138 stress due to reactive oxygen species (ROS) generation, and to interfere with a number 

139 of isoenzymes of the cytochrome P450 (CYPs) family, a main hepatic 

140 biotransformation route of this compound in different vertebrates (Wang et al., 2016). 

141 The aim of this study was to evaluate bioaccumulation, biotransformation and 

142 alterations in key physiological pathways of European sea bass after fipronil exposure 

143 in an environmentally-realistic scenario of temperature increase predicted for the NW 

144 Mediterranean region. The effects of fipronil dietary administration were assessed using 

145 a wide array of biomarkers encompassing several physiological and detoxification 

146 endpoints in different tissues and in two conservative matrices (i.e. plasma and skin 

147 mucus) in an effort to use them as non-lethal indicators of the effects of this pesticide in 

148 animal experimentation. 

149

150 2. Material and Methods

151 2.1. Experimental design
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152 Juvenile European sea bass (8 months old) were obtained from the Institute of Research 

153 and Technology Food and Agriculture (IRTA, Sant Carles de la Ràpita, Spain). Fish 

154 were transported and maintained at the Experimental Aquaria facilities (ZAE) of the 

155 Institute of Marine Sciences (ICM-CSIC, Barcelona, Spain). Prior to the experiment, 

156 fish were acclimated for a two-week period in a 2,500 L round fiberglass tank 

157 containing filtered sea-water (sterilized sand filter 50 μm) under natural conditions of 

158 temperature and with a water full-renovation rate of 24 times per day. Fish were fed 

159 daily ad libitum with commercial pellets (L-4 Optibass 2P, Skretting, Spain). After an 

160 initial two-week acclimation to lab conditions, fish were randomly assigned to four 600 

161 L round fiberglass tanks (19‒20 individuals per tank). Two of them were reared at 

162 natural water temperature (T ≈ 13 ºC) and the other two at 3 ºC above the natural 

163 temperature (T ≈ 16 ºC). The new experimental temperature was gradually attained at 

164 an increasing rate of 1 °C per day and fish were acclimated to these new conditions for 

165 two additional weeks. Then, fish were fed a diet containing Regent®800WG (80% 

166 fipronil) at a concentration of active ingredient of 10 mg fipronil/Kg feed, which was 

167 prepared following the alcohol evaporation method adapted for sea bass (Blázquez et 

168 al., 1995; Blanco et al., 2016). Briefly, a monolayer of pelleted dry feed was carefully 

169 sprayed with the insecticide dissolved in 15 ml ethanol and the solvent was allowed to 

170 evaporate completely at room temperature and kept stored at 4 ºC until used. Fish were 

171 sampled just before the start of the experimental diet (t0) and considered as control, and 

172 after 7 (t7), and 14 (t14) days of fipronil administration. At this point (t14), fipronil 

173 treatment finished and fish were fed with non-spiked commercial feed (depuration 

174 period) for an extra week completing 21 days from the start of the experiment (t21). 

175 Throughout the experiment, total feed consumption was quantified in each tank by 

176 initially weighing the amount before manual feeding and, when fish stopped feeding, 
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177 weighing the remaining amount; consumption was then calculated by weight difference. 

178 During the experiment, values (mean ± standard deviation) of physical water parameters 

179 were: Temperature = 13.37 ± 0.23 for the groups reared at natural temperature and 

180 16.55 ± 0.44 ºC for those reared at +3 ºC. Other water parameters ranged as follows: 

181 dissolved O2 = 6.66 ± 0.32 and 6.59 ± 0.47 mg/L (81% and 85% saturation, 

182 respectively); pH = 7.73 ± 0.35 and 7.64 ± 0.31; salinity = 37.78 ± 0.12 and 37.93 ± 

183 0.27 psu, for the 13 ºC and 16 ºC groups, respectively. During the experiment, fish were 

184 reared under natural photoperiod corresponding to 10 h light:14 h dark.

185

186 2.2. Fish Sampling 

187 Eight fish were sampled for each temperature regime (4 fish / replicate tank) just prior 

188 to the beginning of the exposure period (t0), after 7 (t7) and 14 (t14) days of fipronil 

189 administration, and after 7 days of depuration (t21). Fish were fasted for 48 h before 

190 each sampling time. Fish were anesthetized with 0.2 % 2-phenoxyethanol (Sigma-

191 Aldrich, St. Louis, MO, USA), measured (standard length: SL) and weighed (total body 

192 weight: BW). Epidermal mucus was collected on sterile glass slides from the over-

193 lateral line in caudal direction with especial care to avoid contamination with blood 

194 and/or urogenital and intestinal excretions (Fernandez-Alacid et al., 2018). Slides were 

195 gently wiped along both sides of the animal twice or three times, and mucus was 

196 carefully kept in a 1.5 mL sterile tube, snap frozen in liquid nitrogen and stored at -80ºC 

197 until use. About 1 ml of blood was withdrawn from the caudal vein using heparinized 

198 syringes and kept on ice until centrifugation. Fish were sacrificed by severing their 

199 spinal cord, eviscerated, weighed (EW) and the weight of liver, gonads and visceral fat 

200 recorded. Organs/tissues, including liver, bile, gonads, digestive tract, kidney and a 
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201 portion of axial muscle were collected and immediately frozen in liquid nitrogen and 

202 kept at –80 ºC for further analyses. 

203 Muscle and bile samples were used for chemical analyses while plasma, skin mucus, 

204 liver, kidney, digestive tract and also muscle samples were used to assess a 

205 comprehensive set of biomarkers reflecting different aspects of sea bass physiology and 

206 metabolism (see sections below). 

207 Fish were reared and sacrificed according to the Spanish regulations (RDL 53/2013), 

208 and the European Directive concerning the protection of vertebrates used for 

209 experimental and other scientific purposes (2010/63/EU). Procedures used were 

210 approved by the ethics committee of the Local Government of Catalonia and were given 

211 the reference FUE-2018-00813667. All steps were aimed to minimise animal suffering.

212

213 2.3. Tissue preparation for biochemical analyses

214 2.3.1. Plasma and skin mucus

215 Plasma was obtained by blood centrifugation (eppendorf 5417R model) at 3,000 ×g for 

216 15 min at 4 ºC). Mucus was homogenized using a sterile Teflon implement and 

217 centrifuged at 14,000 ×g for 15 min at 4 ºC. Plasma and mucus supernatants were 

218 aliquoted and stored at –80 ºC for further metabolite and biochemical analyses.

219

220 2.3.2. Muscle

221 A portion of muscle (around 0.4 g) was homogenized in ice-cold buffer phosphate (50 

222 mM pH 7.4) containing 1mM ethylenediaminetetraacetic acid (EDTA) in a 1:5 (w:v) 

223 ratio using a Polytron® homogeniser. Homogenates were centrifuged at 10,000 ×g for 

224 30 min at 4 ºC to obtain the S10 fraction. The supernatant was aliquoted and stored at –

225 80 ºC for further biochemical determinations.
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226

227 2.3.3. Liver

228 About 1.5 g of each liver were homogenized in ice-cold buffer phosphate (100 mM pH 

229 7.4) containing 150 mM KCl, 1 mM dithiothreitol (DTT), 0.1 mM phenanthroline, 0.1 

230 mg/mL trypsin inhibitor and 1 mM EDTA in a 1:4 (w:v) ratio using a Polytron® 

231 blender. Homogenates were centrifuged at 10,000 ×g for 30 min at 4 °C to obtain the 

232 S10 fraction, of which 1 mL was withdrawn while the rest was further homogenised at 

233 100,000 ×g for 60 min at 4 °C to obtain microsomal and cytosolic fractions. 

234 Microsomal pellets were dissolved in the above-described homogenization buffer, also 

235 containing 20 % glycerol in a 2:1 (w:v) ratio (Crespo and Solé, 2016). S10, microsomal 

236 and cytosol fractions were aliquoted and stored at –80 ºC for further biochemical 

237 determinations.

238

239 2.3.4. Kidney

240 About 0.05–0.1 g of each individual kidney were homogenised in ice-cold buffer (pH 

241 7.3) containing 150 mM reagent-grade sucrose, 50 mM imidazole and 10 mM 

242 Na2EDTA in a 1:15 (w:v) ratio using a Polytron® blender. Homogenates were 

243 centrifuged at 5,000 ×g for 2 min at 4 ºC. The resulting supernatant was aliquoted and 

244 stored at –80 ºC for osmoregulation and enzymatic measures. A more detailed 

245 description is given in González-Mira et al. (2018).

246

247 2.3.5. Digestive tract

248 The intestines were divided into anterior and posterior regions of equal length and in 

249 each of them, pancreatic (trypsin, chymotrypsin, bile salt activated lipase and alpha-

250 amylase) and intestinal brush border (BB) enzymatic activities (alkaline phosphatase, 
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251 aminopeptidase N and maltase) were quantified. Further methodological details can be 

252 found elsewhere for pancreatic enzymes (Gisbert et al. 2009) and intestinal enzymes 

253 (Gisbert et al. 2018). The activity of non-specific esterases was also determined in the 

254 pancreatic fraction. Intestines from t7 group were discarded from the study because in 

255 this case fish were fasted only for 24 h, as opposed to 48 h in the other groups, 

256 something that could affect the activity of digestive enzymes.

257

258 2.4. Biochemical analyses 

259 All reactions were carried out in triplicate at 25 ºC, except for CYPs, UDPGT and 

260 digestive enzymes determinations, which were measured at 30 ºC on a Tecan™Infinite 

261 M200 spectrophotometer. 

262

263 2.4.1. Plasmatic and skin mucus metabolites and lysozyme determination

264 Glucose and lactate content in plasma and skin mucus (expressed as μg/mL) were 

265 determined by enzymatic colorimetric kit tests GOD-POD glucose (Ref: 41011) and 

266 LO-POD lactate (Ref: 1001330), from SPINREACT® (Spain), according to the 

267 methodology described in Fernández-Alacid et al. (2018).

268 Plasmatic ammonia (expressed as µmol/L) was analyzed using a commercial kit by 

269 SPINREACT®, and (Ref: 1001410).

270 Lysozyme activity in plasma (expressed as units (U)/ mg of total plasmatic protein) was 

271 measured according to the turbidimetric method described by Parry et al. (1965) with 

272 some modifications. Briefly, 100 µL of plasma diluted in a 1:2 ratio with 10 mM PBS 

273 pH 6.2 were placed in flat-bottomed 96-well plates. To each well, 100 µL of freeze-

274 dried Micrococcus lysodeikticus (0.3 mg/ml, Sigma) were added as lysozyme substrate. 

