

This document is a postprint version of an article published in Aquatic Toxicology© Elsevier after peer review. To access the final edited and published work see <u>https://doi.org/10.1016/j.aquatox.2019.105378</u>

Document downloaded from:

1	Multibiomarker approach to fipronil exposure in the fish <i>Dicentrarchus labrax</i>
2	under two temperature regimes
3	Sara Dallarés ^a , Priscila Dourado ^b , Ignasi Sanahuja ^c , Mikhail Solovyev ^{d,e} , Enric Gisbert ^f ,
4	Nicola Montemurro ^g , Amparo Torreblanca ^h , Mercedes Blázquez ^a , Montserrat Solé ^{a,*}
5	^a Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37–49, 08003
6	Barcelona, Spain
7	^b Institute of Biosciences, Language and Exact Sciences of São José do Rio Preto,
8	Paulist State University "Júlio de Mesquita Filho", Rua Cristóvão Colombo - de
9	1897/1898 ao fim, Jardim Nazareth 15054000 São José do Rio Preto, SP, Brasil
10	^c Department of Cell Biology, Physiology and Immunology, Faculty of Biology,
11	University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
12	^d Institute of Systematics and Ecology of Animals, Siberian Branch of Russian
13	Academy of Sciences, Frunze st., 11, 630091 Novosibirsk, Russia
14	^e Tomsk State University, 36 Lenin Ave, 634050 Tomsk, Russia
15	^f Institute of Research and Technology Food and Agriculture (IRTA), Aquaculture
16	Program, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
17	^g Water and Soil Quality Research Group (IDAEA-CSIC), Department of
18	Environmental Chemistry, C/Jordi Girona 18-26, 08034 Barcelona, Spain
19	^h Department of Functional Biology and Physical Anthropology, University of València,
20	C/Dr. Moliner 50, Burjassot 46100 Valencia, Spain
21	
22	
23	*Corresponding author: E-mail address: msole@icm.csic.es Tel: +34 932309500
24	
25	
	1

27 Abstract

Fipronil is a phenylpyrazole insecticide widely used to control pests in agriculture even though evidence of harmful side effects in non-target species has been reported. A comprehensive study on the effects of dietary administration of Regent®800WG (80% fipronil) in European sea bass juveniles was carried out under two temperature regimes: a) natural conditions, and b) 3 °C above the natural temperature (an increase predicted for the NW Mediterranean by the end of this century). Fipronil was added to the fish food (10 mg fipronil /Kg feed) and the effects were studied at several time points including right before administration, 7 and 14 days after daily fipronil feed and one-week after the insecticide withdrawal from the diet (depuration period). A wide array of physiological and metabolic biomarkers including feeding rate, general condition indices, plasma and epidermal mucus metabolites, immune response, osmoregulation, detoxification and oxidative-stress markers and digestive enzymes were assessed. General linear models and principal component analyses indicated that regardless of water temperature, fipronil resulted in a significant alteration of several of the above listed biomarkers. Among them, glucose and lactate levels increased in plasma and decreased in epidermal mucus as indicators of a stress response. Similarly, a depletion in catalase activity and higher lipid peroxidation in liver of fipronil-exposed fish were also indicative of an oxidative-stress condition. Fipronil induced a time dependent inhibition of Cytochrome P450-related activities and an inhibition of phase II glutathione-S-transferase. Moreover, fipronil administration was able to reduce the hypo-osmoregulatory capability as shown by the increase of plasmatic osmolality and altered several digestive enzymes including trypsin, lipase, alpha amylase and maltase. Finally, analyses in bile and muscle confirmed the rapid clearance of fipronil but the persistence of the metabolite fipronil-sulfone in bile even after the 7-day depuration

119		
120		
121	50	naried. Altegrather, the regults reveal a notable impact of this compound on the
122	52	period. Anogether, the results reveal a notable impact of this compound on the
123	5.0	
124	53	physiological condition of the European sea bass. The results should be considered in
125		
126	54	future environmental risk assessment studies since fipronil could be hazardous to fish
127		
128	55	species, particularly those inhabiting estuarine ecosystems exposed to the discharge of
129		
130	56	agriculture runoffs where this pesticide is mainly used.
131		
132	57	
133		
134	58	Keywords . fipronil sea bass biomarkers CYP metabolism oxidative stress climate
135		
136	59	change
137	57	enunge.
138	40	
139	00	
140		
141	61	
142		
143	62	
144		
145	63	
146		
147	64	
148		
149	65	
150		
151	66	
152		
153	67	
154	0,	
155	68	
156	00	
157	40	
158	09	
159	70	
160	70	
161		
162	71	
163		
164	72	
165		
166	73	
167		
168	74	
169		
170	75	
171		
172	76	
173	-	
174		3
175		
176		
177		

1. Introduction

The phenylpyrazole fipronil (5-amino-1-[2.6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfonyl)pyrazole-3-carbonitrile) has been classified as moderately hazardous (Class II) by the World Health Organisation (WHO, 2009). It is one of the most used broad-spectrum insecticides in crops worldwide, being even effective against pests resistant to pyrethroids, organophosphates and carbamate insecticides (Simon-Delso et al., 2015). In Europe, fipronil is mainly used in crops of maize, rice and in sunflower seed treatment. However, its use in agriculture was severely restricted by the European Union in 2013 (Comission Implementing Regulation (EU) Nº 781/2013) due to its high acute toxicity for honeybees (European Food Safety Authority EFSA, 2013). There is strong evidence that soils, aquatic systems and plants in agricultural environments and their neighbouring areas are contaminated with fipronil and other fipronil-related substances (US Environmental Protection Agency, 1996; Bonmatin et al., 2015). Nevertheless, Spain, the largest fipronil end-user on sunflower crops in Europe, is reluctant to adhere to the European directive alluding to the existence few on-site studies evidencing its toxicity. Fipronil and its main metabolites are toxic to non-target aquatic species (Schlenk et al., 2001; Stefani Margarido et al., 2013; Gripp et al., 2017). This compound exerts its insecticidal activity by binding to the gamma-aminobutyric acid (GABA) receptors and acting as a non-competitive blocker of GABA-gated chloride channels in the central

97 nervous system, inducing neuronal hyperexcitation, paralysis and death (Simon-Delso et
98 al., 2015; Huang et al., 2019). Although fipronil is generally more toxic to invertebrates
99 than to vertebrates, due to differential affinity towards target receptors, a recent study on
100 bighead carp (*Hypophthalmichthys nobilis*) showed that the affinity of this chemical to

101 fish GABA receptors is similar to that found in insects, suggesting that it could also be

102	highly toxic to fish (Zhang et al., 2018). Besides this, its main degradation products,
103	which include fipronil-sulfone, fipronil-sulfide and fipronil-desulfinyl, are less specific
104	than the parent compound, display higher insecticidal activity and also account for
105	toxicity in vertebrates (Hainzl et al., 1998; Zhao et al., 2005; Lu et al., 2010; Gupta,
106	2014; Gripp et al., 2017).
107	Human activities, including the input of pesticides into the environment, have been
108	considered as the main cause for the present world climate change scenario (CC)
109	(Hansen et al., 2006). Current consensus alerts that significant temperature increases,
110	acidification and greater salinity fluctuations of marine water bodies will occur around
111	the globe in the upcoming decades (IPCC, 2014). These changes can exert a direct
112	impact on the physiology of marine poikilotherms (Makrinos and Bowden, 2016;
113	Boltana et al., 2017; Navarro et al., 2019). On the other hand, indirect effects caused by
114	CC in marine fish are still poorly known, especially those related to their potential
115	interaction with foreign chemicals (Schiedek et al., 2007; Hooper et al., 2013). For
116	instance, changes in physical conditions and chemical exposure can act synergistically
117	magnifying the consequences of such exposures in aquatic organisms, since the former
118	can imply changes in the availability and action of chemicals (Sokolova and Lannig,
119	2008; Jacquin et al., 2019). The Mediterranean region is especially sensitive to the
120	alterations induced by CC due to its particular characteristics, such as small size,
121	relatively shallow average water depth, oligotrophy and high biological diversity,
122	among others (Calvo et al., 2011).
123	The European sea bass, Dicentrarchus labrax (Linnaeus, 1758) (FAO, 2005) is one of
124	the most appreciated cultured fish species in the Mediterranean. Concerns are raised
125	regarding its physiology and reproduction that could be compromised by the
126	temperature increases predicted in a CC scenario (Almeida et al., 2015). Specifically, 5
	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 120 121 122 123 124

changes in water temperature are known to adversely affect a wide number of biological functions in this species including sex ratios, reproduction, growth, immune response, osmoregulatory capacity, xenobiotic biotransformation and antioxidant defences, among others, making the fish more vulnerable to additional stressors (Almeida et al., 2015; Samaras et al., 2018). Furthermore, metabolic alterations in muscle, liver and brain in response to a 4 °C increase were enhanced after exposure to methylmercury in the European sea bass, raising the possibility for a synergistic effect between both stressors (Maulvault et al., 2017). To the best of our knowledge, no studies have assessed potential toxic effects of fipronil in D. labrax. However, this insecticide is known to act as endocrine disrupter in several other fish (Mnif et al., 2011; Bencic et al., 2013; Sun et al., 2014), to induce oxidative-stress due to reactive oxygen species (ROS) generation, and to interfere with a number of isoenzymes of the cytochrome P450 (CYPs) family, a main hepatic biotransformation route of this compound in different vertebrates (Wang et al., 2016). The aim of this study was to evaluate bioaccumulation, biotransformation and alterations in key physiological pathways of European sea bass after fipronil exposure in an environmentally-realistic scenario of temperature increase predicted for the NW Mediterranean region. The effects of fipronil dietary administration were assessed using a wide array of biomarkers encompassing several physiological and detoxification endpoints in different tissues and in two conservative matrices (i.e. plasma and skin mucus) in an effort to use them as non-lethal indicators of the effects of this pesticide in animal experimentation. 2. Material and Methods 2.1. Experimental design

356		
357 358	152	Juvenile European sea bass (8 months old) were obtained from the Institute of Research
359 360	153	and Technology Food and Agriculture (IRTA, Sant Carles de la Ràpita, Spain). Fish
361 362	154	were transported and maintained at the Experimental Aquaria facilities (ZAE) of the
363 364 365	155	Institute of Marine Sciences (ICM-CSIC, Barcelona, Spain). Prior to the experiment,
366 367	156	fish were acclimated for a two-week period in a 2,500 L round fiberglass tank
368 369	157	containing filtered sea-water (sterilized sand filter 50 μm) under natural conditions of
370 371	158	temperature and with a water full-renovation rate of 24 times per day. Fish were fed
372 373	159	daily ad libitum with commercial pellets (L-4 Optibass 2P, Skretting, Spain). After an
374 375	160	initial two-week acclimation to lab conditions, fish were randomly assigned to four 600
376 377 270	161	L round fiberglass tanks (19-20 individuals per tank). Two of them were reared at
378 379 380	162	natural water temperature (T \approx 13 °C) and the other two at 3 °C above the natural
381 382	163	temperature (T \approx 16 °C). The new experimental temperature was gradually attained at
383 384	164	an increasing rate of 1 °C per day and fish were acclimated to these new conditions for
385 386	165	two additional weeks. Then, fish were fed a diet containing Regent®800WG (80%
387 388	166	fipronil) at a concentration of active ingredient of 10 mg fipronil/Kg feed, which was
389 390	167	prepared following the alcohol evaporation method adapted for sea bass (Blázquez et
391 392	168	al., 1995; Blanco et al., 2016). Briefly, a monolayer of pelleted dry feed was carefully
393 394	169	sprayed with the insecticide dissolved in 15 ml ethanol and the solvent was allowed to
395 396 397	170	evaporate completely at room temperature and kept stored at 4 °C until used. Fish were
398 399	171	sampled just before the start of the experimental diet (t0) and considered as control, and
400 401	172	after 7 (t7), and 14 (t14) days of fipronil administration. At this point (t14), fipronil
402 403	173	treatment finished and fish were fed with non-spiked commercial feed (depuration
404 405	174	period) for an extra week completing 21 days from the start of the experiment (t21).
406 407	175	Throughout the experiment, total feed consumption was quantified in each tank by
408 409	176	initially weighing the amount before manual feeding and, when fish stopped feeding,
410		7

414		
415		
416	177	weighing the remaining amount; consumption was then calculated by weight difference.
417		
418	178	During the experiment, values (mean \pm standard deviation) of physical water parameters
419		
421	179	were: Temperature = 13.37 ± 0.23 for the groups reared at natural temperature and
422		
423	180	16.55 ± 0.44 °C for those reared at +3 °C. Other water parameters ranged as follows:
424		
425	181	dissolved $O_2 = 6.66 \pm 0.32$ and 6.59 ± 0.47 mg/L (81% and 85% saturation,
426		
427	182	respectively); pH = 7.73 ± 0.35 and 7.64 ± 0.31 ; salinity = 37.78 ± 0.12 and 37.93 ± 0.12
428		
429	183	0.27 psu, for the 13 °C and 16 °C groups, respectively. During the experiment, fish were
430		
431	184	reared under natural photoperiod corresponding to 10 h light:14 h dark.
433		
434	185	
435		
436	186	2.2. Fish Sampling
437	107	Fight figh wars compled for each temperature regime (4 figh / replicate teple) just prior
438	107	Eight fish were sampled for each temperature regime (4 fish / repricate tank) just prior
439	100	to the beginning of the exposure period (t_0) after 7 (t_1) and 14 (t_1) days of financial
440	100	to the beginning of the exposure period (to), after $7(t7)$ and $14(t14)$ days of fiptoini
44 I 442	189	administration and after 7 days of deputation (t21) Fish were fasted for 48 h before
443	10,	
444	190	each sampling time. Fish were anesthetized with 0.2 % 2-phenoxyethanol (Sigma-
445		
446	191	Aldrich, St. Louis, MO, USA), measured (standard length: SL) and weighed (total body
447		
448	192	weight: BW). Epidermal mucus was collected on sterile glass slides from the over-
449		
450	193	lateral line in caudal direction with especial care to avoid contamination with blood
452		
453	194	and/or urogenital and intestinal excretions (Fernandez-Alacid et al., 2018). Slides were
454		
455	195	gently wiped along both sides of the animal twice or three times, and mucus was
456	40/	confully locations 1.5 m. Laterilly takes some for any in literial without an end stars data 2000
457	196	carefully kept in a 1.5 mL sterile tube, snap frozen in liquid nitrogen and stored at -80°C
458	107	until use About 1 ml of blood was withdrawn from the coudel vain using honorinized
459	177	until use. About 1 mil of blood was withdrawn nom the caudal vem using heparmized
461	198	syringes and kent on ice until centrifugation. Fish were sacrificed by severing their
462	170	sympos and kept on ree and continugation. This were such need by severing then
463	199	spinal cord eviscerated weighed (EW) and the weight of liver gonads and visceral fat
464		
465	200	recorded. Organs/tissues, including liver, bile, gonads, digestive tract, kidney and a
466		
467		
400 469		R
		о С

portion of axial muscle were collected and immediately frozen in liquid nitrogen and kept at -80 °C for further analyses. Muscle and bile samples were used for chemical analyses while plasma, skin mucus, liver, kidney, digestive tract and also muscle samples were used to assess a comprehensive set of biomarkers reflecting different aspects of sea bass physiology and metabolism (see sections below). Fish were reared and sacrificed according to the Spanish regulations (RDL 53/2013), and the European Directive concerning the protection of vertebrates used for experimental and other scientific purposes (2010/63/EU). Procedures used were approved by the ethics committee of the Local Government of Catalonia and were given the reference FUE-2018-00813667. All steps were aimed to minimise animal suffering. 2.3. Tissue preparation for biochemical analyses 2.3.1. Plasma and skin mucus Plasma was obtained by blood centrifugation (eppendorf 5417R model) at 3,000 ×g for 15 min at 4 °C). Mucus was homogenized using a sterile Teflon implement and centrifuged at 14,000 ×g for 15 min at 4 °C. Plasma and mucus supernatants were aliquoted and stored at -80 °C for further metabolite and biochemical analyses. 2.3.2. Muscle A portion of muscle (around 0.4 g) was homogenized in ice-cold buffer phosphate (50 mM pH 7.4) containing 1mM ethylenediaminetetraacetic acid (EDTA) in a 1:5 (w:v) ratio using a Polytron® homogeniser. Homogenates were centrifuged at 10,000 ×g for 30 min at 4 °C to obtain the S10 fraction. The supernatant was aliquoted and stored at -80 °C for further biochemical determinations.

532		
533		
534 535	226	
536 537	227	2.3.3. Liver
538 539	228	About 1.5 g of each liver were homogenized in ice-cold buffer phosphate (100 mM pH
540 541	229	7.4) containing 150 mM KCl, 1 mM dithiothreitol (DTT), 0.1 mM phenanthroline, 0.1
542 543	230	mg/mL trypsin inhibitor and 1 mM EDTA in a 1:4 (w:v) ratio using a Polytron®
544 545 546	231	blender. Homogenates were centrifuged at 10,000 \times g for 30 min at 4 °C to obtain the
547 548	232	S10 fraction, of which 1 mL was withdrawn while the rest was further homogenised at
549 550	233	100,000 ×g for 60 min at 4 °C to obtain microsomal and cytosolic fractions.
551 552	234	Microsomal pellets were dissolved in the above-described homogenization buffer, also
553 554	235	containing 20 % glycerol in a 2:1 (w:v) ratio (Crespo and Solé, 2016). S10, microsomal
555 556	236	and cytosol fractions were aliquoted and stored at -80 °C for further biochemical
557 558 559	237	determinations.
560 561	238	
562 563	239	2.3.4. Kidney
564 565	240	About 0.05–0.1 g of each individual kidney were homogenised in ice-cold buffer (pH
566 567	241	7.3) containing 150 mM reagent-grade sucrose, 50 mM imidazole and 10 mM
568 569	242	Na ₂ EDTA in a 1:15 (w:v) ratio using a Polytron® blender. Homogenates were
570 571 572	243	centrifuged at 5,000 ×g for 2 min at 4 °C. The resulting supernatant was aliquoted and
573 574	244	stored at -80 °C for osmoregulation and enzymatic measures. A more detailed
575 576	245	description is given in González-Mira et al. (2018).
577 578	246	
579 580	247	2.3.5. Digestive tract
581 582	248	The intestines were divided into anterior and posterior regions of equal length and in
583 584	249	each of them, pancreatic (trypsin, chymotrypsin, bile salt activated lipase and alpha-
585 586 587 588 589 500	250	amylase) and intestinal brush border (BB) enzymatic activities (alkaline phosphatase, 10
290		

591		
592		
593	251	aminopentidase N and maltase) were quantified. Further methodological details can be
594	231	uninopeptidase iv and manase) were quantified. I artifer methodological details can be
595	252	found elsewhere for pancreatic enzymes (Gisbert et al. 2009) and intestinal enzymes
596	LJL	Tound else where for punctedule enzymes (Gisbert et di. 2005) and intestinar enzymes
597	253	(Gisbert et al. 2018) The activity of non-specific esterases was also determined in the
598	230	(Gibbert et ul. 2010). The detivity of non specific esterases was also determined in the
599	254	pancreatic fraction. Intestines from t7 group were discarded from the study because in
601	201	panereaue nacion. Intestines nom t, group were alsearaed nom the stady occause m
602	255	this case fish were fasted only for 24 h, as opposed to 48 h in the other groups.
603		
604	256	something that could affect the activity of digestive enzymes.
605		
606	257	
607		
608	258	2.4. Biochemical analyses
609		
610	259	All reactions were carried out in triplicate at 25 °C, except for CYPs, UDPGT and
611		
613	260	digestive enzymes determinations, which were measured at 30 °C on a Tecan [™] Infinite
614		
615	261	M200 spectrophotometer.
616		
617	262	
618		
619	263	2.4.1. Plasmatic and skin mucus metabolites and lysozyme determination
620		
621	264	Glucose and lactate content in plasma and skin mucus (expressed as $\mu g/mL$) were
622		
623	265	determined by enzymatic colorimetric kit tests GOD-POD glucose (Ref: 41011) and
625		
626	266	LO-POD lactate (Ref: 1001330), from SPINREACT® (Spain), according to the
627		
628	267	methodology described in Fernández-Alacid et al. (2018).
629	o (0	
630	268	Plasmatic ammonia (expressed as μ mol/L) was analyzed using a commercial kit by
631	0/0	ODD DE A OT = - + 1 (D - f. 1001410)
632	269	SPINKEACT®, and (Ref. 1001410).
633	070	Luceran e estivity in alegne (competend of white (LI)/mer effected alegnetic anotein) was
634	270	Lysozyme activity in plasma (expressed as units (0) / mg of total plasmatic protein) was
635	071	manyurad according to the turbidimetric method described by Perry et al. (1965) with
636	271	measured according to the turbidimetric method described by Farry et al. (1903) with
638	272	some modifications. Briefly, 100 uL of plasma diluted in a 1.2 ratio with 10 mM PBS
639	272	some modifications. Diretty, 100 μ L of plasma diruced in a 1.2 failo with 10 million LDS
640	273	nH 6.2 were placed in flat-bottomed 96-well plates. To each well, 100 µL of freeze-
641	270	pri 0.2 were placed in flat obtionica 90 wen places. To each wen, 100 µD of fleeze
642	274	dried <i>Micrococcus hysodeikticus</i> (0.3 mg/ml. Sigma) were added as hysozyme substrate
643	_, .	
644	275	The absorbance ($\lambda = 450$ nm) was measured at the beginning and after 15 min Units of
645		
646		11
649		
040 6/0		
0-0		

650		
651		
652	276	lysozyme present in plasma were obtained from a standard curve built with chicken egg
653	270	ijsozyme present in plasma were oblamed nom a standard ourve bant with emeken ogg
654	277	white lysozyme (HEWL, Sigma)
655	277	
656	278	
657	270	
658	279	242 Angeropic metabolism
660	277	
661	280	Lactate dehydrogenase (LDH) activity was measured in the S10 fraction of the liver
662	200	
663	281	following adaptation of the Vassault (1983) method using NADH (200 μ M) and
664	201	
665	282	pyruvate (1 mM) as final well concentrations. Reading was done at $\lambda = 340$ nm for 5
666	202	pyruvate (1 mivi) as miar wen concentrations. Reading was done at κ = 540 min for 5
667	283	min I DH activity was expressed as nmol/min/mg total protein
668	200	min. EDIT detivity was expressed as innorming total protein.
669	284	
670	204	
671	285	2 4 3 Oridative-stress narameters
672	205	2. 1.5. Oxidative stress parameters
673	286	Activities of the antioxidant enzymes catalase (CAT) total glutathione peroxidase
674	200	renvines of the unitoxidant enzymes eatabase (erri), total gratathole peroxidase
675	287	(GPX) and glutathione reductase (GR) were determined in the liver cytosolic fraction
677	207	(GITY) and graduatione reductase (GIV) were determined in the river cytosone radiation.
678	288	CAT activity was measured as a decrease in absorbance at $\lambda = 240$ nm using H ₂ O ₂ (50
679	200	
680	289	mM) as substrate: GPX and GR used cumene hydroneroxide (CHP 0 625 mM) and
681	207	mini) us substruce, of 11 und offe used cumente nyuroperoxide (errit, 0.020 mini) und
682	290	oxidized glutathione (GSSG_0.9 mM) as respective substrates and NADPH as cofactor
683	270	on allou gradinone (0000, 0.) mili) as respective substrates and in this in a condition
684	291	in both assays at $\lambda = 340$ nm Lipid peroxidation levels (LPO) were quantified in muscle
685	2/2	
686	292	and in \$10 liver fraction using a colorimetric method with 1-methyl-2-phenylindole
687	_/_	
688	293	Quantification with respect to the standard solution 1.1.3.3-tetramethoxypropane was
689	270	Quantinounion, while respect to the standard solution 1,1,5,5 totalitonion, propulse, was
690	294	made at $\lambda = 586$ nm CAT activity was expressed as umol/min/mg total protein and GR
691	_, .	
692 602	295	and GPX activities as nmol/min/mg total protein and LPO levels as nmol MDA
693	270	
695	296	(malondialdehyde)/g wet weight
696	_, -	
697	297	
698		
699	298	2.4.4. Conjugation enzymes
700	_, _	
701	299	Glutathione S-transferase (GST) determination was performed in the liver cytosolic
702		
703	300	fraction according to the method of Habig et al. (1974) using 1 mM GSH as substrate at
704		
705		12
706		
702		
100		

 $\lambda = 340$ nm. Uridine diphosphate glucuronyltransferase (UDPGT) activity was

measured in liver microsomes according to the method of Collier et al. (2000) using

303 methyl umbelliferone (MU, 0.1 mM) as substrate in the fluorometric mode (EX/EM

304 355/460). Both activities were expressed as nmol/min/mg total protein.

2.4.5. CYP components and reductases

Catalytic activities of hepatic CYPs were determined in the microsomal liver fraction using six fluorometric substrates: 7-ethoxyresorufin (ER), 7-benzyloxyresorufin (BR), 7-methoxyresorufin (MR), 7-benzyloxy-4-trifluoromethylcoumarin (BFC), 3-cyano-7-ethoxycoumarin (CEC) and 7-ethoxycoumarin (EC). Assay conditions were based on the method by Solé et al. (2012). Briefly, microsomes (10 µL) were incubated for 10 min at 30 °C and the metabolite formed was recorded at its specific wavelength (Smith and Wilson, 2010). A calibration curve for each specific metabolite was done (range 0-160 nM). CYPs assays were run in 100 mM phosphate buffer pH 7.4, except for ECOD determination, which was done in 100 mM Tris buffer pH 7.4. Activities were expressed in pmol/min/mg total protein. Microsomal reductases, NAD(P)H- cytochrome c reductases and NADH- ferricyanide reductase activities, were measured by the increase in absorbance at $\lambda = 550$ nm and the decrease in absorbance at $\lambda = 420$ nm, respectively (Solé and Livingstone, 2005). Assay conditions were: 50 mM Tris-HCl buffer pH 7.6, 1 mM KCN, 0.26 mM NAD(P)H, and 60 μM cytochrome c or 0.2 mM potassium ferricyanide. Sample volumes were: 10 μL microsomal fraction for NADPH- and 15 µL for NADH-dependent reductases. Results are expressed in nmol/min/mg total protein.