275 The absorbance (λ = 450 nm) was measured at the beginning and after 15 min. Units of 
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276 lysozyme present in plasma were obtained from a standard curve built with chicken egg 

277 white lysozyme (HEWL, Sigma). 

278

279 2.4.2. Anaerobic metabolism

280 Lactate dehydrogenase (LDH) activity was measured in the S10 fraction of the liver 

281 following adaptation of the Vassault (1983) method using NADH (200 μM) and 

282 pyruvate (1 mM) as final well concentrations. Reading was done at λ = 340 nm for 5 

283 min. LDH activity was expressed as nmol/min/mg total protein.

284

285 2.4.3. Oxidative-stress parameters  

286 Activities of the antioxidant enzymes catalase (CAT), total glutathione peroxidase 

287 (GPX) and glutathione reductase (GR) were determined in the liver cytosolic fraction. 

288 CAT activity was measured as a decrease in absorbance at λ = 240 nm using H2O2 (50 

289 mM) as substrate; GPX and GR used cumene hydroperoxide (CHP, 0.625 mM) and 

290 oxidized glutathione (GSSG, 0.9 mM) as respective substrates and NADPH as cofactor 

291 in both assays at λ = 340 nm. Lipid peroxidation levels (LPO) were quantified in muscle 

292 and in S10 liver fraction using a colorimetric method with 1-methyl-2-phenylindole. 

293 Quantification, with respect to the standard solution 1,1,3,3-tetramethoxypropane, was 

294 made at λ = 586 nm. CAT activity was expressed as µmol/min/mg total protein and GR 

295 and GPX activities as nmol/min/mg total protein and LPO levels as nmol MDA 

296 (malondialdehyde)/g wet weight.

297

298 2.4.4. Conjugation enzymes 

299 Glutathione S-transferase (GST) determination was performed in the liver cytosolic 

300 fraction according to the method of Habig et al. (1974) using 1 mM GSH as substrate at 
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301 λ = 340 nm. Uridine diphosphate glucuronyltransferase (UDPGT) activity was 

302 measured in liver microsomes according to the method of Collier et al. (2000) using 

303 methyl umbelliferone (MU, 0.1 mM) as substrate in the fluorometric mode (EX/EM 

304 355/460). Both activities were expressed as nmol/min/mg total protein.   

305

306 2.4.5. CYP components and reductases

307 Catalytic activities of hepatic CYPs were determined in the microsomal liver fraction 

308 using six fluorometric substrates: 7-ethoxyresorufin (ER), 7-benzyloxyresorufin (BR), 

309 7-methoxyresorufin (MR), 7-benzyloxy-4-trifluoromethylcoumarin (BFC), 3-cyano-7-

310 ethoxycoumarin (CEC) and 7-ethoxycoumarin (EC). Assay conditions were based on 

311 the method by Solé et al. (2012). Briefly, microsomes (10 µL) were incubated for 10 

312 min at 30 ºC and the metabolite formed was recorded at its specific wavelength (Smith 

313 and Wilson, 2010). A calibration curve for each specific metabolite was done (range 0–

314 160 nM). CYPs assays were run in 100 mM phosphate buffer pH 7.4, except for ECOD 

315 determination, which was done in 100 mM Tris buffer pH 7.4. Activities were 

316 expressed in pmol/min/mg total protein.

317 Microsomal reductases, NAD(P)H- cytochrome c reductases and NADH- ferricyanide 

318 reductase activities, were measured by the increase in absorbance at λ = 550 nm and the 

319 decrease in absorbance at λ = 420 nm, respectively (Solé and Livingstone, 2005). Assay 

320 conditions were: 50 mM Tris-HCl buffer pH 7.6, 1 mM KCN, 0.26 mM NAD(P)H, and 

321 60 µM cytochrome c or 0.2 mM potassium ferricyanide. Sample volumes were: 10 µL 

322 microsomal fraction for NADPH- and 15 µL for NADH-dependent reductases. Results 

323 are expressed in nmol/min/mg total protein.

324

325 2.4.6. Osmoregulation
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326 Activity of Na+/K+-ATPase was determined in the head kidney of fish following Zaugg 

327 (1982) method with modifications (González-Mira et al., 2018). Sample absorbance was 

328 measured at λ = 750 nm after 30 min incubation. Na+/K+-ATPase activities were 

329 expressed as µmol ATP hydrolysed/mg total protein/hour. Plasmatic osmolality was 

330 measured with the aid of a Fiske® 210 Micro-Sample Osmometer using 20 µL plasma 

331 and expressed in mosm/Kg H2O. 

332

333 2.4.7. Digestive enzymes

334 The methods used for enzyme quantification are briefly described as follows: trypsin 

335 and chymotrypsin activities, the two main pancreatic alkaline proteases, were assayed 

336 using, respectively, N-benzoyl-DL-arginine p-nitroanilide (BAPNA) (Holm et al., 1988) 

337 and Succinyl-L-Ala-Ala-Pro-L-Phenylalanine p-nitroanilide (SAAPNA) (Erlanger et 

338 al., 1961). Alpha-amylase activity was estimated using 2-chloro-p-nitrophenyl-α-D-

339 maltotrioside as substrate (Lorentz et al., 1999). The activities of bile-salt-activated 

340 lipase and non-specific esterases were measured using p-nitrophenyl myristate (Iijima et 

341 al., 1998) and p-nitrophenyl acetate (Hosokawa and Satoh, 2005) as respective 

342 substrates. The activity of the alkaline phosphatase was determined using 4-

343 nitrophenylphosphate (Bessey et al., 1946), aminopeptidase N activity was determined 

344 using L-leucine p-nitroanilide (Maroux et al., 1973) and maltase activity was 

345 determined using d(+)-maltose (Dahkqvist, 1970) as substrates. All enzymatic activities 

346 were expressed as specific units (mU/mg total protein).

347

348 2.4.8. Protein determination 
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349 Total protein content of all samples was determined by the Bradford method (1976) 

350 using the Bio-Rad Protein Assay reagent and bovine serum albumin (BSA; 0.05-1 

351 mg/mL) as standard. The absorbance was read at λ = 595 nm.  

352

353 2.5. Chemical analyses

354 2.5.1. Bile

355 Bile glands from group t7 were mostly empty (as described in digestive enzyme 

356 measures), and could not be used for chemical analysis. A more detailed methodology 

357 (adapted from Aceña et al. (2017)), as well as reference standards and solvent solutions 

358 characteristics and a description for fipronil and its metabolites quantification, is 

359 reported as electronic supplementary material (ESM). 

360 All analyses were performed using a SCIEX ExionLC™ AD system coupled to a hybrid 

361 SCIEX X500R QTOF system (Sciex, Redwood City, CA, U.S.) equipped with a Turbo 

362 V™ source and Electrospray Ionization (ESI). 

363

364 2.5.2. Muscle

365 Analysis of fipronil in muscle was based on the use of the commercial brand 

366 Regent800WG (80% fipronil) as standard and following the solid phase QuEChERS 

367 extraction method and gas chromatography-electron impact (GC-EI) detection at the 

368 Scientific and Technological Centres of the University of Barcelona (CCiTUB) that 

369 holds the quality standard ISO 9001:2015. A more detailed description of the analytical 

370 procedure is provided as ESM.

371

372 2.6. Data analyses 
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373 Fish hepatosomatic index (HSI) and gonadosomatic index (GSI) were calculated as 

374 (liver weight/BW) × 100 and (gonad weight/BW) × 100, respectively. Fish condition 

375 was assessed by Fulton’s condition factor (CF), calculated as (BW/TL3) × 100.

376 Daily feed intake was measured per tank and food consumption calculated in relation to 

377 the total number of fish per tank. For each mucus sample, the ratios of glucose/lactate, 

378 glucose/protein and lactate/protein were calculated.

379 A detailed explanation of statistical procedures is provided as ESM. In short, 

380 relationships among fish biological and some biochemical variables and their 

381 interactions were tested by Pearson’ or Spearman’ rank correlations (continuous 

382 variables) and by Student’s t-tests or Mann-Whitney U-tests (sex-related differences). 

383 For digestive enzymes, differences between anterior and posterior parts of the digestive 

384 tract were tested using Wilcoxon pairwise tests with repeated measurements.

385 Possible effects of treatment duration and temperature were tested by general or 

386 generalized linear models (GLMs/GZMs) followed by Student’s t-test/Mann-Whitney 

387 U-test and one-way ANOVA/Kruskal-Wallis tests. A permutation multivariate analysis 

388 (PERMANOVA) and a principal component analysis (PCA) were also carried out in 

389 order to assess a global biochemical response to temperature and treatment duration In 

390 all cases, significant differences were set at p < 0.05.

391

392 3. Results

393 3.1. Biometric parameters and general condition indices

394 Mean values for fish biometric data and general condition indices were fairly uniform 

395 across experimental groups (Table 1). Most individuals were immature, as evidenced by 

396 low GSI values in both sexes. Sex ratios were generally skewed, with more females 
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397 than males in most groups. Significant increases of SL and BW with time were 

398 observed (χ2 = 10.589, p = 0.014 and χ2 = 8.613, p = 0.035, respectively). 

399 Direct correlations among biometric data and condition indices were found in most 

400 cases, with visceral fat weight showing positive associations with all other biological 

401 variables (rp = 0.299–0.692, p = 0.018 – < 0.001), in a similar way as BW (only non-

402 significant correlation to HSI) (rp = 0.268–938, p = 0.032 – < 0.001). SL and GSI were 

403 also positively correlated (rp = 0.483, p < 0.001), as well as CF and HSI (rp = 0.457, p < 

404 0.001). Body weight, GSI and visceral fat weight displayed higher values in females 

405 than in males (t = 2.690–6.252, p = 0.012– < 0.001).

406

407 3.2. Feed consumption

408 Fish feeding rate was similar at the two experimental temperatures: 0.54 ± 0.20 and 0.57 

409 ± 0.22 g/fish at 13 ºC and 16 ºC, respectively, and significantly increased over time (F(3, 

410 24) = 23.891, p < 0.001) (Table 1). 

411

412 3.3. Biochemical analyses

413 3.3.1. Plasmatic and skin mucus analyses

414 Mean levels of plasmatic glucose ranged between 110.40 ± 14.20 and 212.30 ± 22.20 

415 mg/dL and lactate between 52.70 ± 5.50 and 79.30 ± 7.10 mg/dL. In mucus these values 

416 were much lower with glucose ranging between 0.57 ± 0.07 and 1.24 ± 0.11 mg/dL and 

417 lactate between 0.42 ± 0.08 and 1.11 ± 0.14 mg/dL, (Table S1). Some statistical 

418 correlations of the different parameters studied in plasma and skin mucus and most fish 

419 biometrics and condition indices are detailed in Table S2.