³⁰ 324

325 2.4.6. Osmoregulation

Activity of Na⁺/K⁺-ATPase was determined in the head kidney of fish following Zaugg (1982) method with modifications (González-Mira et al., 2018). Sample absorbance was measured at $\lambda = 750$ nm after 30 min incubation. Na⁺/K⁺-ATPase activities were expressed as umol ATP hydrolysed/mg total protein/hour. Plasmatic osmolality was measured with the aid of a Fiske[®] 210 Micro-Sample Osmometer using 20 µL plasma and expressed in mosm/Kg H₂O. 2.4.7. Digestive enzymes The methods used for enzyme quantification are briefly described as follows: trypsin and chymotrypsin activities, the two main pancreatic alkaline proteases, were assayed using, respectively, N-benzoyl-DL-arginine p-nitroanilide (BAPNA) (Holm et al., 1988) and Succinyl-L-Ala-Ala-Pro-L-Phenylalanine p-nitroanilide (SAAPNA) (Erlanger et al., 1961). Alpha-amylase activity was estimated using 2-chloro-p-nitrophenyl- α -Dmaltotrioside as substrate (Lorentz et al., 1999). The activities of bile-salt-activated lipase and non-specific esterases were measured using p-nitrophenyl myristate (lijima et al., 1998) and p-nitrophenyl acetate (Hosokawa and Satoh, 2005) as respective substrates. The activity of the alkaline phosphatase was determined using 4-nitrophenylphosphate (Bessey et al., 1946), aminopeptidase N activity was determined using L-leucine p-nitroanilide (Maroux et al., 1973) and maltase activity was determined using d(+)-maltose (Dahkqvist, 1970) as substrates. All enzymatic activities were expressed as specific units (mU/mg total protein). 2.4.8. Protein determination

Total protein content of all samples was determined by the Bradford method (1976) using the Bio-Rad Protein Assay reagent and bovine serum albumin (BSA: 0.05-1 mg/mL) as standard. The absorbance was read at $\lambda = 595$ nm. 2.5. Chemical analyses 2.5.1. Bile Bile glands from group t7 were mostly empty (as described in digestive enzyme measures), and could not be used for chemical analysis. A more detailed methodology (adapted from Aceña et al. (2017)), as well as reference standards and solvent solutions characteristics and a description for fipronil and its metabolites quantification, is reported as electronic supplementary material (ESM). All analyses were performed using a SCIEX ExionLC[™] AD system coupled to a hybrid SCIEX X500R QTOF system (Sciex, Redwood City, CA, U.S.) equipped with a Turbo VTM source and Electrospray Ionization (ESI). 2.5.2. Muscle Analysis of fipronil in muscle was based on the use of the commercial brand Regent®800WG (80% fipronil) as standard and following the solid phase QuEChERS extraction method and gas chromatography-electron impact (GC-EI) detection at the Scientific and Technological Centres of the University of Barcelona (CCiTUB) that holds the quality standard ISO 9001:2015. A more detailed description of the analytical procedure is provided as ESM. 2.6. Data analyses

887		
888	373	Fish henatosomatic index (HSI) and gonadosomatic index (GSI) were calculated as
889	575	Tish hepatosomatic mdex (1151) and gonadosomatic mdex (051) were calculated as
890 891	374	(liver weight/BW) \times 100 and (gonad weight/BW) \times 100, respectively. Fish condition
892 893	375	was assessed by Fulton's condition factor (CF), calculated as $(BW/TL^3) \times 100$.
894 895	376	Daily feed intake was measured per tank and food consumption calculated in relation to
896 897	377	the total number of fish per tank. For each mucus sample, the ratios of glucose/lactate,
899 899	378	glucose/protein and lactate/protein were calculated.
901 902	379	A detailed explanation of statistical procedures is provided as ESM. In short,
903 904	380	relationships among fish biological and some biochemical variables and their
905 906	381	interactions were tested by Pearson' or Spearman' rank correlations (continuous
907 908	382	variables) and by Student's t-tests or Mann-Whitney U-tests (sex-related differences).
909 910	383	For digestive enzymes, differences between anterior and posterior parts of the digestive
911 912	384	tract were tested using Wilcoxon pairwise tests with repeated measurements.
913 914 015	385	Possible effects of treatment duration and temperature were tested by general or
915 916 917	386	generalized linear models (GLMs/GZMs) followed by Student's t-test/Mann-Whitney
918 919	387	U-test and one-way ANOVA/Kruskal-Wallis tests. A permutation multivariate analysis
920 921	388	(PERMANOVA) and a principal component analysis (PCA) were also carried out in
922 923	389	order to assess a global biochemical response to temperature and treatment duration In
924 925	390	all cases, significant differences were set at $p < 0.05$.
926 927	391	
928 929	392	3. Results

3.1. Biometric parameters and general condition indices

Mean values for fish biometric data and general condition indices were fairly uniform across experimental groups (Table 1). Most individuals were immature, as evidenced by low GSI values in both sexes. Sex ratios were generally skewed, with more females

947 948 949 950 950 950 950 950 950 950 95	ne were in most
949 950 950 950 950 950 950 950 95	in most
	in most
951 952 399 Direct correlations among biometric data and condition indices were found	
953 954 400 cases, with visceral fat weight showing positive associations with all other bi	iological
401 variables ($r_p = 0.299 - 0.692$, $p = 0.018 - < 0.001$), in a similar way as BW (or 957)	nly non-
958 402 significant correlation to HSI) ($r_p = 0.268-938$, $p = 0.032 - < 0.001$). SL and C 959	GSI were
also positively correlated ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$), as well as CF and HSI ($r_p = 0.483$, $p < 0.001$).	457, p <
 404 0.001). Body weight, GSI and visceral fat weight displayed higher values in 	females
964 965 405 than in males ($t = 2.690-6.252$, $p = 0.012 - < 0.001$).	
966 967 406	
969 407 <i>3.2. Feed consumption</i> 970	
408 Fish feeding rate was similar at the two experimental temperatures: $0.54 \pm 0.20 =$	and 0.57
409 ± 0.22 g/fish at 13 °C and 16 °C, respectively, and significantly increased over t	time ($F_{(3)}$
975 410 $_{24)} = 23.891, p < 0.001$) (Table 1). 976	
977 411 978	
979 412 3.3. Biochemical analyses 980	
981 413 <i>3.3.1. Plasmatic and skin mucus analyses</i> 982	
414 Mean levels of plasmatic glucose ranged between 110.40 ± 14.20 and 212.30	± 22.20
415 mg/dL and lactate between 52.70 ± 5.50 and 79.30 ± 7.10 mg/dL. In mucus thes	se values
988 416 were much lower with glucose ranging between 0.57 ± 0.07 and 1.24 ± 0.11 mg	g/dL and
990 417 lactate between 0.42 ± 0.08 and 1.11 ± 0.14 mg/dL, (Table S1). Some s 991	tatistical
418 correlations of the different parameters studied in plasma and skin mucus and n993	nost fish
 994 419 biometrics and condition indices are detailed in Table S2. 995 	
Although no effect of the rearing temperature was found, a significant increases	ase with
 421 longer fipronil exposures was observed for glucose and lactate plasma levels (1000 1001 1002 	$(F_{(3, 59)} =$ 17

1004		
1005		
1006	422	7.098 $p < 0.001$ and $E_{(2,52)} = 4.226$ $p = 0.009$ respectively.) (Fig. 1A, B) Moreover, a
1007	122	$(1.0,0,0,p) = 0.001 \text{ and } 1_{(3,35)} = 0.220, p = 0.0005, 1000000000000000000000000000000000$
1008	423	decrease of these biomarkers during the deputation period was observed in skin mucus
1009	120	accience of mose elemanent aning the acparation period was coserved in shin macus
1010	424	$(F_{(2,50)} = 10, 196, p < 0.001 \text{ and } F_{(2,50)} = 6.338, p = 0.001 \text{ respectively})$ (Fig. 1C. D)
1011		(1, (3, 39)) $(1, (3, 59))$ $(1, (3, 59))$ $(1, (3, 59))$ $(1, (3, 59))$ $(1, (3, 59))$ $(1, (3, 59))$ $(1, (3, 59))$
1012	425	Glucose/protein and lactate/protein ratios (mean values $3.31 \pm 0.47 - 6.39 \pm 0.98$ µg/mg
1013		
1015	426	and $2.28 \pm 0.24 - 4.59 \pm 0.37$ µg/mg, respectively) in skin mucus were not affected by
1016		
1017	427	temperature or fipronil exposure. However, glucose/lactate ratio $(1.06 \pm 0.12 - 1.95 \pm$
1018		
1019	428	0.29 µg/mg) was higher at 13 °C than at 16 °C ($t = 2.733$, $p = 0.008$) (Table S1). A
1020		
1021	429	significant interaction between exposure time and CF was found for lactate content in
1022		
1023	430	mucus ($F_{(3, 54)} = 6.113$, $p = 0.001$). Strong positive correlations were detected among
1024		
1026	431	protein, glucose and lactate both in plasma ($r_p = 0.411-0.632$, $p < 0.001$) and skin
1027		
1028	432	mucus ($r_p = 0.434 - 0.706, p < 0.001$).
1029		
1030	433	Plasmatic lysozyme activity ranged between 7.98 ± 2.13 and 13.24 ± 2.53 U/mg total
1031		
1032	434	protein (Table S3) and was not affected by temperature or fipronil exposure time.
1033	125	
1034	435	
1036	436	332 Angeropic metabolism
1037	400	5.5.2. Mucrobic metabolism
1038	437	Mean LDH activity in liver ranged between 14.58 ± 1.42 and 16.25 ± 1.17
1039		
1040	438	nmol/min/mg total protein (Table S3), with no association to fish biometric variables or
1041		
1042	439	condition indices and it was not affected by water temperature or fipronil exposure.
1043		
1045	440	
1046		
1047	441	3.3.3. Oxidative-stress parameters
1048		
1049	442	Antioxidant enzymes GR ($5.56 \pm 1.05 - 7.98 \pm 0.84$ nmol/min/mg total protein), GPX
1050		
1051	443	$(6.60 \pm 0.40 - 8.12 \pm 0.40 \text{ nmol/min/mg total protein})$ and CA1 $(63.84 \pm 10.27 - 111.12)$
1052	444	69 um al/min/ma total protain) (Table S2) wars not affected by temperature, and only
1053	444	\pm 68 µmol/mm/mg total protein) (Table SS) were not affected by temperature, and only
1055	115	CAT responded to financial exposure decreasing after the deputation period (t21) (F_{a} as
1056	443	CAT responded to uprofile exposure, decreasing after the deputation period (121) ($F_{(3, 60)}$
1057		
1058		
1059		18
1060		
1061		
1002		

1063		
1064		
1065 1066	446	= 4.792, p = 0.005) (Fig. 2A). Regarding fish biological variables, only some negative
1067 1068	447	associations were observed between GR and some biological traits (Table S2).
1069 1070	448	Mean LPO levels ranged between 2.99 ± 0.74 and 6.21 ± 1.09 nmol MDA/g ww in
1071 1072 1072	449	muscle and between 10.10 ± 1.74 and 17.35 ± 1.96 nmol MDA/g ww in the S10 liver
1073 1074 1075	450	fraction (Table S3). In both cases, no effect of temperature was detected but a
1076 1077	451	significant increase in MDA equivalents during fipronil exposure was found in liver
1078 1079	452	$(F_{(3, 60)} = 7.436, p < 0.001)$ (Fig. 2B).
1080 1081	453	Correlations among oxidative stress-related biomarkers are shown in Table 2, revealing
1082 1083	454	a similar trend for GR and GPX activities, while GR scaled negatively with CAT
1084 1085	455	activity and LPO levels in liver.
1086 1087 1088	456	
1089 1090	457	3.3.4. Conjugation enzymes
1091 1092	458	Mean GST activity values ranged between 36.45 ± 2.43 and 51.05 ± 5.80 nmol/min/mg
1093 1094	459	total protein, and UDPGT between 0.75 ± 0.09 and 0.82 ± 0.08 nmol/min/mg total
1095 1096	460	protein (Table S3). Some positive correlations were detected between conjugation
1097 1098	461	enzymes and biological variables, and GST activity was higher in females (Table S2).
1099 1100	462	Both enzymes were unaffected by temperature and GST activity was significantly
1101 1102 1103	463	enhanced with increasing fipronil exposure time ($F_{(3, 60)} = 4.245, p = 0.009$) (Fig. 2C).
1103 1104 1105	464	GST activity displayed positive correlations with LPO in muscle and liver and was
1106 1107	465	negatively related to GR activity, while UDPGT activity was positively correlated with
1108 1109	466	CAT activity (Table 2).
1110 1111	467	
1112 1113	468	3.3.5. CYP components and reductases
1114 1115	469	EROD (mean activity = $15.33 \pm 1.31 - 25.35 \pm 3.86$ pmol/min/mg total protein), BROD
1116 1117	470	$(0.47 \pm 0.07 - 0.76 \pm 0.11 \text{ pmol/min/mg total protein})$, MROD $(2.34 \pm 0.18 - 5.00 \pm 0.011 \text{ pmol/min/mg total protein})$
1118 1119		19
1120 1121		
1141		