420 Although no effect of the rearing temperature was found, a significant increase with 

421 longer  fipronil exposures was observed for glucose and lactate plasma levels (F(3, 59) = 
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422 7.098, p < 0.001 and F(3, 53) = 4.226, p = 0.009, respectively) (Fig. 1A, B). Moreover, a 

423 decrease of these biomarkers during the depuration period was observed in skin mucus 

424 (F(3, 59) = 10.196, p < 0.001 and F(3, 59) = 6.338, p = 0.001, respectively) (Fig. 1C, D). 

425 Glucose/protein and lactate/protein ratios (mean values 3.31 ± 0.47 – 6.39 ± 0.98 µg/mg 

426 and 2.28 ± 0.24 – 4.59 ± 0.37 µg/mg, respectively) in skin mucus were not affected by 

427 temperature or fipronil exposure. However, glucose/lactate ratio (1.06 ± 0.12 – 1.95 ± 

428 0.29 µg/mg) was higher at 13 ºC than at 16 ºC (t = 2.733, p = 0.008) (Table S1). A 

429 significant interaction between exposure time and CF was found for lactate content in 

430 mucus (F(3, 54) = 6.113, p = 0.001). Strong positive correlations were detected among 

431 protein, glucose and lactate both in plasma (rp = 0.411–0.632, p < 0.001) and skin 

432 mucus (rp = 0.434–0.706, p < 0.001).  

433 Plasmatic lysozyme activity ranged between 7.98 ± 2.13 and 13.24 ± 2.53 U/mg total 

434 protein (Table S3) and was not affected by temperature or fipronil exposure time.

435

436 3.3.2. Anaerobic metabolism 

437 Mean LDH activity in liver ranged between 14.58 ± 1.42 and 16.25 ± 1.17 

438 nmol/min/mg total protein (Table S3), with no association to fish biometric variables or 

439 condition indices and it was not affected by water temperature or fipronil exposure.

440

441 3.3.3. Oxidative-stress parameters 

442 Antioxidant enzymes GR (5.56 ± 1.05 – 7.98 ± 0.84 nmol/min/mg total protein), GPX 

443 (6.60 ± 0.40 – 8.12 ± 0.40 nmol/min/mg total protein) and CAT (63.84 ± 10.27 – 111.12 

444 ± 68 µmol/min/mg total protein) (Table S3) were not affected by temperature, and only 

445 CAT responded to fipronil exposure, decreasing after the depuration period (t21) (F(3, 60) 
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446 = 4.792, p = 0.005) (Fig. 2A). Regarding fish biological variables, only some negative 

447 associations were observed between GR and some biological traits (Table S2).

448 Mean LPO levels ranged between 2.99 ± 0.74 and 6.21 ± 1.09 nmol MDA/g ww in 

449 muscle and between 10.10 ± 1.74 and 17.35 ± 1.96 nmol MDA/g ww in the S10 liver 

450 fraction (Table S3). In both cases, no effect of temperature was detected but a 

451 significant increase in MDA equivalents during fipronil exposure was found in liver 

452 (F(3, 60) = 7.436, p < 0.001) (Fig. 2B). 

453 Correlations among oxidative stress-related biomarkers are shown in Table 2, revealing 

454 a similar trend for GR and GPX activities, while GR scaled negatively with CAT 

455 activity and LPO levels in liver.

456

457 3.3.4. Conjugation enzymes

458 Mean GST activity values ranged between 36.45 ± 2.43 and 51.05 ± 5.80 nmol/min/mg 

459 total protein, and UDPGT between 0.75 ± 0.09 and 0.82 ± 0.08 nmol/min/mg total 

460 protein (Table S3). Some positive correlations were detected between conjugation 

461 enzymes and biological variables, and GST activity was higher in females (Table S2). 

462 Both enzymes were unaffected by temperature and GST activity was significantly 

463 enhanced with increasing fipronil exposure time (F(3, 60) = 4.245, p = 0.009) (Fig. 2C). 

464 GST activity displayed positive correlations with LPO in muscle and liver and was 

465 negatively related to GR activity, while UDPGT activity was positively correlated with  

466 CAT activity (Table 2). 

467

468 3.3.5. CYP components and reductases

469 EROD (mean activity = 15.33 ± 1.31 – 25.35 ± 3.86 pmol/min/mg total protein), BROD 

470 (0.47 ± 0.07 – 0.76 ± 0.11 pmol/min/mg total protein), MROD (2.34 ± 0.18 – 5.00 ± 
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471 0.71 pmol/min/mg total protein), CECOD (19.14 ± 1.63 – 33.45 ± 5.34 pmol/min/mg 

472 total protein) and ECOD (3.35 ± 0.66 – 9.42 ± 1.47 pmol/min/mg total protein) 

473 activities (Table S3) displayed negative correlations with fish HSI, as well as negative 

474 associations between MROD and visceral fat weight and between ECOD and CF (Table 

475 S2). These same formerly mentioned activities were unaffected by temperature but 

476 significantly decreased after fipronil exposure (F(3, 60) = 3.046, p = 0.036; F(3, 60) = 

477 4.327, p = 0.008; F(3, 60) = 7.743, p < 0.001, F(3, 60) = 3.795, p = 0.015 and F(3, 47) = 

478 3.211, p = 0.031, respectively) (Fig. 2D, E). By contrast, BFCOD activity (62.91 ± 5.23 

479 – 98.97 ± 22.34 pmol/min/mg total protein) was not affected by temperature of fipronil 

480 exposure  (Table S3). Strong positive correlations were found among most CYPs and 

481 between them and the oxidative-stress markers GR and GPX (Table 2). By contrast, 

482 negative associations were observed between GST and MROD and between UDPGT 

483 and most CYPs (Table 2).

484 In relation to CYP-dependent reductases (expressed in nmol/min/mg total protein): 

485 NAD(P)H Cyt c reductase (17.07 ± 1.22 – 22.98 ± 2.24) and NADH-Cyt c (22.79 ± 

486 3.36 – 31.97 ± 5.34) and ferrycyanide reductases (1006 ± 95 – 1208 ± 108) (Table S3), 

487 NADPH cyt c reductase displayed higher activity at the lowest temperature (t = 2.575, p 

488 = 0.012) (Fig. 2F) and a positive weak correlation with fish visceral fat weight, and of 

489 NADH Cyt c reductase, that was negatively associated to fish GSI (Table S2). 

490

491 3.3.6. Osmoregulation

492 Kidney Na+/K+-ATPase mean activity ranged from 0.91 ± 0.11 to 1.94 ± 0.51 µmoles of 

493 ATP hydrolysed/mg total protein/hour (Table S3), osmolality from 370.50 ± 4.69 to 

494 400.50 ± 9.12 mosm/Kg H2O and ammonia from 153.10 ± 9.46 to 333.62 ± 59.29 

495 µmol/L (Table S1). While Na+/K+-ATPase activity and ammonia content did not 
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496 significantly vary as a function of temperature or experimental time, osmolality showed 

497 a significant increase after fipronil exposure (F(3, 57) = 6.729, p = 0.001). 

498

499 3.3.7. Digestive enzymes

500 Significant differences in activity between anterior and posterior intestine sections were 

501 detected for the pancreatic enzymes trypsin (t14 at 13 °C; W = 36, p = 0.012) and 

502 chymotrypsin (t21 at 16 °C; W = 27, p = 0.038) and the BB enzymes alkaline 

503 phosphatase (t21 at 13 and 16 ºC; W = 27, p = 0.039 and W = 28, p = 0.023, 

504 respectively), aminopeptidase N (t21 at 13 and 16 ºC; W = 33, p = 0.043 and W = 35, p 

505 = 0.019, respectively) and maltase (t0 at 16 °C and t21 at 13 and 16 ºC; W = 21–36, p = 

506 0.012–0.046). In light of these results, data from digestive enzymes for anterior and 

507 posterior intestine regions were treated separately.

508 Regarding pancreatic enzymes (in mU/mg total protein) in anterior intestine: trypsin 

509 (45.60 ± 3.07 – 61.20 ± 2.63), chymotrypsin (61.60 ± 15.87 – 104.70 ± 33.26), bile salt-

510 activated lipase (21.50 ± 3.73 – 42.70 ± 11.33), alpha-amylase (4.40 ± 0.92 – 10.50 ± 

511 3.01) and non-specific esterases (415.60 ± 38.22 – 564.40 ± 35.19) (Table S4), lower 

512 activities were observed for trypsin before fipronil exposure (t0) and after depuration 

513 period (t21) (F(2, 41) = 5.193, p = 0.01) (Fig. 2G), and for lipase and alpha-amylase over 

514 time (F(2, 44) = 3.435, p = 0.042 and F(2, 45) = 3.708, p = 0.033, respectively). For 

515 posterior intestine: trypsin (45.70 ± 3.22 – 64.40 ± 10.03), chymotrypsin (117.30 ± 

516 39.39 – 428.50 ± 158.87), lipase (24.90 ± 3.82 – 30.80 ± 3.94), alpha-amylase (3.10 ± 

517 0.44 – 9.70 ± 2.48) and non-specific esterases (447.40 ± 43.69 – 587.70 ± 56.37) no 

518 significant trends were detected. In relation to intestinal BB enzymes (in mU/mg total 

519 protein) in anterior intestine: alkaline phosphatase (742.40 ± 116.31 – 1,177.40 ± 

520 284.87), aminopeptidase N (117.30 ± 22.32 – 220.50 ± 22.80) and maltase (42.90 ± 
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521 8.63 – 250.10 ± 50.02), higher activities were found for aminopeptidase N at 13 ºC (t = 

522 2.310, p = 0.026) and for maltase with time exposure (F(2, 45) = 34.975, p < 0.001) (Fig. 

523 2H). Among the enzymes assessed in posterior intestine: alkaline phosphatase (540.80 ± 

524 109.19 – 826.20 ± 175.18), aminopeptidase N (93.50 ± 11.08 – 178.90 ± 27.34) and 

525 maltase (26.20 ± 2.92 – 158.20 ± 23.95), only maltase activity increased over time (F(2, 

526 45) = 28.828, p < 0.001).

527 Regarding to association of digestive enzymes with fish biometric variables and general 

528 condition indices, few significant associations were found (Table S2) while mostly 

529 positive correlations were found among intestinal enzymes (Tables S5 and S6).