1122		
1123		
1124	471	0.71 pmol/min/mg total protein), CECOD ($19.14 \pm 1.63 - 33.45 \pm 5.34$ pmol/min/mg
1125		
1126	472	total protein) and ECOD $(3.35 \pm 0.66 - 9.42 \pm 1.47 \text{ pmol/min/mg total protein})$
1127		
1129	473	activities (Table S3) displayed negative correlations with fish HSI, as well as negative
1130		
1131	474	associations between MROD and visceral fat weight and between ECOD and CF (Table
1132	475	S2) These same formerly mentioned estimities were unoffected by terms another but
1133	475	52). These same formerry mentioned activities were unaffected by temperature but
1135	476	significantly decreased after fipronil exposure $(F_{(2,60)} = 3,046, n = 0,036; F_{(2,60)} =$
1136		
1137	477	4.327, $p = 0.008$; $F_{(3, 60)} = 7.743$, $p < 0.001$, $F_{(3, 60)} = 3.795$, $p = 0.015$ and $F_{(3, 47)} =$
1138		
1139	478	3.211, $p = 0.031$, respectively) (Fig. 2D, E). By contrast, BFCOD activity (62.91 ± 5.23)
1140	470	
1142	479	-98.97 ± 22.34 pmol/min/mg total protein) was not affected by temperature of fipronil
1143	480	exposure (Table S3) Strong positive correlations were found among most CVPs and
1144	-00	exposure (Table 55). Strong positive correlations were found among most CTT's and
1145	481	between them and the oxidative-stress markers GR and GPX (Table 2). By contrast,
1140		
1148	482	negative associations were observed between GST and MROD and between UDPGT
1149	_	
1150	483	and most CYPs (Table 2).
1151	101	In relation to CVP dependent reductases (expressed in pmol/min/mg total protein):
1152	404	in relation to C 11 -dependent reductases (expressed in hinor/hin/hig total protein).
1154	485	NAD(P)H Cyt c reductase $(17.07 \pm 1.22 - 22.98 \pm 2.24)$ and NADH-Cyt c $(22.79 \pm 1.22 - 22.98 \pm 2.24)$
1155		
1156	486	$3.36 - 31.97 \pm 5.34$) and ferrycyanide reductases $(1006 \pm 95 - 1208 \pm 108)$ (Table S3),
1157		
1159	487	NADPH cyt c reductase displayed higher activity at the lowest temperature ($t = 2.575$, p
1160	400	= 0.012) (Fig. 2F) and a positive weak correlation with figh viscoral fat weight and of
1161	400	-0.012) (Fig. 2F) and a positive weak correlation with fish visceral fat weight, and of
1162	489	NADH Cyt c reductase, that was negatively associated to fish GSI (Table S2).
1163		
1165	490	
1166		
1167	491	3.3.6. Osmoregulation
1168	400	Kidney N_{2}^{+}/V_{1}^{+} ATD as mean estivity mean of from 0.01 + 0.11 to 1.04 + 0.51 um also of
1170	492	Kinney Na /K -A i Pase mean activity ranged from 0.91 ± 0.11 to 1.94 ± 0.51 µmoles of
1171	493	ATP hydrolysed/mg total protein/hour (Table S3) osmolality from 370.50 ± 4.69 to
1172	170	
1173	494	$400.50 \pm 9.12 \text{ mosm/Kg H}_2\text{O}$ and ammonia from 153.10 ± 9.46 to 333.62 ± 59.29
1174		
1176	495	μ mol/L (Table S1). While Na ⁺ /K ⁺ -ATPase activity and ammonia content did not
1177		20
1178		
1179		
IIOU		

496	significantly vary as a function of temperature or experimental time, osmolality showed
497	a significant increase after fipronil exposure ($F_{(3, 57)} = 6.729, p = 0.001$).
498	
499	3.3.7. Digestive enzymes
500	Significant differences in activity between anterior and posterior intestine sections were
501	detected for the pancreatic enzymes trypsin (t14 at 13 °C; $W = 36$, $p = 0.012$) and
502	chymotrypsin (t21 at 16 °C; $W = 27$, $p = 0.038$) and the BB enzymes alkaline
503	phosphatase (t21 at 13 and 16 °C; $W = 27$, $p = 0.039$ and $W = 28$, $p = 0.023$,
504	respectively), aminopeptidase N (t21 at 13 and 16 °C; $W = 33$, $p = 0.043$ and $W = 35$, p
505	= 0.019, respectively) and maltase (t0 at 16 °C and t21 at 13 and 16 °C; $W = 21-36$, $p =$
506	0.012–0.046). In light of these results, data from digestive enzymes for anterior and
507	posterior intestine regions were treated separately.
508	Regarding pancreatic enzymes (in mU/mg total protein) in anterior intestine: trypsin
509	$(45.60 \pm 3.07 - 61.20 \pm 2.63)$, chymotrypsin $(61.60 \pm 15.87 - 104.70 \pm 33.26)$, bile salt-
510	activated lipase ($21.50 \pm 3.73 - 42.70 \pm 11.33$), alpha-amylase ($4.40 \pm 0.92 - 10.50 \pm 11.33$)
511	3.01) and non-specific esterases $(415.60 \pm 38.22 - 564.40 \pm 35.19)$ (Table S4), lower
512	activities were observed for trypsin before fipronil exposure (t0) and after depuration
513	period (t21) ($F_{(2, 41)} = 5.193$, $p = 0.01$) (Fig. 2G), and for lipase and alpha-amylase over
514	time ($F_{(2, 44)} = 3.435$, $p = 0.042$ and $F_{(2, 45)} = 3.708$, $p = 0.033$, respectively). For
515	posterior intestine: trypsin (45.70 \pm 3.22 – 64.40 \pm 10.03), chymotrypsin (117.30 \pm
516	$39.39 - 428.50 \pm 158.87$), lipase (24.90 $\pm 3.82 - 30.80 \pm 3.94$), alpha-amylase (3.10 \pm
517	$0.44 - 9.70 \pm 2.48$) and non-specific esterases (447.40 ± 43.69 - 587.70 ± 56.37) no
518	significant trends were detected. In relation to intestinal BB enzymes (in mU/mg total
519	protein) in anterior intestine: alkaline phosphatase (742.40 \pm 116.31 – 1,177.40 \pm
520	284.87), aminopeptidase N (117.30 \pm 22.32 $-$ 220.50 \pm 22.80) and maltase (42.90 \pm
	21

1240		
1241		
1242 1243	521	$8.63 - 250.10 \pm 50.02$), higher activities were found for aminopeptidase N at 13 °C ($t =$
1244 1245	522	2.310, $p = 0.026$) and for maltase with time exposure ($F_{(2, 45)} = 34.975$, $p < 0.001$) (Fig.
1246 1247	523	2H). Among the enzymes assessed in posterior intestine: alkaline phosphatase (540.80 \pm
1248	524	$109.19 - 826.20 \pm 175.18$), aminopeptidase N ($93.50 \pm 11.08 - 178.90 \pm 27.34$) and
1250 1251 1252	525	maltase (26.20 ± 2.92 – 158.20 ± 23.95), only maltase activity increased over time ($F_{(2)}$
1252 1253 1254	526	$_{45)} = 28.828, p < 0.001).$
1255 1256	527	Regarding to association of digestive enzymes with fish biometric variables and general
1257 1258	528	condition indices, few significant associations were found (Table S2) while mostly
1259 1260	529	positive correlations were found among intestinal enzymes (Tables S5 and S6).
1261 1262	530	
1263 1264 1265	531	3.4. Chemical analyses on bile and muscle
1265 1266 1267	532	Concentrations of fipronil and fipronil-sulfone in bile and in muscle (only fipronil) of
1268 1269	533	the different experimental groups are shown in Table 3. In addition, a more detailed
1270 1271	534	report on chemical results is provided as ESM.
1272 1273	535	
1274 1275	536	3.5. Multivariate analyses
1276 1277	537	PERMANOVA analyses showed no effect of temperature but a significant influence of
1278 1279	538	fipronil on fish general biochemical profile (<i>Pseudo-F</i> _(3, 60) = 2.790, $p_{(perm)} = 0.0001$;
1280	539	9876 unique permutations, all pairwise comparisons significant except those comparing
1283 1284	540	t7 and t14, and t14 and t21).
1285 1286	541	Two-dimensional PCA plots represented 56.1 % of total variance on the first two
1287 1288	542	components, and 51.9 % of the total variance on the first and third components (Figure
1289 1290	543	3). These results suggest a differentiation according to the exposure time to fipronil
1291 1292	544	along the first axis, with samples corresponding to unexposed fish (t0) (Fig. 3A, right
1293 1294	545	part of the plot) clearly separated from the rest (Fig. 3A, left part of the plot), and
1295		22
1290		
1298		

according to temperature along the third axis (Fig. 3B). Pearson correlations indicated associations between some biochemical markers and fish groups, namely between most CYP-related activities and unexposed fish (t0), between LPO levels, plasmatic metabolites and osmolality and fish from t7 and t14, and between LDH, NADPH-Cyt c reductase and GST and fish from t14 and t21. 4. Discussion The present study reports, for the first time, the effects of dietary fipronil exposure on several physiological parameters of the European sea bass. The use of a comprehensive set of biomarkers encompassing different physiological and detoxification processes allows for the assessment of the effects of this pesticide on the health and general condition of an economically important cultured fish species. Moreover, the combined effects of fipronil and a 3 °C temperature increase (as predicted for the NW Mediterranean region by the end of this century) constitute a novel approach to assess the consequences of CC for the harmful effects of this chemical in this commercial fish species widely used for human consumption. Morphometric markers and condition indices remained unchanged regardless of fipronil exposure or of the rearing temperature, suggesting that the 3 °C temperature variation, fipronil concentration and/or the time of exposure assessed were below threshold limits to affect them. The observed increase in feeding rate over time regardless of the temperature likely accounts for higher feed consumption as fish increased in size, and not to fipronil exposure, since no changes occurred during depuration. Despite of the wide array of biochemical markers assessed in this study, the use of multivariate tools helped to infer some general patterns in their response to the different experimental conditions. It appears that temperature induced changes in some metabolic

parameters as shown by the segregation along the third PCA axis of fish reared at 13 °C and 16 °C but the PERMANOVA analyses indicated that the temperature-induced metabolic changes observed were not that clear. An integrated multi-biomarker response to fipronil exposure, according to both multivariate analyses, showed that the most prominent changes took place between unexposed (t0) and exposed (t7, t14 and (t^{2}) fish. Notably, biochemical patterns after depuration (t^{2}) clustered with those for t14 fish both in PERMANOVA analysis and PCA plots, rather than with non-exposed groups (t0) suggesting that the 7-days depuration period was too short to allow for the full recovery of pre-exposure levels. The choice of a modest temperature increase, 3 °C with respect to the group reared at natural temperature, was considered as environmentally realistic under the IPCC forecasts by year 2100, although sharper increases may occur in estuarine and coastal ecosystems (IPCC, 2014) inhabited by European sea bass, particularly in their juvenile stage. The generalized lack of effects of this temperature increase on the assessed biomarkers contrasts with other studies performed on juveniles of this species, which reported behavioural, physiological and biochemical changes although under warmer conditions that could account for the different results (Vinagre et al., 2012; Almeida et al., 2015). Furthermore, a synergic effect between warmer conditions and fipronil exposure did not occur in the present study. However, one must keep into account that a more realistic simulation of CC conditions, including alterations of other abiotic variables (e.g. salinity, pH), could yield a different outcome. In the present study, several parameters in plasma and mucus were included as potential non-lethal indicators of fish stress condition. Glucose and lactate increases in plasma could be a result of the mobilisation of energetic resources induced by higher metabolic demands, especially during the depuration period. In turn, the concomitant drop in

1417		
1418		
1419	596	mucus could be explained by the need to spare energy when energetic demands
1420		
1421	597	increase, as described in gilthead sea bream during a 2-weeks starvation period
1422		
1423	598	(Fernández-Alacid et al., 2018) or under chronic cold temperature conditions (Sanahuja
1425		
1426	599	et al., 2019). Thus, plasma and mucus metabolite levels do not necessarily match under
1427		
1428	600	chronic or sustained stress conditions (several days-weeks), as it is observed in the
1429	() (
1430	601	present study and contrary to what has been reported under acute stress (hours)
1431	(0)	(Forméndez Alacid et al. 2010)
1433	002	(Femanuez-Alaciu et al., 2019).
1434	603	In fish fipronil metabolism takes place by oxidation and reduction reactions catalysed
1435	000	In fish, fiptoint filewoonsin takes place by oxidation and reduction reductions eatingsed
1436	604	by cytochrome P450-related enzymes (CYPs), which generate different fipronil
1437		
1438	605	metabolites (mainly fipronil sulfone) (Konwick et al., 2006; Wang et al., 2016; Li et al.,
1440		
1441	606	2018). These metabolites can be even more toxic to insects, mammals, aquatic
1442	_	
1443	607	organisms and birds than the parental compound (Leghait et al., 2009; Tavares et al.,
1444	(00	2015) In the magant study, this important phase I match align at hypersequences as
1445	008	2015). In the present study, this important phase I metabolic pathway was assessed by
1440	609	using several fluorometric substrates indicative of several CVP isoforms (Smith and
1448	007	using several nuorometrie substrates indicative of several e 11 isotorinis (Simin and
1449	610	Wilson, 2010; Solé et al., 2014) and the general electron donors NAD(P)H Cyt c and
1450		
1451	611	NADH ferrycyanide reductases. The responses of CYP1A- and CYP2B-related
1452		
1400 1454	612	activities (EROD, BROD, MROD, ECOD and CECOD) showed a similar trend,
1455	_	
1456	613	markedly decreasing after fipronil administration, suggesting certain overlapping
1457	(substrate gradificity, whereas CVD2 A4 associated DECOD activity displayed the
1458	014	substrate specificity, whereas CYP3A4-associated BFCOD activity displayed the
1459	615	opposite trend. The effects of finronil on CVP-related activities is controversial: for
1460	015	opposite trend. The effects of hprofili on CTT-related activities is controversial, for
1462	616	instance, <i>in vitro</i> studies with human hepatocytes (Das et al., 2006) suggested an
1463		
1464	617	increase in CYP1A1-related activity at low concentrations (1 μ M), and a decrease at
1465		
1466	618	higher ones (10 and 25 μ M). In the present study, ECOD activity was clearly inhibited
1467		
1400 1460	619	atter 14 days of fipronil exposure and remained low even at the end of the depuration
1470	100	
1471	620	period. This CYP-related activity was the only one responding to waterborne fipronil
1472		25
1473		

exposure in the zebrafish, Danio rerio, showing a dose-dependent induction in several tissues 24h after exposure (Wu et al., 2014). A recent study in the Caspian kutum fish, Rutilus kutum, showed a strong correlation between cyp1a gene expression and different antioxidant responses in several tissues, including liver (Ardeshir et al., 2018). The study suggested that the increase of *cyp1a* gene expression after intraperitoneal (IP) fipronil injection could be due to structural similarities between this compound and some aryl hydrocarbon receptor agonists, such as halogenated hydrocarbons (Ardeshir et al., 2018). In fact, fipronil transformation into more toxic metabolites fipronil-sulfide and fipronil-sulfone is linked to oxidative stress (Wang et al., 2016). This is supported by the present results, since CAT, the antioxidant enzyme, was inhibited after the longest exposure to fipronil, supporting the notion that the production of oxyradicals may overwhelm the protective capacity of this enzyme (Regoli and Giuliani, 2014). Moreover, the increase of LPO levels in liver and muscle clearly confirmed a scenario of oxidative damage to cell membrane lipids, most likely due to ROS generation as previously suggested (Wang et al., 2016). In addition to the role of GST catalysing the conjugation of glutathione with xenobiotics for detoxification purposes, other GST isoforms appear implicated in the reduction of lipid hydroperoxides produced by ROS (Regoli and Giuliani, 2014). Present data point at this possibility, as suggested by the progressive increase in GST activity after fipronil exposure. Nonetheless, this increase in antioxidant protection, as indicated by the positive correlations between GST activity and LPO levels in liver and muscle was not enough to prevent the occurrence of oxidised lipids even after depuration. Concordantly, several studies performed in fish also reported the occurrence of oxidative-stress after fipronil administration, either waterborne exposure (Clasen et al., 2012; Menezes et al., 2016; Ghazanfar et al., 2018), after IP injection (Ardeshir et al., 2017a) and even considering a combination of

waterborne exposure and IP injection (Ardeshir et al., 2017b). Thus, induction of oxidative stress is a well-accepted consequence of fipronil exposure. Since the European sea bass is a euryhaline fish that inhabits waters with broad salinity gradients during its life cycle, osmoregulation constitutes a key physiological process worth to be considered. In the present study, two osmoregulation-related parameters were assessed. A significant increase in plasmatic osmolality evidenced a reduced capability of hypo-osmoregulation in seawater after fipronil administration. However, another parameter also indicative of osmoregulation capacity such as kidney Na⁺/K⁺ ATPase activity was not affected. At this stage, we can only speculate that another response on this parameter might have been obtained if it had been measured in gills instead of kidney, since this marker seems to display a tissue-dependent pattern of activity (Vargas-Chacoff et al., 2009). Consequences for an osmoregulatory imbalance after fipronil exposure are particularly significant in this species, given that during early life stages it inhabits estuarine and freshwater ecosystems potentially subjected to waste water discharges from nearby agricultural areas where the insecticide may be used. In the present study, the consequences of fipronil exposure were also evaluated in the digestive system because of the high importance of growth and energy assimilation in this cultured fish species. The effects of temperature and fipronil on the activity of the main digestive pancreatic and BB enzymes were evaluated in proximal and distal intestinal parts since fish intestine is characterized by proximo-distal gradients of hydrolases (Xiong et al., 2011; Izvekova et al., 2013). In the present study, the decrease on lipase activity in bile might be due to the presence of fipronil-derived compounds in bile, such as fipronil sulfone, that could have impaired lipase activity. Similarly, the pyretroid insecticide deltamethrin, used in combination with fipronil (Jiang et al., 2014), has been shown to inhibit lipase activity in several fish species (Simon et al., 1999;

Gunes and Yerli, 2011). Regarding the glucosidases alpha-amylase and maltase, suppression of the activity of the former has been reported in several fish species exposed to different pollutants, and mostly explained by a reduction in substrate affinity (Filippov et al., 2013). The opposite trend was observed for maltase activity in anterior and posterior intestine regions after fipronil exposure. This is in line with the random effects of toxics on glucosidases ranging from inhibition to stimulation depending on toxicant concentration, its interaction with other chemicals and exposure time (Filippov and Golovanova, 2012; Filippov et al., 2013). Therefore, the response of glucosidases to fipronil (whose effects on digestive enzymes have never been addressed before) needs to be further investigated before more consistent conclusions could be drawn. Similarly, the effect of organic pollutants on proteolytic activity (i.e. trypsin) seems inconsistent; while it significantly increased in the present study after fipronil administration, it decreased in roach (Rutilus rutilus) exposed to polychlorinated biphenyls (PCBs) (Golovanova et al., 2011) and it was unaffected by naphthalene (a polycyclic aromatic hydrocarbon) in Mozambique tilapia, Oreochromis mossambicus, (Kuz'mina et al., 1999). Since exposure to fipronil did not result in a decrease of BB enzymes, as indicative of harm to enterocytes integrity (Lalles, 2010), it seems that no damage occurred to intestinal epithelium at the tested concentration. Chemical analyses in muscle and bile confirmed intake and clearance of fipronil during the exposure period as well as a bioaccumulation trend over time and a depuration after withdraw from diet. Higher levels of the metabolite fipronil-sulfone than those of the parental fipronil in fish bile at t14 and t21 confirmed a metabolisation of the insecticide within a few days. Notably, in rainbow trout, Oncorhynchus mykiss (Konwick et al., 2006) and Nile tilapia, Oreochromis niloticus, (Li et al., 2018), fipronil-sulfone was detected as soon as one day after exposure to the parent compound, indicating its rapid

biotransformation. In the present study, the parent compound fipronil was not detected in the muscle and very low concentrations were quantified in bile at the end of the 7-day depuration period (t21). This is in agreement with the rapid elimination reported by Konwick et al. (2006), who could not detect the pesticide in trout muscle 4 days after the end of the exposure. In contrast, fipronil-sulfone persisted in bile after the deputation period (7 days after the end of fipronil administration) at fairly high concentrations, which may be related to its affinity towards organic carbon supporting the view that fatty organs, such as liver, can act as a reservoir for fipronil residues (Li et al., 2018; Qu et al., 2018). Indeed, fipronil-sulfone is considered to be more toxic to aquatic species than fipronil itself (EPA, 1996). This was also confirmed in the present study by modulation of the activities: reduced CAT, enhanced GST and LPO occurrence even at the end of the depuration period. Some studies in fish have alerted for the high bioaccumulation potential of fipronil-sulfone compared to the parent compound (Konwick et al., 2006; Wang et al., 2016). Moreover, our results may also be suggestive of a longer persistence of fipronil-sulfone with increasing temperatures, as higher concentrations of this metabolite were present in the bile of European sea bass reared at 16 °C than in those reared at 13 °C However, more studies are needed to strengthen this hypothesis. If confirmed, a potential synergistic interaction between fipronil-sulfone and warmer temperatures should be taken into consideration when predicting future consequences in a global warming scenario. Conclusions A two-week dietary administration of the pesticide fipronil induced physiological responses in the European sea bass, as indicated by alterations in several markers. Trends on plasma and skin mucus metabolites were indicative of an increased energy

demand during fipronil exposure and after depuration. Fipronil administration also caused an oxidative-stress condition that persisted even after depuration and was accompanied by the modification of some phase I CYP-related activities and an increase of phase II GST activity. Osmoregulation and some digestive enzymes were also altered as a consequence of the pesticide administration. Chemical analyses in bile and muscle confirmed intake and clearance of fipronil (faster in muscle than in liver) but persistence of the metabolite fipronil-sulfone in bile even after the depuration period. Although a modest temperature increase of 3 °C did not enhance fipronil effects, the persistence of fipronil-sulfone in bile at higher temperature may alert for potential synergistic effects in a CC scenario. Acknowledgements This work was financed by the Spanish Ministry of Economy, Industry and Competivity (ref CGL2016-76332-R MINECO/FEDER, UE). The Catalonian Government (Excellence Research Groups 2017SGR00902) and the Spanish Ministry of Science Innovation and Universities (RTI2018-094667-B-C21) are also acknowledged. We are indebted to L. Berdié (CCiTUB, Barcelona, Spain) for performing chemical analyses in muscle tissue and E. Martínez for helping with fish rearing. P. Dourado acknowledges a fellowship grant ref. FAPESP2017/18210-2 from Brazil. N. Montemurro acknowledges SCIEX for providing the loan instrument LC/HRMS QTOF X500R system. **Conflict of interest** The authors of the present study declare that they have no conflict of interest. References

1771		
1772		
1773	746	Acena, J., Perez, S., Eichhorn, P., Solé, M., Barceló, D., 2017. Metabolite profiling of
1775		
1776	747	carbamazepine and ibuprofen in Solea senegalensis bile using high-resolution mass
1777		
1778	748	spectrometry. Analytical and Bioanalytical Chemistry 409, 5441–5450.
1779	740	Almaida I.P. Gravata C. Guilharmina I. 2015 Effacts of temperature in juvenile
1780	/47	Anneida, J.K., Oravato, C., Ounnermino, E., 2015. Effects of temperature in juvenne
1782	750	seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for
1783		
1784	751	environmental monitoring. Estuaries and Coasts 38, 45-55.
1785		
1786 1787	752	Ardeshir, R.A., Zolgharnein, H., Movahedinia, A.A., Salamat, N., Zabihi, E.,
1788	750	Paganstain J. 2017a Introportional finranil affects on liver historythalogical
1789	755	Regenstein, J., 2017a. Intrapentonear npronin effects on river instopatiological,
1790	754	biochemistry and morphology in Caspian kutum. <i>Rutilus frisii</i> kutum (Kamenskii,
1791		
1792	755	1901). Global Journal of Environmental Science and Management-Gjesm 3, 351–362.
1794		
1795	756	Ardeshir, R.A., Zolgharnein, H., Movahedinia, A., Salamat, N., Zabihi, E., 2017b.
1796	757	Comparison of waterborne and intraperitoneal exposure to finronil in the Caspian white
1797	151	comparison of waterbonne and intrapentonear exposure to inproving in the Caspian winte
1790	758	fish (<i>Rutilus frisii</i>) on acute toxicity and histopathology. Toxicology Reports 4, 348–
1800		
1801	759	357.
1802	7/0	
1803	/60	Ardeshir, R.A., Zolgharnein, H., Movahedinia, A., Salamat, N., Zabihi, E., 2018.
1805	761	CYP1A gene expression as a basic factor for fipronil toxicity in Caspian kutum fish
1806	, 01	
1807	762	Toxicology Reports 5, 113–124.
1808		
1810	763	Bencic, D.C., Villeneuve, D.L., Biales, A.D., Blake, L., Durhan, E.J., Jensen, K.M.,
1811	7/1	Kahl M.D. Maluman F.A. Martinavia Waigalt D. Anklay, C.T. 2012 Effects of the
1812	/04	Kani, M.D., Makynen, E.A., Martinovic-weigen, D., Ankley, G.I., 2015. Effects of the
1813	765	insecticide fipronil on reproductive endocrinology in the fathead minnow.
1815		
1816	766	Environmental Toxicology and Chemistry 32, 1828–1834.
1817		
1818	767	Bessey, O.A., Lowry, O.H., Brock, M.J., 1946. A method for the rapid determination of
1820	768	alkaline phosphatase with 5 cubic millimeters of serum Journal of Biological
1821	/00	arkanne phosphatase with 5 euole minimeters of seruni. Journal of Diological
1822	769	Chemistry 164, 321–329.
1823		
1824 1825		
1826		31
1827		
1828		
1829		