530

531 3.4. Chemical analyses on bile and muscle

532 Concentrations of fipronil and fipronil-sulfone in bile and in muscle (only fipronil) of 

533 the different experimental groups are shown in Table 3. In addition, a more detailed 

534 report on chemical results is provided as ESM. 

535

536 3.5. Multivariate analyses

537 PERMANOVA analyses showed no effect of temperature but a significant influence of 

538 fipronil on fish general biochemical profile (Pseudo-F(3, 60) = 2.790, p(perm) = 0.0001; 

539 9876 unique permutations, all pairwise comparisons significant except those comparing 

540 t7 and t14, and t14 and t21). 

541 Two-dimensional PCA plots represented 56.1 % of total variance on the first two 

542 components, and 51.9 % of the total variance on the first and third components (Figure 

543 3). These results suggest a differentiation according to the exposure time to fipronil 

544 along the first axis, with samples corresponding to unexposed fish (t0) (Fig. 3A, right 

545 part of the plot) clearly separated from the rest (Fig. 3A, left part of the plot), and 
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546 according to temperature along the third axis (Fig. 3B). Pearson correlations indicated 

547 associations between some biochemical markers and fish groups, namely between most 

548 CYP-related activities and unexposed fish (t0), between LPO levels, plasmatic 

549 metabolites and osmolality and fish from t7 and t14, and between LDH, NADPH-Cyt c 

550 reductase and GST and fish from t14 and t21.

551

552 4. Discussion

553 The present study reports, for the first time, the effects of dietary fipronil exposure on 

554 several physiological parameters of the European sea bass. The use of a comprehensive 

555 set of biomarkers encompassing different physiological and detoxification processes 

556 allows for the assessment of the effects of this pesticide on the health and general 

557 condition of an economically important cultured fish species. Moreover, the combined 

558 effects of fipronil and a 3 ºC temperature increase (as predicted for the NW 

559 Mediterranean region by the end of this century) constitute a novel approach to assess 

560 the consequences of CC for the harmful effects of this chemical in this commercial fish 

561 species widely used for human consumption. 

562 Morphometric markers and condition indices remained unchanged regardless of fipronil 

563 exposure or of the rearing temperature, suggesting that the 3 ºC temperature variation, 

564 fipronil concentration and/or the time of exposure assessed were below threshold limits 

565 to affect them. The observed increase in feeding rate over time regardless of the 

566 temperature likely accounts for higher feed consumption as fish increased in size, and 

567 not to fipronil exposure, since no changes occurred during depuration.

568 Despite of the wide array of biochemical markers assessed in this study, the use of 

569 multivariate tools helped to infer some general patterns in their response to the different 

570 experimental conditions. It appears that temperature induced changes in some metabolic 
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571 parameters as shown by the segregation along the third PCA axis of fish reared at 13 ºC 

572 and 16 ºC but the PERMANOVA analyses indicated that the temperature-induced 

573 metabolic changes observed were not that clear. An integrated multi-biomarker 

574 response to fipronil exposure, according to both multivariate analyses, showed that the 

575 most prominent changes took place between unexposed (t0) and exposed (t7, t14 and 

576 t21) fish. Notably, biochemical patterns after depuration (t21) clustered with those for 

577 t14 fish both in PERMANOVA analysis and PCA plots, rather than with non-exposed 

578 groups (t0) suggesting that the 7-days depuration period was too short to allow for the 

579 full recovery of pre-exposure levels.

580 The choice of a modest temperature increase, 3 ºC with respect to the group reared at 

581 natural temperature, was considered as environmentally realistic under the IPCC 

582 forecasts by year 2100, although sharper increases may occur in estuarine and coastal 

583 ecosystems (IPCC, 2014) inhabited by European sea bass, particularly in their juvenile 

584 stage. The generalized lack of effects of this temperature increase on the assessed 

585 biomarkers contrasts with other studies performed on juveniles of this species, which 

586 reported behavioural, physiological and biochemical changes although under warmer 

587 conditions that could account for the different results (Vinagre et al., 2012; Almeida et 

588 al., 2015). Furthermore, a synergic effect between warmer conditions and fipronil 

589 exposure did not occur in the present study. However, one must keep into account that a 

590 more realistic simulation of CC conditions, including alterations of other abiotic 

591 variables (e.g. salinity, pH), could yield a different outcome. 

592 In the present study, several parameters in plasma and mucus were included as potential 

593 non-lethal indicators of fish stress condition. Glucose and lactate increases in plasma 

594 could be a result of the mobilisation of energetic resources induced by higher metabolic 

595 demands, especially during the depuration period. In turn, the concomitant drop in 
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596 mucus could be explained by the need to spare energy when energetic demands 

597 increase, as described in gilthead sea bream during a 2-weeks starvation period  

598 (Fernández-Alacid et al., 2018) or under chronic cold temperature conditions (Sanahuja 

599 et al., 2019). Thus, plasma and mucus metabolite levels do not necessarily match under 

600 chronic or sustained stress conditions (several days-weeks), as it is observed in the 

601 present study and contrary to what has been reported under acute stress (hours) 

602 (Fernández-Alacid et al., 2019).

603 In fish, fipronil metabolism takes place by oxidation and reduction reactions catalysed 

604 by cytochrome P450-related enzymes (CYPs), which generate different fipronil 

605 metabolites (mainly fipronil sulfone) (Konwick et al., 2006; Wang et al., 2016; Li et al., 

606 2018). These metabolites can be even more toxic to insects, mammals, aquatic 

607 organisms and birds than the parental compound (Leghait et al., 2009; Tavares et al., 

608 2015). In the present study, this important phase I metabolic pathway was assessed by 

609 using several fluorometric substrates indicative of several CYP isoforms (Smith and 

610 Wilson, 2010; Solé et al., 2014) and the general electron donors NAD(P)H Cyt c and 

611 NADH ferrycyanide reductases.  The responses of CYP1A- and CYP2B-related 

612 activities (EROD, BROD, MROD, ECOD and CECOD) showed a similar trend, 

613 markedly decreasing after fipronil administration, suggesting certain overlapping 

614 substrate specificity, whereas CYP3A4-associated BFCOD activity displayed the 

615 opposite trend. The effects of fipronil on CYP-related activities is controversial; for 

616 instance, in vitro studies with human hepatocytes (Das et al., 2006) suggested an 

617 increase in CYP1A1-related activity at low concentrations (1 µM), and a decrease at 

618 higher ones (10 and 25 µM). In the present study, ECOD activity was clearly inhibited 

619 after 14 days of fipronil exposure and remained low even at the end of the depuration 

620 period. This CYP-related activity was the only one responding to waterborne fipronil 
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621 exposure in the zebrafish, Danio rerio, showing a dose-dependent induction in several 

622 tissues 24h after exposure (Wu et al., 2014). A recent study in the Caspian kutum fish, 

623 Rutilus kutum, showed a strong correlation between cyp1a gene expression and different 

624 antioxidant responses in several tissues, including liver (Ardeshir et al., 2018). The 

625 study suggested that the increase of cyp1a gene expression after intraperitoneal (IP) 

626 fipronil injection could be due to structural similarities between this compound and 

627 some aryl hydrocarbon receptor agonists, such as halogenated hydrocarbons (Ardeshir 

628 et al., 2018). In fact, fipronil transformation into more toxic metabolites fipronil-sulfide 

629 and fipronil-sulfone is linked to oxidative stress (Wang et al., 2016). This is supported 

630 by the present results, since CAT, the antioxidant enzyme, was inhibited after the 

631 longest exposure to fipronil, supporting the notion that the production of oxyradicals 

632 may overwhelm the protective capacity of this enzyme (Regoli and Giuliani, 2014). 

633 Moreover, the increase of LPO levels in liver and muscle clearly confirmed a scenario 

634 of oxidative damage to cell membrane lipids, most likely due to ROS generation as 

635 previously suggested (Wang et al., 2016). In addition to the role of GST catalysing the 

636 conjugation of glutathione with xenobiotics for detoxification purposes, other GST 

637 isoforms appear implicated in the reduction of lipid hydroperoxides produced by ROS 

638 (Regoli and Giuliani, 2014). Present data point at this possibility, as suggested by the 

639 progressive increase in GST activity after fipronil exposure. Nonetheless, this increase 

640 in antioxidant protection, as indicated by the positive correlations between GST activity 

641 and LPO levels in liver and muscle was not enough to prevent the occurrence of 

642 oxidised lipids even after depuration. Concordantly, several studies performed in fish 

643 also reported the occurrence of oxidative-stress after fipronil administration, either 

644 waterborne exposure (Clasen et al., 2012; Menezes et al., 2016; Ghazanfar et al., 2018), 

645 after IP injection (Ardeshir et al., 2017a) and even considering a combination of 
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646 waterborne exposure and IP injection (Ardeshir et al., 2017b). Thus, induction of 

647 oxidative stress is a well-accepted consequence of fipronil exposure.

648 Since the European sea bass is a euryhaline fish that inhabits waters with broad salinity 

649 gradients during its life cycle, osmoregulation constitutes a key physiological process 

650 worth to be considered. In the present study, two osmoregulation-related parameters 

651 were assessed. A significant increase in plasmatic osmolality evidenced a reduced 

652 capability of hypo-osmoregulation in seawater after fipronil administration. However, 

653 another parameter also indicative of osmoregulation capacity such as kidney Na+/K+ 

654 ATPase activity was not affected. At this stage, we can only speculate that another 

655 response on this parameter might have been obtained if it had been measured in gills 

656 instead of kidney, since this marker seems to display a tissue-dependent pattern of 

657 activity (Vargas-Chacoff et al., 2009). Consequences for an osmoregulatory imbalance 

658 after fipronil exposure are particularly significant in this species, given that during early 

659 life stages it inhabits estuarine and freshwater ecosystems potentially subjected to waste 

660 water discharges from nearby agricultural areas where the insecticide may be used.

661 In the present study, the consequences of fipronil exposure were also evaluated in the 

662 digestive system because of the high importance of growth and energy assimilation in 

663 this cultured fish species. The effects of temperature and fipronil on the activity of the 

664 main digestive pancreatic and BB enzymes were evaluated in proximal and distal 

665 intestinal parts since fish intestine is characterized by proximo-distal gradients of 

666 hydrolases (Xiong et al., 2011; Izvekova et al., 2013). In the present study, the decrease 

667 on lipase activity in bile might be due to the presence of fipronil-derived compounds in 

668 bile, such as fipronil sulfone, that could have impaired lipase activity. Similarly, the 

669 pyretroid insecticide deltamethrin, used in combination with fipronil (Jiang et al., 2014), 

670 has been shown to inhibit lipase activity in several fish species (Simon et al., 1999; 
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671 Gunes and Yerli, 2011). Regarding the glucosidases alpha-amylase and maltase, 

672 suppression of the activity of the former has been reported in several fish species 

673 exposed to different pollutants, and mostly explained by a reduction in substrate affinity 

674 (Filippov et al., 2013). The opposite trend was observed for maltase activity in anterior 

675 and posterior intestine regions after fipronil exposure. This is in line with the random 

676 effects of toxics on glucosidases ranging from inhibition to stimulation depending on 

677 toxicant concentration, its interaction with other chemicals and exposure time (Filippov 

678 and Golovanova, 2012; Filippov et al., 2013). Therefore, the response of glucosidases to 

679 fipronil (whose effects on digestive enzymes have never been addressed before) needs 

680 to be further investigated before more consistent conclusions could be drawn. Similarly, 

681 the effect of organic pollutants on proteolytic activity (i.e. trypsin) seems inconsistent; 

682 while it significantly increased in the present study after fipronil administration, it 

683 decreased in roach (Rutilus rutilus) exposed to polychlorinated biphenyls (PCBs) 

684 (Golovanova et al., 2011) and it was unaffected by naphthalene (a polycyclic aromatic 

685 hydrocarbon) in Mozambique tilapia, Oreochromis mossambicus, (Kuz'mina et al., 

686 1999). Since exposure to fipronil did not result in a decrease of BB enzymes, as 

687 indicative of harm to enterocytes integrity (Lalles, 2010), it seems that no damage 

688 occurred to intestinal epithelium at the tested concentration.

689 Chemical analyses in muscle and bile confirmed intake and clearance of fipronil during 

690 the exposure period as well as a bioaccumulation trend over time and a depuration after 

691 withdraw from diet. Higher levels of the metabolite fipronil-sulfone than those of the 

692 parental fipronil in fish bile at t14 and t21 confirmed a metabolisation of the insecticide 

693 within a few days. Notably, in rainbow trout, Oncorhynchus mykiss (Konwick et al., 

694 2006) and Nile tilapia, Oreochromis niloticus, (Li et al., 2018), fipronil-sulfone was 

695 detected as soon as one day after exposure to the parent compound, indicating its rapid 
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696 biotransformation. In the present study, the parent compound fipronil was not detected 

697 in the muscle and very low concentrations were quantified in bile at the end of the 7-day 

698 depuration period (t21). This is in agreement with the rapid elimination reported by 

699 Konwick et al. (2006), who could not detect the pesticide in trout muscle 4 days after 

700 the end of the exposure. In contrast, fipronil-sulfone persisted in bile after the 

701 depuration period (7 days after the end of fipronil administration) at fairly high 

702 concentrations, which may be related to its affinity towards organic carbon supporting 

703 the view that fatty organs, such as liver, can act as a reservoir for fipronil residues (Li et 

704 al., 2018; Qu et al., 2018). Indeed, fipronil-sulfone is considered to be more toxic to 

705 aquatic species than fipronil itself (EPA, 1996). This was also confirmed in the present 

706 study by modulation of the activities: reduced CAT, enhanced GST and LPO 

707 occurrence even at the end of the depuration period. Some studies in fish have alerted 

708 for the high bioaccumulation potential of fipronil-sulfone compared to the parent 

709 compound (Konwick et al., 2006; Wang et al., 2016). Moreover, our results may also be 

710 suggestive of a longer persistence of fipronil-sulfone with increasing temperatures, as 

711 higher concentrations of this metabolite were present in the bile of European sea bass 

712 reared at 16 ºC than in those reared at 13 ºC However, more studies are needed to 

713 strengthen this hypothesis. If confirmed, a potential synergistic interaction between 

714 fipronil-sulfone and warmer temperatures should be taken into consideration when 

715 predicting future consequences in a global warming scenario.  

716

717 Conclusions

718 A two-week dietary administration of the pesticide fipronil induced physiological 

719 responses in the European sea bass, as indicated by alterations in several markers. 

720 Trends on plasma and skin mucus metabolites were indicative of an increased energy 

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711



30

721 demand during fipronil exposure and after depuration. Fipronil administration also 

722 caused an oxidative-stress condition that persisted even after depuration and was 

723 accompanied by the modification of some phase I CYP-related activities and an increase 

724 of phase II GST activity. Osmoregulation and some digestive enzymes were also altered 

725 as a consequence of the pesticide administration. Chemical analyses in bile and muscle 

726 confirmed intake and clearance of fipronil (faster in muscle than in liver) but persistence 

727 of the metabolite fipronil-sulfone in bile even after the depuration period. Although a 

728 modest temperature increase of 3 ºC did not enhance fipronil effects, the persistence of 

729 fipronil-sulfone in bile at higher temperature may alert for potential synergistic effects 

730 in a CC scenario.
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Tables

Table 1. Mean ± standard deviation for biometric measurements, general condition indices and feeding rate of European sea bass exposed to 
fipronil under two temperature regimes before exposure (t0) after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day 
depuration period following exposure (t21). Provided values on feeding rate were calculated from food consumption reported for each group 
during the previous week to each sampling. N: number of individuals, F: females, M: males, SL: standard length, TW: total weight, CF: 
condition factor, HSI: hepatosomatic index, GSI: gonadosomatic index. 

T °C Time N 
(F:M)

SL (cm) TW (cm) CF HSI GSI (F) GSI (M) Visceral fat (g) Feeding rate 
(g/fish)

t0 8 (2:6) 20.50 ± 2.67 125.08 ± 52.18 1.37 ±  0.08 2.08 ±  0.71 0.15 ±  0.02 0.11 ±  0.12 5.05 ± 2.41 0.42 ± 0.16
t7 8 (6:2) 23.04 ± 0.60 174.27 ± 17.67 1.43 ±  0.19 2.24 ±  0.84 0.28 ±  0.03 0.24 ±  0.06 6.53 ± 1.63 0.46 ± 0.08
t14 8 (6:2) 21.65 ± 1.62 145.81 ± 27.47 1.42 ±  0.10 2.32 ±  0.73 0.20 ±  0.09 0.04 ±  0.01 6.07 ± 1.44 0.49 ± 0.11

13 °C

t21 8 (4:4) 22.56 ± 0.82 164.99 ± 9.11 1.44 ±  0.11 2.72 ±  0.47 0.23 ±  0.08 0.09 ±  0.05 7.28 ± 1.95 0.83 ± 0.17
t0 8 (4:4) 20.69 ± 2.14 138.14 ± 40.01 1.51 ±  0.12 1.99 ±  0.54 0.23 ±  0.02 0.10 ±  0.08 5.56 ± 1.69 0.38 ± 0.12
t7 8 (6:2) 21.56 ± 2.31 152.29 ± 45.19 1.48 ±  0.20 2.25 ±  0.57 0.21 ±  0.06 0.07 ±  0.01 6.01 ± 2.82 0.47 ± 0.06
t14 8 (7:1) 21.50 ± 2.49 153.30 ± 52.76 1.49 ±  0.11 2.21 ±  0.55 0.22 ±  0.08  - 6.72 ± 2.43 0.66 ± 0.14

16 °C

t21 8 (7:1) 22.63 ± 1.83 163.82 ± 33.24 1.40 ±  0.08 1.88 ±  0.73 0.25 ±  0.05 0.05 6.20 ± 2.81 0.85 ± 0.14
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Table 2. Values of Pearson's correlation coefficient for bivariate correlations performed among oxidative-stress markers (LPO, GR, GPX and 
CAT), CYPs (EROD, BROD, MROD, BFCOD, CECOD and ECOD) and phase II metabolism markers (GST and UDPGT). Abbreviations for 
enzymatic markers can be found in the corresponding sections throughout the text. * p<0.05; **p<0.01; *** p<0.001; – non-significant result. n 
= 64.

 LPO (muscle) LPO (liver) GR GPX CAT GST EROD BROD MROD BFCOD CECOD ECOD
LPO (muscle)             
LPO (liver)  –  
GR  – -0.332**  
GPX  –  – 0.488***  
CAT  –  – -0.294*  –  
GST 0.266* 0.416** -0.473***  –  –  
EROD  –  – 0.279* 0.361**  –  –  
BROD  –  – 0.254*  –  –  – 0.526***  
MROD  –  – 0.273* 0.371**  – -0.361** 0.871*** 0.642***  
BFCOD  –  –  –  –  –  –  – 0.403**  –  
CECOD  –  –  – 0.263*  –  – 0.781*** 0.547*** 0.704***  –  
ECOD -0.311*  –  – 0.329*  –  – 0.673*** 0.562*** 0.768***  – 0.698***  

UDPGT  –  –  –  – 0.347**  – -0.315*  – -0.287* 0.259*  –
-
0.297*
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Table 3. Concentration of the chemical compounds fipronil and fipronil-sulfone 
determined in bile and of fipronil in muscle of European sea bass exposed to fipronil 
under two temperature regimes before exposure (t0) after 7 and 14 days of exposure (t7 
and t14, respectively) and after a 7-day depuration period following exposure (t21). 
Each value corresponds to a pool of samples from 8 fish individuals. Quantification in 
bile at t7 was not possible due to sample limitations. LOD: limit of detection.

Muscle BileT °C Time
Fipronil 
(ng/g)

Fipronil (ng/ml) Fipronil sulfone 
(ng/ml)

t0 < LOD < LOD < LOD
t7 88.4 – –
t14 64.6 4.08 ± 7.35 10.84 ± 9.02

13 °C

t21 < LOD 0.76 ± 0.47 15.17 ± 8.03

t0 < LOD < LOD < LOD
t7 42.9 – –
t14 57.7 4.70 ± 4.65 38.43 ± 20.16

16 °C

t21 < LOD 0.63 ± 0.62 34.58 ± 30.87
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Figure captions

Figure 1. Histograms displaying glucose and lactate levels in skin mucus (A and B, 

respectively) and plasma (C and D, respectively) of European sea bass exposed to 

fipronil under two temperature regimes before exposure (t0) after 7 and 14 days of 

exposure (t7 and t14, respectively) and after a 7-day depuration period following 

exposure (t21). Different letters show differences across temporal replicates (One-way 

ANOVA, p < 0.05). No differences between temperatures were detected. 