1830		
1831		
1832 1833	770	Blanco, M., Fernandes, D., Medina, P., Blazquez, M., Porte, C., 2016. Drospirenone
1834 1835	771	intake alters plasmatic steroid levels and cyp17a1 expression in gonads of juvenile sea
1836 1837	772	bass. Environmental Pollution 213, 541–548.
1838 1839	773	Blazquez, M., Piferrer, F., Zanuy, S., Carrillo, M., Donaldson, E.M., 1995.
1840 1841	774	Development of sex control techniques for European sea bass (Dicentrarchus labrax L)
1843 1844	775	aquaculture: effects of dietary 17 alpha-methyltestosterone prior to sex differentiation.
1845 1846	776	Aquaculture 135, 329–342.
1847 1848	777	Boltana, S., Sanhueza, N., Aguilar, A., Gallardo-Escarate, C., Arriagada, G., Valdes,
1849 1850	778	J.A., Soto, D., Quinones, R.A., 2017. Influences of thermal environment on fish growth.
1851 1852	779	Ecology and Evolution 7, 6814–6825.
1853 1854	780	Bonmatin, J.M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.,
1855 1856	781	Liess, M., Long, E., Marzaro, M., Mitchell, E.A.D., Noome, D.A., Simon-Delso, N.,
1857 1858	782	Tapparo, A., 2015. Environmental fate and exposure; neonicotinoids and fipronil.
1859 1860	783	Environmental Science and Pollution Research 22, 35-67.
1862 1863	784	Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram
1864 1865	785	quantities of protein utilizing the principle of protein-dye binding. Analytical
1866 1867	786	Biochemistry 72, 248–254.
1868 1869	787	Calvo, E., Simo, R., Coma, R., Ribes, M., Pascual, J., Sabates, A., Gili, J.M., Pelejero,
1870 1871	788	C., 2011. Effects of climate change on Mediterranean marine ecosystems: the case of
1872 1873	789	the Catalan Sea. Climate Research 50, 1–29.
1875 1876	790	Clasen, B., Loro, V.L., Cattaneo, R., Moraes, B., Lopes, T., de Avila, L.A., Zanella, R.,
1877 1878	791	Reimche, G.B., Baldisserotto, B., 2012. Effects of the commercial formulation
1879 1880	792	containing fipronil on the non-target organism Cyprinus carpio: Implications for rice -
1881 1882	793	fish cultivation. Ecotoxicology and Environmental Safety 77, 45-51.
1883 1884		
1885		32
1886		
1887		

1889		
1890		
1891 1892	794	Collier, A.C., Tingle, M.D., Keelan, J.A., Paxton, J.W., Mitchell, M.D., 2000. A highly
1893 1894	795	sensitive fluorescent microplate method for the determination of UDP-glucuronosyl
1895 1896	796	transferase activity in tissues and placental cell lines. Drug Metabolism and Disposition
1897 1898 1800	797	28, 1184–1186.
1900 1901	798	Crespo, M., Solé, M., 2016. The use of juvenile Solea solea as sentinel in the marine
1902 1903	799	platform of the Ebre Delta: in vitro interaction of emerging contaminants with the liver
1904 1905	800	detoxification system. Environmental Science and Pollution Research 23, 19229–19236.
1906 1907	801	Dahkqvist, A., 1970. Assay of intestinal disaccharidase. Enzymologia Biologica et
1908 1909	802	Clinica 11, 52–66.
1910 1911	803	Das, P.C., Cao, Y., Cherrington, N., Hodgson, E., Rose, R.L., 2006. Fipronil induces
1912 1913	804	CYP isoforms and cytotoxicity in human hepatocytes. Chemico-Biological Interactions
1914 1915	805	164, 200–214.
1910 1917 1918	806	EFSA, 2013. Conclusion on the peer review of the pesticide risk assessment for bees for
1919 1920	807	the active substance fipronil. EFSA Journal 11, 3158.
1921 1922	808	EPA, 1996. New Pesticide Fact Sheet - Fipronil; EPA 737–F–96–005; U.S.
1923 1924	809	Environmental Protection Agency, Office of Prevention, Pesticides and Toxic
1925 1926	810	Substances, Office of Pesticide Programs, U.S. Government Printing Office
1927 1928	811	Washington, DC, pp. 1–10.
1929 1930	812	Erlanger, B.F., Cohen, W., Kokowsky, N., 1961. Preparation and properties of 2 new
1931 1932	813	chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics 95, 271-
1933 1934 1935	814	278.
1935 1936 1937	815	European Union. Directive 2010/63/EU of the European Parliament and of the Council
1938 1939	816	of 22 September 2010 on the protection of animals used for scientific purposes. Official
1940 1941	817	Journal of the European Union L 276, 20 October 2010, pp. 33-79.
1942		
1943		
1944		33
1945		
1946		
1941		

1948		
1949		
1950	818	<i>European Union</i> Commission Implementing Regulation (EU) Nº 781/2013 of
1951	010	Dav opean emon. Commission implementing regulation (De) iv voi/2019 of
1952	819	14 August 2013 amending Implementing Regulation (EU) No 540/2011, as regards the
1953		
1955	820	conditions of approval of the active substance fipronil, and prohibiting the use and sale
1956		
1957	821	of seeds treated with plant protection products containing this active substance. Official
1958		
1959	822	Journal of the European Union L 219, 15 August 2013, pp. 22–25.
1960	000	
1961	823	FAO, 2005: Cultured Aquatic Species Information Programme. <i>Dicentrarchus labrax</i> .
1962	004	Cultured Aquetic Species Information Programme Text by Pagni M. In: E40
1964	024	Cultured Aquatic Species Information Programme. Text by Bagin, M. III. FAO
1965	825	Fisheries and Aquaculture Department (online) Rome Updated 18 February 2005
1966		
1967	826	(Last consulted 8 September 2019).
1968		
1909	827	Fernández-Alacid, L., Sanahuja, I., Ordonez-Grande, B., Sanchez-Nuno, S., Viscor, G.,
1971		
1972	828	Gisbert, E., Herrera, M., Ibarz, A., 2018. Skin mucus metabolites in response to
1973	000	physiclogical challenges: A valuable non investive method to study taleast marine
1974	027	physiological chanenges. A valuable non-invasive method to study teleost marme
1975	830	species Science of the Total Environment 644 1323–1335
1977		
1978	831	Fernández-Alacid, L., Sanahuja, I., Ordonez-Grande, B., Sanchez-Nuno, S., Herrera,
1979		
1980	832	M., Ibarz, A., 2019. Skin mucus metabolites and cortisol in meagre fed acute stress-
1982	000	attenuating dista. Completing hatwan plants and myous A supplytum 400, 195, 104
1983	833	attenuating diets: Correlations between plasma and mucus. Aquaculture 499, 185–194.
1984	834	Filippov A A Golovanova II 2012 The effect of organic toxicants on sensitivity of
1985	001	Thippov, M.M., Solovalova, I.D., 2012. The effect of organic toxicality of sensitivity of
1986	835	intestinal glycosidases to Cu and Zn in juvenile roach. Inland Water Biology 5, 140–
1987		
1989	836	146.
1990		
1991	837	Filippov, A.A., Golovanova, I.L., Aminov, A.I., 2013. Effects of organic pollutants on
1992	0.00	fish dissetive engrances A review Inland Water Dislows (155, 160
1993	838	fish digestive enzymes: A review. Inland water Biology 6, 155–160.
1994	839	Ghazanfar M. Shahid S. Oureshi I.Z. 2018 Vitamin C attenuates biochemical and
1996	007	Shužuniar, 11., Shunia, 5., Qaroshi, 1.2., 2010. Vitanini C attendates prochemical and
1997	840	genotoxic damage in common carp (Cyprinus carpio) upon joint exposure to combined
1998		
1999	841	toxic doses of fipronil and buprofezin insecticides. Aquatic Toxicology 196, 43-52.
2000		
2002		
2003		34
2004		
2005		
2006		

2007		
2008		
2009 2010	842	Gisbert, E., Gimenez, G., Fernandez, I., Kotzamanis, Y., Estevez, A., 2009.
2011 2012	843	Development of digestive enzymes in common dentex Dentex dentex during early
2013	844	ontogeny. Aquaculture 287, 381–387.
2015	845	Gisbert, E., Nolasco, H., Solovyev, M., 2018. Towards the standardization of brush
2017 2018	846	border purification and intestinal alkaline phosphatase quantification in fish with notes
2019 2020 2021	847	on other digestive enzymes. Aquaculture 487, 102–108.
2022	848	Golovanova, I.L., Kuzmina, V.V., Chuiko, G.M., Ushakova, N.V., Filippov, A.A.,
2024 2025	849	2011. Impact of polychlorinated biphenyls on the activity of intestinal proteinases and
2026 2027	850	carbohydrases in juvenile roach Rutilus rutilus (L.). Inland Water Biology 4, 249–255.
2028 2029	851	González-Mira, A., Torreblanca, A., Hontoria, F., Navarro, J.C., Mananos, E., Varo, I.,
2030 2031	852	2018. Effects of ibuprofen and carbamazepine on the ion transport system and fatty acid
2032 2033	853	metabolism of temperature conditioned juveniles of Solea senegalensis. Ecotoxicology
2034 2035	854	and Environmental Safety 148, 693–701.
2030 2037 2038	855	Gripp, H.S., Freitas, J.S., Almeida, E.A., Bisinoti, M.C., Moreira, A.B., 2017.
2039 2040	856	Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic
2041 2042	857	antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae). Ecotoxicology and
2043 2044	858	Environmental Safety 136, 173–179.
2045 2046	859	Gunes, E., Yerli, S.V., 2011. Effects of Deltamethrin on Lipase Activity in Guppies
2047 2048	860	(Poecilia reticulata). Turkish Journal of Fisheries and Aquatic Sciences 11, 473–476.
2049 2050	861	Gupta, R.C., Milatovic, Dejan, 2014. Insecticides, in: R.C. Gupta (Ed.), Biomarkers in
2051 2052 2053	862	Toxicology. Elsevier Inc., pp. 389–407.
2055 2055	863	Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases – First
2056 2057	864	enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249,
2058 2059	865	7130–7139.
2060		
2061		
2062		35
2063		
∠∪04		

2066		
2067		
2068 2069	866	Hainzl, D., Cole, L.M., Casida, J.E., 1998. Mechanisms for selective toxicity of fipronil
2070 2071	867	insecticide and its sulfone metabolite and desulfinyl photoproduct. Chemical Research
2072 2073	868	in Toxicology 11, 1529–1535.
2074 2075 2075	869	Hansen, J.W., Challinor, A., Ines, A., Wheeler, T., Moron, V., 2006. Translating climate
2076 2077 2078	870	forecasts into agricultural terms: advances and challenges. Climate Research 33, 27-41.
2078 2079 2080	871	Holm, H., Hanssen, L.E., Krogdahl, A., Florholmen, J., 1988. High and low inhibitor
2080	872	soybean meals affect human duodenal proteinase activity differently: in vivo
2083 2084	873	comparison with bovine serum albumin. The Journal of Nutrition, 118, 515-520.
2085 2086	874	Hooper, M.J., Ankley, G.T., Cristol, D.A., Maryoung, L.A., Noyes, P.D., Pinkerton,
2087 2088	875	K.E., 2013. Interactions between chemical and climate stressors: A role for mechanistic
2089 2090	876	toxicology in assessing climate change risks. Environmental Toxicology and Chemistry
2091 2092	877	32, 32–48.
2093 2094	878	Hosokawa, M., Satoh, T., 2005. Measurement of carboxylesterase (CES) activities. In:
2095 2096 2007	879	Costa, L.G., Hodgson, E., Lawrence, D.A., Ozolins, T.R., Reed, D.J., Greenlee, W.F.
2097 2098 2099	880	(Eds.), Current protocols in toxicology. John Wiley & Sons, Chapter 4, unit 4.7.
2100 2101	881	Huang, Q.T., Sheng, C.W., Jiang, J., Tang, T., Jia, Z.Q., Han, Z.J., Zhao, C.Q., 2019.
2102 2103	882	Interaction of insecticides with heteromeric GABA-gated chloride channels from
2104 2105	883	zebrafish Danio rerio (Hamilton). Journal of Hazardous Materials 366, 643-650.
2106 2107	884	Iijima, N., Tanaka, S., Ota, Y., 1998. Purification and characterization of bile salt-
2108 2109	885	activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish
2110 2111 2112	886	Physiology and Biochemistry 18, 59–69.
2112 2113 2114	887	IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups
2115	888	I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
2117 2118	889	Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva,
2119	890	Switzerland 151 pp
2120	-	24
2122		30
2123		

2125		
2126		
2127 2128	891	Izvekova, G.I., Solovyev, M.M., Kashinskaya, E.N., Izvekov, E.I., 2013. Variations in
2129 2130	892	the activity of digestive enzymes along the intestine of the burbot Lota lota expressed
2131 2132	893	by different methods. Fish Physiology and Biochemistry 39, 1683–1684.
2133 2134	894	Jacquin, L., Gandar, A., Aguirre-Smith, M., Perrault, A., Le Henaff, M., De Jong, L.,
2135 2136	895	Paris-Palacios, S., Laffaille, P., Jean, S., 2019. High temperature aggravates the effects
2137 2138 2130	896	of pesticides in goldfish. Ecotoxicology and Environmental Safety 172, 255-264.
2139 2140 2141	897	Jiang, W.Y., Soeprono, A., Rust, M.K., Gan, J., 2014. Ant control efficacy of
2142 2143	898	pyrethroids and fipronil on outdoor concrete surfaces. Pest Management Science 70,
2144 2145	899	271–277.
2146 2147	900	Konwick, B.J., Garrison, A.W., Black, M.C., Avants, J.K., Fisk, A.T., 2006.
2148 2149	901	Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral
2150 2151	902	legacy pesticides in rainbow trout. Environmental Science & Technology 40, 2930-
2152 2153	903	2936.
2154 2155	904	Kuz'mina, V.V., Chuiko, G.M., Pavlov, D.F., 1999. Effects of DDVP, naphthalene, and
2150 2157 2158	905	cadmium on intestinal proteolytic activity in Mozambique Tilapia (Oreochromis
2159 2160	906	mossambicus Peters). Bulletin of Environmental Contamination and Toxicology 62,
2161 2162	907	193–198.
2163 2164	908	Lalles, J.P., 2010. Intestinal alkaline phosphatase: multiple biological roles in
2165 2166	909	maintenance of intestinal homeostasis and modulation by diet. Nutrition Reviews 68,
2167 2168	910	323–332.
2169 2170	911	Leghait, J., Gayrard, V., Picard-Hagen, N., Camp, M., Perdu, E., Toutain, P.L., Viguié,
2171 2172 2173	912	C., 2009. Fipronil-induced disruption of thyroid function in rats is mediated by
2173	913	increased total and free thyroxine clearances concomitantly to increased activity of
2176 2177	914	hepatic enzymes. Toxicology 255, 38–44.
2178		
2179		
2180		37
2182		

2185		
2186 2187	915	Li, H.Z., You, J., Wang, W.X., 2018. Multi-compartmental toxicokinetic modeling of
2188 2189	916	fipronil in tilapia: Accumulation, biotransformation and elimination. Journal of
2190 2191	917	Hazardous Materials 360, 420–427.
2192 2193 2104	918	Lorentz, K., Gutschow, B., Renner, F., 1999. Evaluation of a direct alpha-amylase assay
2194 2195 2196	919	using 2-chloro-4-nitrophenyl-alpha-D-maltotrioside. Clinical Chemistry and Laboratory
2190 2197 2198	920	Medicine 37, 1053–1062.
2199 2200	921	Lu, D.H., Liu, D.H., Gu, X., Diao, J.L., Zhou, Z.Q., 2010. Stereoselective metabolism
2201 2202	922	of fipronil in water hyacinth (Eichhornia crassipes). Pesticide Biochemistry and
2203 2204	923	Physiology 97, 289–293.
2205 2206	924	Makrinos, D.L., Bowden, T.J., 2016. Natural environmental impacts on teleost immune
2207 2208	925	function. Fish & Shellfish Immunology 53, 50–57.
2209 2210	926	Maroux, S., Louvard, D., Baratti, J., 1973. Aminopeptidase from hog intestinal brush
2211 2212 2213	927	border. Biochimica et Biophysica Acta 321, 282–295.
2213	928	Maulvault, A.L., Barbosa, V., Alves, R., Custodio, A., Anacleto, P., Repolho, T.,
2216 2217	929	Ferreira, P.P., Rosa, R., Marques, A., Diniz, M., 2017. Ecophysiological responses of
2218 2219	930	juvenile seabass (Dicentrarchus labrax) exposed to increased temperature and dietary
2220 2221	931	methylmercury. Science of the Total Environment 586, 551–558.
2222 2223	932	Menezes, C., Leitemperger, J., Murussi, C., Viera, M.D., Adaime, M.B., Zanella, R.,
2224 2225	933	Loro, V.L., 2016. Effect of diphenyl diselenide diet supplementation on oxidative stress
2226	934	biomarkers in two species of freshwater fish exposed to the insecticide fipronil. Fish
2220 2229 2230	935	Physiology and Biochemistry 42, 1357–1368.
2231 2232	936	Mnif, W., Hassine, A.I.H., Bouaziz, A., Bartegi, A., Thomas, O., Roig, B., 2011. Effect
2233 2234	937	of endocrine disruptor pesticides: a review. International Journal of Environmental
2235 2236	938	Research and Public Health 8, 2265–2303.
2237		
2238		ગ્ર
2240		
2241		

2244		
2245 2246	939	Navarro, J.M., Paschke, K., Ortiz, A., Vargas-Chacoff, L., Pardo, L.M., Valdivia, N.,
2247 2248	940	2019. The Antarctic fish Harpagifer antarcticus under current temperatures and
2249 2250	941	salinities and future scenarios of climate change. Progress in Oceanography 174, 37-43.
2251 2252 2252	942	Parry, R. M., Chandan, R. C., and Shahani, K. M. (1965). A rapid and sensitive assay of
2255 2254 2255	943	muramidase. Experimental Biology and Medecine 119, 384-386.
2256 2257	944	Qu, H., Ma, R.X., Wang, F., Gao, J., Wang, P., Zhou, Z.Q., Liu, D.H., 2018. The effect
2258 2259	945	of biochar on the mitigation of the chiral insecticide fipronil and its metabolites burden
2260 2261	946	on loach (Misgurnus anguillicaudatus). Journal of Hazardous Materials 360, 214-222.
2262 2263	947	Regoli, F., Giuliani, M.E., 2014. Oxidative pathways of chemical toxicity and oxidative
2264 2265	948	stress biomarkers in marine organisms. Marine Environmental Research 93, 106–117.
2266 2267	949	Samaras, A., Papandroulakis, N., Lika, K., Pavlidis, M., 2018. Water temperature
2200 2269 2270	950	modifies the acute stress response of European sea bass, Dicentrarchus labrax L.
2271 2272	951	(1758). Journal of Thermal Biology 78, 84–91.
2273 2274	952	Sanahuja, I., Fernandez-Alacid, L., Sanchez-Nuno, S., Ordonez-Grande, B., Ibarz, A.,
2275 2276	953	2019. Chronic cold stress alters the skin mucus interactome in a temperate fish model.
2277 2278	954	Frontiers in Physiology 9.
2279 2280	955	Schiedek, D., Sundelin, B., Readman, J.W., Macdonald, R.W., 2007. Interactions
2281 2282	956	between climate change and contaminants. Marine Pollution Bulletin 54, 1845–1856.
2283 2284 2285	957	Schlenk, D., Huggett, D.B., Allgood, J., Bennett, E., Rimoldi, J., Beeler, A.B., Block,
2286 2287	958	D., Holder, A.W., Hovinga, R., Bedient, P., 2001. Toxicity of fipronil and its
2288 2289	959	degradation products to Procambarus sp.: field and laboratory studies. Archives of
2290 2291	960	Environmental Contamination and Toxicology 41, 325-332.
2292 2293	961	Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M.,
2294 2295	962	Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D.,
2296 2297	963	Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., McField, M., Mineau, P.,
2298 2299 2300		39

2302		
2303		
2304 2305	964	Mitchell, E.A.D., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D.,
2306 2307	965	Tapparo, A., Van Dyck, H., Van Praagh, J., Van der Sluijs, J.P., Whitehorn, P.R.,
2308 2309	966	Wiemers, M., 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses,
2310 2311 2212	967	mode of action and metabolites. Environmental Science and Pollution Research 22, 5-
2312 2313 2314	968	34.
2315 2316	969	Simon, L.M., Laszlo, K., Kotorman, M., Vertesi, A., Bagi, K., Nemcsok, J., 1999.
2317 2318	970	Effects of synthetic pyrethroids and methidation on activities of some digestive
2319 2320	971	enzymes in carp (Cyprinus carpio L.). Journal of Environmental Science and Health
2321 2322	972	Part B-Pesticides, Food Contaminants and Agricultural Wastes 34, 819-828.
2323 2324	973	Smith, E.M., Wilson, J.Y., 2010. Assessment of cytochrome P450 fluorometric
2325 2326	974	substrates with rainbow trout and killifish exposed to dexamethasone, pregnenolone-16
2327	975	alpha-carbonitrile, rifampicin, and beta-naphthoflavone. Aquatic Toxicology 97, 324-
2329 2330 2331	976	333.
2332	977	Sokolova, I.M., Lannig, G., 2008. Interactive effects of metal pollution and temperature
2334 2335	978	on metabolism in aquatic ectotherms: implications of global climate change. Climate
2336 2337	979	Research 37, 181–201.
2338 2339	980	Solé, M., Livingstone, D.R., 2005. Components of the cytochrome P450-dependent
2340 2341	981	monooxygenase system and 'NADPH-independent benzo a pyrene hydroxylase' activity
2342 2343	982	in a wide range of marine invertebrate species. Comparative Biochemistry and
2344 2345 2346	983	Physiology C-Toxicology and Pharmacology 141, 20–31.
2340 2347 2348	984	Solé, M., Vega, S., Varo, I., 2012. Characterization of type "B" esterases and hepatic
2349 2350	985	CYP450 isoenzimes in Senegalese sole for their further application in monitoring
2351 2352 2353 2354	986	studies. Ecotoxicology and Environmental Safety 78, 72–79.
2355 2356		
2357		40
2358		
2359 2360		
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360	983 984 985 986	Physiology C-Toxicology and Pharmacology 141, 20–31. Solé, M., Vega, S., Varo, I., 2012. Characterization of type "B" esterases and hepatic CYP450 isoenzimes in Senegalese sole for their further application in monitoring studies. Ecotoxicology and Environmental Safety 78, 72–79. 40

2362			
2363 2364	987	Solé, M., Fortuny, A., Mananos, E., 2014. Effects of selected xenobiotics on hepatic an	ıd
2365 2366	988	plasmatic biomarkers in juveniles of Solea senegalensis. Environmental Research 135,	
2367	989	227–235.	
2309 2370 2371	990	Spain. Royal Decree 53/2013, de 1 de Febrero, por el que se establecen las normas	
2372 2373	991	básicas aplicables para la protección de los animales utilizados en experimentación y	
2374 2375	992	otros fines científicos, incluyendo la docencia. Boletin Oficial del Estado (BOE) nº 34,	
2376 2377	993	8 de Febrero de 2013, pp. 11370–11421.	
2378 2379	994	Stefani Margarido, T.C., Felicio, A.A., Rossa-Feres, D.d.C., de Almeida, E.A., 2013.	
2380 2381	995	Biochemical biomarkers in Scinax fuscovarius tadpoles exposed to a commercial	
2382 2383	996	formulation of the pesticide fipronil. Marine Environmental Research 91, 61-67.	
2384 2385	997	Sun, L., Jin, R., Peng, Z., Zhou, Q., Qian, H., Fu, Z., 2014. Effects of trilostane and	
2387 2388	998	fipronil on the reproductive axis in an early life stage of the Japanese medaka (Oryzias	
2389 2390	999	latipes). Ecotoxicology 23, 1044–1054.	
2391 2392	1000	Tavares, M.A., Palma, I.D.F., Medeiros, H.C.D., Guelfi, M., Santana, A.T., Mingatto,	
2393 2394	1001	F.E., 2015. Comparative effects of fipronil and its metabolites sulfone and desulfinyl of	n
2395 2396	1002	the isolated rat liver mitochondria. Environmental Toxicology and Pharmacology 40,	
2397 2398	1003	206–214.	
2399 2400	1004	Vargas-Chacoff, L., Arjona, F.J., Ruiz-Jarabo, I., Pascoa, I., Goncalves, O., del Rio,	
2401 2402 2403	1005	M.P.M., Mancera, J.M., 2009. Seasonal variation in osmoregulatory and metabolic	
2403 2404 2405	1006	parameters in earthen pond-cultured gilthead sea bream Sparus auratus. Aquaculture	
2406 2407	1007	Research 40, 1279–1290.	
2408 2409	1008	Vassault, A., 1983. Lactate dehydrogenase, in: M.O. Bergmeyer (Ed.), Methods of	
2410 2411	1009	enzymatic analysis, enzymes: oxidoreductases, transferases. Academic Press, New	
2412 2413	1010	York, pp. 118–126.	
2414			
2415 2416		4	11
2417			-
2418			
2419			