Figure 2. Histograms displaying lipid peroxidation levels (LPO) (B) and activity levels 

of the enzymes catalase (CAT, A), glutathione-S-transferase (GST, C), Cytochrome 

P450-related BROD and MROD (D and E, respectively), NADPH Cytochrome C 

reductase (F), trypsin (G) and maltase (H) (the two latter in anterior intestinal region) in 

different tissues of European sea bass exposed to fipronil under two temperature 

regimes before exposure (t0) after 7 and 14 days of exposure (t7 and t14, respectively) 

and after a 7-day depuration period following exposure (t21). Different letters show 

differences across temporal replicates (One-way ANOVA, p < 0.05). No differences 

between temperatures were detected, except for NADPH Cyt C reductase.  

Figure 3. Plots showing first and second components (A) and first and third 

components (B) of the principal components analysis (PCA) applied on biochemical 

data of European sea bass exposed to fipronil under two temperature regimes (filled 

symbols, 13 ºC; empty symbols, 16 ºC) before exposure (triangles, t0) after 7 and 14 

days of exposure (squares, t7 and circles, t14) and after a 7-day depuration period 

following exposure (rhombus, t21). Fish data were grouped according to combination of 

temperature and time conditions. Vectors represent Pearson’ correlations between each 

variable and the PCA axis. The outer circle represents a correlation = 1.  
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Electronic supplementary material (ESM)

Materials and Methods

Chemical analyses on bile

Fipronil reference standards (fipronil, fipronil sulfone, fipronil-desulfinyl, and fipronil-

(pyrazole-13C3, cyano-13C)) were high purity (≈90 %) and were obtained from Sigma 

Aldrich (St. Luis, MO, U.S). LC-MS grade acetonitrile (ACN) (≥99.9 %), methanol 

(MeOH) (≥99.9 %) and water were purchased from Merck (Darmstadt, Germany). 

Formic acid (≥96 %, ACS reagent) and ammonium acetate were supplied by Sigma-

Aldrich. Polypropylene 96-well plates, 700 µL were furnished by Waters Corporation 

(Milford, MA, US). Fipronil, fipronil sulfone and fipronil-desulfinyl stock standard 

solutions (1000 mg/L) were prepared in, and the working standard solutions required for 

quantification were prepared from stock solution by dilution with ACN. All standard 

solutions were stored at −20 °C before use. Fipronil-(pyrazole-13C3, cyano-13C) stock 

solution (1000 mg/L) used as internal standard (IS) was prepared in ACN and stored at 

−20 °C.

The extraction methodology was as follows. Briefly, the 2-mL Eppendorf vials 

containing the glands were slowly defrosted in an ice bath for 30 minutes. Then, glands 

were incised with a syringe needle to allow bile to leak, the bag was removed and the 

vials were vortexed for 30 seconds. Sixty microliters of bile content were added to 675 

µL of 0.1 N HCl and vortexed for 30 seconds. Then, 200 µL of cold ACN and 25 µL of 

IS solution (1000 µg/L) were added (final volume 960 µL) and the vial was vortexed for 

30 seconds more. Subsequently, the vials were centrifuged for 10 minutes at 10,000 rpm 

and 4 °C using a 5810 R centrifuge (Eppendorf AG, Hamburg, Germany). About 800 

µL of the supernatants were transferred to a polypropylene 96-deepwell plate for the 

following analysis by ultra-high-performance liquid chromatography (UPLC)-high 



resolution multiple reaction monitoring (HR-MRM) for quantification of target 

compounds. To evaluate the method extraction, a blank sample (control, in triplicate) 

fortified at 10 ng/mL was run in parallel to the set of samples (Supplementary material, 

Figure S1).

All analyses were performed using a SCIEX ExionLC™ AD system coupled to a hybrid 

SCIEX X500R QTOF system (Sciex, Redwood City, CA, U.S.) equipped with a Turbo 

V™ source and Electrospray Ionization (ESI). Fipronil and its metabolites were 

separated on a reverse phase Hibar® HR Purospher® STAR RP-C18 column (50 mm × 

2.1 mm i.d., 2 µm particle size, Merck, Darmstadt, Germany), maintained at 40 °C in 

the column oven. The mobile phases consisted of 5 mM ammonium formate in water 

(A) and 5 mM ammonium formate buffer and 0.05 % formic acid MeOH (B) at a flow 

rate of 0.6 mL/min. The gradient elution program was as follows: 0.3–1.10 min 5–40 % 

B, 1.10–2.20 min 40–80 % B, 2.20–3.60 min 80–87 % B, 3.60–4.00 min 87–95 % B, 

4.00–5.00 min 5 % B. The injection volume was 5 µL and the auto-sampler temperature 

was maintained at 8 °C. The QTOF system was operated in ESI negative with multiple 

reaction monitoring scan mode in high resolution (MRM-HR).

High resolution data were acquired using a multiple reaction monitoring (MRMHR) 

workflow consisting of a TOF-MS survey (100–850 Da for 100 ms of Accumulation 

time (AT); Declustering Potential (DP) was set to –80 V and a Collision Energy (CE) to 

–10 V), and MRMHR scanning mode was used for accurate quantification of product ion   

transitions. The Guided MRMHR tool from SCIEX was used for the optimization of high 

resolution transitions (Fig. S2). The source conditions for the system were optimized as 

follow. Ion Spray Voltage was set to –4500 V; Source temperature and nitrogen gas 

flows (Atomizing gas, GS1 and Auxiliary gas, GS2) were set to 550 °C and 50 psi, 



respectively. Curtain gas was set to 30 psi, Declustering Potential (DP) was set to –80 

V.

Qualitative and quantitative analyses were performed using SCIEX OS™ Software 

version 1.4 (Sciex, Redwood City, CA, U.S.). According to SANTE European 

Commission guideline for pesticides (SANTE/11813/2017), two ions with mass 

accuracy equal or mass difference lower than 5 ppm are necessary for confirming a 

positive finding for the identification in HR-QToF-MS analysis. In the present study, 

two high resolution ions were used for each compound, the most abundant product ion 

for the quantification and the precursor ion for the confirmation. Any drift in the mass 

accuracy of the SCIEX Q-TOF was automatically corrected and maintained throughout 

batch acquisition by infusion of a cluster of trifluoroacetic acid (5(TFA-Na)+TFA-, m/z 

792.85963) for negative mode. Calibration was running every 5 samples during the 

batch acquisition making use of the Calibrant Delivery System (CDS). 

Chemical analyses on muscle

Ethyl acetate was the solvent used for gas chromatography-ECD and FID from Merck 

(Darmstadt, Germany). QuEChERS Final Polish and QuEChERS dSPE EMR-Lipid 

were from Agilent (Santa Clara, CA, USA). Samples were freeze dried on a Telstar 

LyoAlfa 6 freeze dryer during 24 h at –80 ºC and 0.1 mbar.  

A standard stock solution of commercial Regent800WG (80% fipronil) at 1000 

μg/mL in ethyl acetate was prepared, step-wise diluted to 100 ng/mL and used to spike 

QuEChERS to assess recovery throughout the analytical procedure. Six QuEChERS 

Final Polish were spiked with 0, 50, 100, 150, 200 and 250 μL of the 100 ng/mL 

fipronil standard solution, respectively. A 6 points calibration curve ranging from 100 to 

1000 ng/mL was prepared from the 1 μg/mL fipronil standard solution with ethyl 



acetate as a solvent. Standard solutions of 100, 200, 300, 400, 500 and 1000 ng/mL 

were used to calibrate the Gas Chromatography-Mass Spectrometry (GC/MS) 

instrument before the samples and spiked tubes analysis. Sample preparation was based 

on the QuEChERS method with ethyl acetate. 0.5 g of freeze dried fish muscle sample 

were weighed in a QuEChERS Final Polish tube and 10 mL ethyl acetate were added. 

The tube was hand-shaken until total solid suspension. QuEChERS Final Polish tubes 

were then vortexed for 1 minute and centrifuged for 10 minutes at 5,000 rpm, tap 

covered. 6 mL supernatant were transferred to a QuEChERS dSPE EMR-Lipid tube, 

vortexed for 2 minutes and centrifuged 5 minutes at 5,000 rpm at room temperature. 4 

mL supernatant were evaporated to dryness under a gentle stream of nitrogen.  Extracts 

were solved in 50 µL ethyl acetate, 2 μL to be injected in the GC/MS instrument. A 

GC/MS equipment QP 2010 from Shimadzu (Kyoto, Japan) was used to instrumentally 

determine fipronil in muscle samples. Analyser was used in electronic ionization mode. 

Column used was a SPB-1 Supelco (Bellefonte, PA, USA) 30 m long, 0.25 mm d.i. and 

0.25 μm film thickness. Injector temperature was 260 ºC. The GC oven temperature 

program was as follows: 60 ºC held for 1 min, ramped at 20 ºC/min to 160 ºC held for 1 

min, then ramped at 3 ºC/min to 200 ºC held for 2 min, followed by 4 ºC/min to 250 ºC 

and held for 4 min. MSD transfer line was at 250 ºC, and ion source was set at 200 ºC. 

Electron impact energy was –70 eV, solvent delay was 5 min and detector gain was 2.0 

kV. Carrier gas was helium at a flow of 1.00 mL/min. Acquisition mode was SIM 

(Selected ion monitoring) for m/z 367, 369, 213, 255 (fipronil most abundant ions in the 

scan mass spectrum). For method evaluation, a blank and 5 standard spiked tubes were 

run in parallel to the set of samples. 

Data analyses



Prior to statistical treatment, Kolmogorov-Smirnov test was used for testing normality 

and Levene´s test for checking homoscedasticity of all variables. The presence of 

outliers was evaluated and some variables were log- or square-root transformed to 

comply with normality and homoscedasticity requirements. Relationships among 

biological variables (SL, BW, HSI, GSI, CF, visceral fat and sex) and between them and 

biochemical variables were tested by Pearson’ or Spearman’ rank correlations (in the 

case of continuous variables) and by Student’s t-tests or Mann-Whitney U-tests (for 

sex-related differences). 

Differences in the level of activity of digestive enzymes between anterior and posterior 

parts of the digestive tract were tested for each experimental temperature using the 

Wilcoxon pairwise test with repeated measurements using PAST 3.

Possible effects of treatment duration (four categories: t0, t7, t14 and t21) and 

temperature (two categories: 13 ºC and 16 ºC) on fish biological and biochemical 

variables were tested by general linear models (GLMs) or generalized linear models 

(GZMs). Fish biological variables that had previously displayed significant correlations 

with biomarkers were incorporated as covariates in GLMs/GZMs to test possible 

interactions with the two factors assessed (i.e. treatment duration and temperature). 

Afterwards, Student’s t-test/Mann-Whitney U-test and one-way ANOVA/Kruskal-

Wallis tests were performed to determine differences between/among categories of 

factors temperature and time, respectively, when a significant effect was detected in 

previous GLMs/GZMs.

Pearson’ or Spearman’ rank correlations were used to explore relationships among 

activities of CYPs in liver microsomal fraction, among antioxidant enzymes in liver 

cytosolic fraction and between both. Associations among metabolites quantified within 

plasma and mucus, and between metabolites of both matrices were assessed in the same 



way. Significant associations among digestive enzymes activities were assessed by 

means of a Spearman’ rank correlations in anterior and posterior portions of digestive 

tract.

A permutation multivariate analysis (PERMANOVA) was carried out using individual 

fish as replicate samples in order to assess a global biochemical response to the factors 

temperature and treatment duration (i.e. exposure to fipronil). Permutation p-values 

were obtained under unrestricted permutation of raw data (9999 permutations). Finally, 

a principal component analysis (PCA) was performed and plotted in two dimensions. 

Pearson’s correlation between each variable and PCA axes was calculated. The two 

multivariate analyses were applied on a Euclidean distance-based matrix derived from 

normalized data after square-root transformation. For PCA, data were grouped 

according to combination of temperature with treatment durations. All biomarkers 

included in the present work were considered in these analyses, with the exception of 

digestive enzymes, plasma ammonia content and ECOD activity, for which an excessive 

number of missing values occurred.

Student t-test, Mann-Whitney U-test, Kruskal-Wallis test, one-way ANOVA, GLM, 

GZM and correlation tests were run in IBM SPSS (Statistics for Windows, Version 

20.0) or Statistica 6 (StatSoft®, Richmond, USA). Wilcoxon pairwise tests with repeated 

measurements were performed using PAST 3. Multivariate analyses were carried out 

using PRIMER PERMANOVA+ v6 (Anderson et al., 2008). 

Results

Chemical analyses on bile

Levels of fipronil-desulfinyl quanified in bile were below the limit of quantitation 

(LOQ) and thus not reported.  MS/MS conditions of the target compounds were 



optimized in negative HR ESI mode. The optimal MRM-HR parameters including 

precursor ions, product ions, DP, and CE are shown in Table S7. Linearity was 

determined using the peak areas of the product ions obtained from the MRM-HR 

acquisition. Results are provided in Table S8. The standard calibration curves consisted 

of 9 concentration levels (0.05-200/ng mL) and were set up by plotting the target 

analyte concentrations against the peak areas. However, the TOF detector responses 

were linear from 0.05 to 10 ng/mL (R2 < 0.998). A recovery experiment was performed 

to determine the accuracy and precision of the extraction method fortifying 3 blank 

samples at 10 ng/mL (Fig. S1). The average recoveries of fipronil and its metabolites 

ranged from 93.3% to 109.3% with a relative standard deviation (RSD) of 1.7–3.8% (n 

= 3) (Table S8). The limits of detection (LODs) were calculated at 3 times the signal to 

noise ratio generated from all the samples, and the LOQs were taken as the minimum 

concentration of a compound that can be measured by the instrument; both are reported 

in Table S8.

Chemical analysis on muscle

Regarding method evaluation, ion m/z 367 was the base peak in fipronil mass spectrum, 

but an interference with this m/z ion was detected in blank samples. Recoveries from the 

spiked tubes calculated using m/z 367 as quantitation ion were inconsistent and over 100 

% in some cases. In order to disregard interferences, quantitation ion was changed to 

m/z 369. In this case, recoveries were low but consistent: mean 29.7 %, standard 

deviation 2.7 % (n = 4). An outlier result was disregarded. Sample concentrations were 

then corrected by this recovery mean result. 
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Tables

Table S1. Mean ± standard error of the mean for metabolites quantified in plasma and skin mucus, and plasmatic osmolality, of seabass exposed 
to Fipronil under two temperature regimes before exposure (t0), after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day 
depuration period following exposure (t21). Biomarker units can be found in the corresponding sections throughout the text. 

Tissue Biomarker 13 ºC     16 ºC    
  t0 t7 t14 t21  t0 t7 t14 t21
Plasma Glucose 11.04 ± 1.42 19.04 ± 2.60 15.23 ± 1.91 21.23 ± 2.22 11.86 ± 1.46 19.19 ± 1.99 15.66 ± 0.93 15.58 ± 1.32

Lactate 5.27 ± 0.55 6.36 ± 1.11 6.50 ± 0.45 7.81 ± 0.88 5.83 ± 0.41 7.93 ± 0.71 6.60 ± 0.44 7.55 ± 0.54
Osmolality 370.50 ± 4.69 390.86 ± 8.03 383.29 ± 4.92 392.63 ± 3.98 374.57 ± 5.61 397.29 ± 4.92 395.00 ± 7.15 400.50 ± 9.12

Mucus Glucose 1.17 ± 0.22 1.10 ± 0.14 0.88 ± 0.10 0.57 ± 0.07 1.09 ± 0.09 1.10 ± 0.15 1.24 ± 0.11 0.60 ± 0.09
Lactate 0.74 ± 0.13 0.71 ± 0.16 0.76 ± 0.11 0.42 ± 0.08 0.64 ± 0.09 1.08 ± 0.12 1.11 ± 0.14 0.49 ± 0.09
Glucose/protein 6.15 ± 1.67 6.39 ± 0.98 3.31 ± 0.47 5.99 ± 1.42 4.02 ± 0.61 4.97 ± 0.75 4.64 ± 0.64 4.11 ± 0.54
Lactate/protein 4.00 ± 0.92 3.57 ± 0.65 2.70 ± 0.36 3.30 ± 0.56 2.28 ± 0.24 4.59 ± 0.37 3.94 ± 0.50 3.10 ± 0.50

 Glucose/lactate 1.61 ± 0.25 1.65 ± 0.21 1.37 ± 0.10 1.95 ± 0.29  1.67 ± 0.16 1.06 ± 0.12 1.22 ± 0.15 1.17 ± 0.11



Table S2. Values of statistical parameters obtained when testing relationships between biomarkers 
and fish biological variables (SL: standard length, TW: total weigth, CF: condition factor, HSI: 
hepatosomatic index and GSI: gonadosomatic index). Pearson’s or Spearman correlation 
coefficients are provided for bivariate correlations (in the case of continuous variables) and t 
statistic for Student's t-test (for differences between sexes). Abbreviations an units for enzymatic 
markers can be found in the corresponding sections throughout the text. * p<0.05; **p<0.01; *** 
p<0.001; – non-significant result. n = 64 (except for digestive biomarkers, for which n = 48).

Tissue Biomarker SL TW CF HSI GSI
Visceral fat 
weight Sex

Muscle LPO  –  –  –  –  –  –  –
Liver - S9 LDH  –  –  –  –  –  –  –

LPO 0.286*  –  –  –  –  –  –
Liver - cytosol GR -0.336*    -0.494*** -0.299*  –  – -0.333**  –

t-GPX  –  –  –  –  –  –  –
CAT  –  –  –  –  –  –  –
GST 0.308* 0.423** 0.305*  –  – 0.320* 2.707**
EROD  –  –  – -0.484***  – -0.273*  –
BROD  –  –  – -0.324**  –  –  –
MROD  –  –  – -0.587***  – -0.293*  –
BFCOD  –  –  –  –  –  –  –

Liver -microsomes

CECOD  –  –  – -0.262*  –  –  –
ECOD  –  – -0.292* -0.651***  –  –  –
UDPGT  –  – 0.391** 0.440***  – 0.285*  –
NADPH-Cyt C reductase  –  –  –  –  – 0.287*  –
NADH-Cyt C reductase  –  –  –  – -0.257*  –  –
NADH-Ferricyanide reductase  –  –  –  –  –  –  –

Kidney Na+/K+-ATPase  –  –  –  –  –  –  –
Plasma Glucose 0.315* 0.430** 0.357** 0.413**  – 0.375**  –

Lactate  – 0.320* 0.511*** 0.406**  – 0.300*  –
Osmolality  –  –  –  –  –  –  –
Ammonia  –  –  – 0.312*  – 0.336*  –
Lysozyme 0.287* 0.438** 0.270* 0.297* 0.290* 0.434**  –

Skin mucus Glucose  –  – 0.268*  –  –  –  –
Lactate  –  – 0.358**  –  – 0.305*  –
Glucose/protein 0.281* 0.255*  –  –  –  –  –
Lactate/protein  – 0.293*  –  –  –  –  –
Glucose/lactate  –  –  –  –  –  –  –
Trypsin  –  –  –  –  –  –  –
Chymotrypsin  –  –  –  –  – -0.323*  –
Lipase  –  –  –  –  –  –  –
Esterases  –  – 0.342* 0.427**  –  –  –
Amylase  –  –  –  –  –  –  –
Alkaline phosphatase  –  – -0.453** -0.496**  –  –  –
Aminopeptidase  –  –  – 0.318*  –  –  –

Digestive tract - 
anterior

Maltase  –  –  –  –  –  –  –
Trypsin  –  –  –  –  –  –  –
Chymotrypsin  –  –  – 0.336*  –  –  –
Lipase 0.304*  –  –  –  –  –  –
Esterases  –  –  –  –  –  –  –

Digestive tract - 
posterior

Amylase  –  –  –  –  –  –  –
Alkaline phosphatase  – -0.438** -0.313* -0.475**  – -0.394**  –
Aminopeptidase  –  –  –  –  –  –  –

 Maltase  –  –  –  –  –  –  –



Table S3. Mean ± standard error of the mean for enzymatic markers quantified in muscle, liver, kidney and plasma of seabass exposed to Fipronil 
under two temperature regimes before exposure (t0), after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day depuration period 
following exposure (t21). Abbreviations and units for biomarkers can be found in the corresponding sections throughout the text.

Tissue Biomarker 13 ºC     16 ºC    
  t0 t7 t14 t21  t0 t7 t14 t21
Plasma Lysozyme 7.14 ± 0.38 11.60 ± 1.25 8.11 ± 0.70 10.73 ± 1.02  6.24 ± 1.45 9.03 ± 2.78 12.36 ± 0.50 13.24 ± 2.53
Muscle LPO 2.99 ± 0.74 3.03 ± 0.46 5.57 ± 1.37 4.12 ± 0.72 3.14 ± 1.06 6.21 ± 1.09 5.30 ± 0.70 5.41 ± 1.88
Liver (S9) LDH 15.11 ± 0.90 14.85 ± 1.11 16.25 ± 1.17 16.23 ± 1.00 15.48 ± 1.48 14.58 ± 1.42 15.61 ± 1.37 15.49 ± 1.38

LPO 10.10 ± 1.74 15.81 ± 1.72 14.12 ± 1.57 16.82 ± 2.18 10.15 ± 1.45 13.69 ± 1.21 13.02 ± 1.62 17.35 ± 1.96
Liver (cytosol) GR 7.48 ± 1.02 6.03 ± 0.86 6.85 ± 0.68 7.98 ± 0.84 7.39 ± 0.63 7.20 ± 0.94 5.56 ± 1.05 7.84 ± 1.17

t-GPX 7.11 ± 0.37 6.60 ± 0.40 6.70 ± 0.33 7.16 ± 0.54 8.12 ± 0.40 6.64 ± 0.38 7.13 ± 0.52 7.97 ± 0.31
CAT 103.68 ± 12.47 90.70 ± 8.68 92.85 ± 11.35 63.84 ± 10.27 96.70 ± 7.19 108.92 ± 8.75 111.12 ± 6.28 76.88 ± 11.33
GST 36.94 ± 1.73 39.49 ± 1.51 42.83 ± 3.52 43.26 ± 2.71 39.44 ± 2.62 36.45 ± 2.43 48.27 ± 2.52 51.05 ± 5.80

Liver (microsomes) EROD 22.04 ± 2.09 18.75 ± 2.98 15.48 ± 1.38 15.33 ± 1.31 25.35 ± 3.86 24.36 ± 4.37 17.01 ± 3.23 18.14 ± 2.56
BROD 0.69 ± 0.06 0.66 ± 0.07 0.54 ± 0.05 0.55 ± 0.07 0.76 ± 0.11 0.63 ± 0.07 0.49 ± 0.08 0.47 ± 0.07
MROD 4.70 ± 0.32 3.74 ± 0.51 2.80 ± 0.34 2.34 ± 0.18 5.00 ± 0.71 4.17 ± 0.64 2.91 ± 0.60 3.40 ± 0.78
BFCOD 62.91 ± 5.23 88.69 ± 13.95 94.29 ± 11.36 98.97 ± 22.34 87.23 ± 19.95 65.81 ± 10.38 68.65 ± 12.07 64.05 ± 9.80
CECOD 31.06 ± 5.11 30.65 ± 4.68 19.14 ± 1.63 21.66 ± 2.09 33.45 ± 5.34 29.98 ± 3.73 23.44 ± 4.39 24.80 ± 2.31
ECOD 9.42 ± 1.47 8.51 ± 1.66 3.99 ± 1.05 3.35 ± 0.66 10.03 ± 3.17 6.34 ± 1.40 6.53 ± 3.52 7.18 ± 1.97
UDPGT 0.78 ± 0.09 0.76 ± 0.07 0.77 ± 0.14 0.78 ± 0.08 0.81 ± 0.13 0.75 ± 0.09 0.77 ± 0.08 0.82 ± 0.08
NADPH Cyt C reductase 19.42 ± 0.98 19.06 ± 1.08 22.14 ± 1.57 22.98 ± 2.24 18.04 ± 1.49 17.07 ± 1.22 18.99 ± 1.11 18.94 ± 1.44
NADH Cyt C reductase 31.94 ± 2.33 23.58 ± 4.11 22.79 ± 3.36 23.12 ± 3.84 31.97 ± 5.34 28.69 ± 3.80 26.15 ± 4.86 29.02 ± 3.60
NADH Ferricyanide reductase 1079 ± 93 1145 ± 111 1167 ± 103 1095 ± 66 1184 ± 107 1006 ± 95 1208 ± 108 1184 ± 75

Kidney Na+/K+-ATPase 1.94 ± 0.51 1.17 ± 0.14 1.39 ± 0.27 1.40 ± 0.13 1.10 ± 0.17 0.91 ± 0.11 1.09 ± 0.22 1.35 ± 0.17



Table S4. Mean ± standard error of the mean for enzymatic markers quantified in anterior and posterior parts of the digestive tract of seabass 
exposed to Fipronil under two temperature regimes before exposure (t0), after 14 days of exposure (t14) and after a 7-day depuration period 
following exposure (t21). Units for biomarkers can be found in the corresponding sections throughout the text.

Tissue Fraction  13 ºC    16 ºC   
   t0 t14 t21  t0 t14 t21

Pancreatic Trypsin 51.00 ± 10.56 60.80 ± 2.25 48.80 ± 1.25 49.90 ± 7.52 61.20 ± 2.63 45.60 ± 3.07
Chymotrypsin 104.70 ± 33.26 94.70 ± 32.25 80.50 ± 10.13 95.40 ± 33.75 69.00 ± 24.63 61.60 ± 15.87
Lipase 42.70 ± 11.33 23.50 ± 2.48 21.80 ± 3.23 27.30 ± 3.52 34.10 ± 4.57 21.50 ± 3.73
Alpha-amylase 7.70 ± 1.33 4.40 ± 0.92 4.50 ± 1.54 5.50 ± 0.41 5.30 ± 0.92 5.70 ± 1.26
Non-specific esterases 523.70 ± 55.64 517.70 ± 77.30 457.90 ± 34.76 541.50 ± 32.53 564.40 ± 35.19 415.60 ± 38.22

Brush border Alkaline-phosphatase 918.00 ± 309.79 966.60 ± 233.57 1,023.40 ± 147.92 1,026.40 ± 163.29 742.40 ± 116.31 1,177.40 ± 284.87
Aminopeptidase 148.10 ± 24.04 218.80 ± 33.60 220.50 ± 22.80 177.80 ± 25.03 117.30 ± 22.32 149.20 ± 22.70

Digestive tract 
anterior

Maltase 42.90 ± 8.63 250.10 ± 50.02 242.30 ± 24.02 43.50 ± 3.30 127.10 ± 21.62 214.00 ± 39.23
Pancreatic Trypsin 57.10 ± 12.98 47.70 ± 2.55 47.80 ± 1.78 64.40 ± 10.03 52.10 ± 3.38 45.70 ± 3.22

Chymotrypsin 117.30 ± 39.39 231.40 ± 84.12 176.10 ± 59.25 340.30 ± 142.84 180.20 ± 85.15 332.30 ± 145.94
Lipase 30.00 ± 5.69 30.80 ± 3.94 30.40 ± 6.06 27.30 ± 8.46 28.60 ± 3.71 24.90 ± 3.82
Alpha-amylase 3.10 ± 0.44 4.90 ± 0.79 9.70 ± 2.48 3.40 ± 0.40 5.80 ± 1.15 6.20 ± 1.52
Non-specific esterases 587.70 ± 56.37 477.20 ± 43.85 519.70 ± 27.89 481.00 ± 12.44 553.70 ± 58.99 447.40 ± 43.69

Brush border Alkaline-phosphatase 626.70 ± 193.56 826.20 ± 175.18 749.70 ± 97.03 776.90 ± 95.46 540.80 ± 109.19 745.00 ± 176.76
Aminopeptidase 97.20 ± 6.81 159.30 ± 21.09 178.90 ± 27.34 154.20 ± 19.76 93.50 ± 11.08 104.70 ± 15.78

Digestive tract 
posterior
 

 Maltase 26.20 ± 2.92 158.20 ± 23.95 150.50 ± 25.26  32.80 ± 2.44 93.60 ± 11.88 116.30 ± 17.48



Table S5. Values of Pearson's coefficient for bivariate correlations performed among the activities of digestive enzymes in the anterior part of the 
digestive tract. * p<0.05; **p<0.01; *** p<0.001. – non-significant result.

Table S6. Values of Pearson's coefficient for bivariate correlations performed among the activities of digestive enzymes in the posterior part of the 
digestive tract. * p<0.05; **p<0.01; *** p<0.001. – non-significant result.

 Trypsin Chymotrypsin Lipase Non-specific esterases
Alpha-
amylase Alkaline phosphatase Aminopeptidase Maltase

Trypsin         
Chymotrypsin  –  
Lipase  –  –  
Non-specific esterases  –  – 0.537***  
Alpha-amylase  –  – 0.411** 0.326*  
Alkaline phosphatase  –  –  – -0.362*  –  
Aminopeptidase  –  –  –  –  – 0.343*  
Maltase  –  –  –  – -0,420** 0.482** 0.516***  

 Trypsin Chymotrypsin Lipase Non-specific esterases
Alpha-
amylase Alkaline phosphatase Aminopeptidase Maltase

Trypsin         
Chymotrypsin  –  
Lipase  –  –  
Non-specific esterases  –  – 0.550***  
Alpha-amylase  – 0.351*  –  –  
Alkaline phosphatase  – -0.331*  –  –  –  
Aminopeptidase  –  –  –  –  – 0.593***  
Maltase  –  –  –  –  – 0.504*** 0.573***  



Table S7. Parameters for analysis of fipronil and its metabolites in bile: exact mass, 
transitions and retention time obtained by UPLC-HR-QToF-MS.

Compound ID Precursor 
ion (m/z)

Fragment 
ion (m/z)

Retention 
time (min)

Accumulation 
time (sec)

Declustering 
potential (V)

Collision 
energy (V)

Fipronil 434.9309 329.96 2.76 0.05 -25 -20
Fipronil Sulfone 450.9258 414.9508 2.84 0.05 -25 -20
Fipronil-
desulfinyl

386.9639 350.9889 2.72 0.05 -100 -20

Fipronil-(13C3, 
cyano-13C)

438.9317 333.9745 2.75 0.05 -25 -20

Table S8. Linear regression parameters of the calibration curve of fipronil and its 
metabolites in bile.

Compound Linearity 
range (ng/mL)

LOD 
(ng/mL)

LOQ 
(ng/mL)

R2 Accuracy 
(%)

Fipronil 0.05-10 0.01 0.05 0.99963 109.3 (2.4)
Fip. Sulfone 0.05-10 0.01 0.05 0.99985 93.3 (1.7)
Fip. Desulfynil 0.05-10 0.01 0.05 0.99844 93.8 (3.8)



Figure captions

Figure S1. Extracted Ion Chromatograms (XIC), TOF/MS and MS/MS spectra of fipronil 

(A) and its metabolites, fipronil sulfone (B) and fipronil-desulfinyl (C) in fortified samples 

spiked at 10 ng/ml.

Figure S2. Extracted Ion Chromatograms (XIC), TOF/MS and MS/MS spectra of fipronil 

metabolites in Sample #13 after 21 days. A, fipronil sulfone and B, fipronil-desulfinyl.
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