2420		
2421 2422 2423	1011	Vinagre, C., Madeira, D., Narciso, L., Cabral, H.N., Diniz, M., 2012. Effect of
2424 2425	1012	temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the
2426 2427	1013	muscle of juvenile seabass, Dicentrarchus labrax. Ecological Indicators 23, 274–279.
2428 2429 2420	1014	Wang, X., Martinez, M.A., Wu, Q.H., Ares, I., Martinez-Larranaga, M.R., Anadon, A.,
2430 2431 2432	1015	Yuan, Z.H., 2016. Fipronil insecticide toxicology: oxidative stress and metabolism.
2433	1016	Critical Reviews in Toxicology 46, 876–899.
2434 2435 2436	1017	WHO, 2009. The WHO recommended classification of pesticides by hazard and
2437 2438	1018	guidelines to classification: 2009. World Health Organisation (WHO).
2439 2440	1019	Wu, H., Gao, C., Guo, Y., Zhang, Y., Zhang, J., Ma, E., 2014. Acute toxicity and
2441 2442	1020	sublethal effects of fipronil on detoxification enzymes in juvenile zebrafish (Danio
2443 2444	1021	rerio). Pesticide Biochemistry and Physiology 115, 9-14.
2445 2446 2447	1022	Xiong, D.M., Xie, C.X., Zhang, H.J., Liu, H.P., 2011. Digestive enzymes along
2447 2448 2449	1023	digestive tract of a carnivorous fish <i>Glyptosternum maculatum</i> (Sisoridae, Siluriformes).
2450	1024	Journal of Animal Physiology and Animal Nutrition 95, 56-64.
2451 2452 2453	1025	Zaugg, W.S., 1982. A simplified preparation for adenosine-triphosphatase
2454 2455	1026	determination in gill tissue. Canadian Journal of Fisheries and Aquatic Sciences 39,
2456 2457	1027	215–217.
2458 2459	1028	Zhang, B., Zhang, L., He, L.J., Yang, X.D., Shi, Y.L., Liao, S.W., Yang, S., Cheng,
2460 2461	1029	J.G., Ren, T.R., 2018. Interactions of Fipronil within fish and insects: experimental and
2462 2463	1030	molecular modeling studies. Journal of Agricultural and Food Chemistry 66, 5756-
2464 2465	1031	5761.
2466 2467 2468	1032	Zhao, X.L., Yeh, J.Z., Salgado, V.L., Narahashi, T., 2005. Sulfone metabolite of
2469 2470	1033	fipronil blocks gamma-aminobutyric acid- and glutamate-activated chloride channels in
2471 2472	1034	mammalian and insect neurons. Journal of Pharmacology and Experimental
2473 2474	1035	Therapeutics 314, 363–373.
2475 2476		42
2477		

2479	
0400	
2480	
2481	
2101	1036
2482	4007
2402	1037
2403	1020
2484	1030
2101	1039
2485	1007
2/96	1040
2400	
2487	1041
	1042
2488	1042
2/00	1043
2409	1045
2490	1044
2400	1011
2491	1045
2402	4044
2492	1040
2493	1047
	1047
2494	1048
2/05	
2495	1049
2496	
0.407	
2497	
2408	
2430	
2499	
2500	
2501	
2301	
2502	
0500	
2503	
2504	
2004	
2505	
0500	
2506	
2507	
2007	
2508	
0500	
2509	
2510	
2010	
2511	
0540	
2512	
2513	
2010	
2514	
0545	
2515	
2516	
2010	
2517	
0540	
2518	
2519	
2520	
2524	
ZJZI	
2522	
0500	
2523	
2521	
2024	
2525	
0500	
2526	
2527	
2021	
2528	
2520	
2029	
2530	
2531	
2520	
2002	
2533	
2534	
2525	
2000	
2536	
2537	

Tables

Table 1. Mean \pm standard deviation for biometric measurements, general condition indices and feeding rate of European sea bass exposed to fipronil under two temperature regimes before exposure (t0) after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day depuration period following exposure (t21). Provided values on feeding rate were calculated from food consumption reported for each group during the previous week to each sampling. N: number of individuals, F: females, M: males, SL: standard length, TW: total weight, CF: condition factor, HSI: hepatosomatic index, GSI: gonadosomatic index.

T °C	Time	N (F.M)	SL (cm)	TW (cm)	CF	HSI	GSI (F)	GSI (M)	Visceral fat (g)	Feeding rate
		(F:M)								(g/11Sh)
13 °C	t0	8 (2:6)	20.50 ± 2.67	125.08 ± 52.18	1.37 ± 0.08	2.08 ± 0.71	0.15 ± 0.02	0.11 ± 0.12	5.05 ± 2.41	0.42 ± 0.16
	t7	8 (6:2)	23.04 ± 0.60	174.27 ± 17.67	$1.43\pm\ 0.19$	$2.24\pm\ 0.84$	$0.28\pm\ 0.03$	$0.24\pm\ 0.06$	6.53 ± 1.63	0.46 ± 0.08
	t14	8 (6:2)	21.65 ± 1.62	145.81 ± 27.47	$1.42\pm\ 0.10$	$2.32\pm\ 0.73$	$0.20\pm\ 0.09$	$0.04\pm\ 0.01$	6.07 ± 1.44	0.49 ± 0.11
	t21	8 (4:4)	22.56 ± 0.82	164.99 ± 9.11	1.44 ± 0.11	$2.72\pm\ 0.47$	$0.23\pm\ 0.08$	$0.09\pm\ 0.05$	7.28 ± 1.95	0.83 ± 0.17
16 °C	t0	8 (4:4)	20.69 ± 2.14	138.14 ± 40.01	1.51 ± 0.12	$1.99\pm\ 0.54$	$0.23\pm\ 0.02$	$0.10\pm\ 0.08$	5.56 ± 1.69	0.38 ± 0.12
	t7	8 (6:2)	21.56 ± 2.31	152.29 ± 45.19	$1.48\pm\ 0.20$	$2.25\pm\ 0.57$	$0.21\pm\ 0.06$	$0.07\pm\ 0.01$	6.01 ± 2.82	0.47 ± 0.06
	t14	8 (7:1)	21.50 ± 2.49	153.30 ± 52.76	$1.49\pm\ 0.11$	$2.21\pm\ 0.55$	$0.22\pm\ 0.08$	-	6.72 ± 2.43	0.66 ± 0.14
	t21	8 (7:1)	22.63 ± 1.83	163.82 ± 33.24	$1.40\pm\ 0.08$	$1.88\pm\ 0.73$	$0.25\pm\ 0.05$	0.05	6.20 ± 2.81	0.85 ± 0.14

Table 2. Values of Pearson's correlation coefficient for bivariate correlations performed among oxidative-stress markers (LPO, GR, GPX and CAT), CYPs (EROD, BROD, MROD, BFCOD, CECOD and ECOD) and phase II metabolism markers (GST and UDPGT). Abbreviations for enzymatic markers can be found in the corresponding sections throughout the text. * p<0.05; **p<0.01; *** p<0.001; – non-significant result. n = 64.

2588													
2589		LPO (muscle)	LPO (liver)	GR	GPX	CAT	GST	EROD	BROD	MROD	BFCOD	CECOD	ECOD
2590	LPO (muscle)												
2591	LPO (liver)	-											
2592	GR	_	-0.332**										
2593	GPX	_	_	0.488***									
2594	CAT	_	_	-0.294*	_								
2595	GST	0.266*	0.416**	-0.473***	_	_							
2596	EROD	_	_	0.279*	0.361**	_	_						
2597	BROD	_	_	0.254*	_	_	_	0.526***					
2598	MROD	_	_	0.273*	0.371**	_	-0.361**	0.871***	0.642***				
2099	BFCOD	_	_	_	_	_	_	_	0.403**	_			
2601	CECOD	_	_	_	0.263*	_	_	0.781***	0.547***	0.704***	_		
2602	ECOD	-0.311*	_	_	0.329*	_	_	0.673***	0.562***	0.768***	_	0.698***	
2603													-
2604	UDPGT	_	_	_	_	0.347**	_	-0.315*	_	-0.287*	0.259*	_	0.297*
2605													
2606													
2607													
2608													
2609													
2610													
2611													
2612													
2013													
2615													
2616													
2617													

Table 3. Concentration of the chemical compounds fipronil and fipronil-sulfone determined in bile and of fipronil in muscle of European sea bass exposed to fipronil under two temperature regimes before exposure (t0) after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day depuration period following exposure (t21). Each value corresponds to a pool of samples from 8 fish individuals. Quantification in bile at t7 was not possible due to sample limitations. LOD: limit of detection.

T °C	Time	Muscle	Bile	
		Fipronil	Fipronil (ng/ml)	Fipronil sulfone
		(ng/g)		(ng/ml)
13 °C	t0	< LOD	< LOD	< LOD
	t7	88.4	-	-
	t14	64.6	4.08 ± 7.35	10.84 ± 9.02
	t21	< LOD	0.76 ± 0.47	15.17 ± 8.03
16 °C	t0	< LOD	< LOD	< LOD
	t7	42.9	-	-
	t14	57.7	4.70 ± 4.65	38.43 ± 20.16
	t21	< LOD	0.63 ± 0.62	34.58 ± 30.87

Figure captions

Figure 1. Histograms displaying glucose and lactate levels in skin mucus (A and B, respectively) and plasma (C and D, respectively) of European sea bass exposed to fipronil under two temperature regimes before exposure (t0) after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day depuration period following exposure (t21). Different letters show differences across temporal replicates (One-way ANOVA, p < 0.05). No differences between temperatures were detected. Figure 2. Histograms displaying lipid peroxidation levels (LPO) (B) and activity levels of the enzymes catalase (CAT, A), glutathione-S-transferase (GST, C), Cytochrome P450-related BROD and MROD (D and E, respectively), NADPH Cytochrome C reductase (F), trypsin (G) and maltase (H) (the two latter in anterior intestinal region) in different tissues of European sea bass exposed to fipronil under two temperature regimes before exposure (t0) after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day depuration period following exposure (t21). Different letters show differences across temporal replicates (One-way ANOVA, p < 0.05). No differences between temperatures were detected, except for NADPH Cyt C reductase. Figure 3. Plots showing first and second components (A) and first and third components (B) of the principal components analysis (PCA) applied on biochemical data of European sea bass exposed to fipronil under two temperature regimes (filled symbols, 13 °C; empty symbols, 16 °C) before exposure (triangles, t0) after 7 and 14 days of exposure (squares, t7 and circles, t14) and after a 7-day depuration period

following exposure (rhombus, t21). Fish data were grouped according to combination of temperature and time conditions. Vectors represent Pearson' correlations between each variable and the PCA axis. The outer circle represents a correlation = 1.

H)

□ 13 °C ■ 16 °C

Electronic supplementary material (ESM)

Materials and Methods

Chemical analyses on bile

Fipronil reference standards (fipronil, fipronil sulfone, fipronil-desulfinyl, and fipronil-(pyrazole-¹³C₃, cyano-¹³C)) were high purity (\approx 90 %) and were obtained from Sigma Aldrich (St. Luis, MO, U.S). LC-MS grade acetonitrile (ACN) (\geq 99.9 %), methanol (MeOH) (\geq 99.9 %) and water were purchased from Merck (Darmstadt, Germany). Formic acid (\geq 96 %, ACS reagent) and ammonium acetate were supplied by Sigma-Aldrich. Polypropylene 96-well plates, 700 µL were furnished by Waters Corporation (Milford, MA, US). Fipronil, fipronil sulfone and fipronil-desulfinyl stock standard solutions (1000 mg/L) were prepared in, and the working standard solutions required for quantification were prepared from stock solution by dilution with ACN. All standard solutions were stored at -20 °C before use. Fipronil-(pyrazole-¹³C₃, cyano-¹³C) stock solution (1000 mg/L) used as internal standard (IS) was prepared in ACN and stored at -20 °C.

The extraction methodology was as follows. Briefly, the 2-mL Eppendorf vials containing the glands were slowly defrosted in an ice bath for 30 minutes. Then, glands were incised with a syringe needle to allow bile to leak, the bag was removed and the vials were vortexed for 30 seconds. Sixty microliters of bile content were added to 675 μ L of 0.1 N HCl and vortexed for 30 seconds. Then, 200 μ L of cold ACN and 25 μ L of IS solution (1000 μ g/L) were added (final volume 960 μ L) and the vial was vortexed for 30 seconds more. Subsequently, the vials were centrifuged for 10 minutes at 10,000 rpm and 4 °C using a 5810 R centrifuge (Eppendorf AG, Hamburg, Germany). About 800 μ L of the supernatants were transferred to a polypropylene 96-deepwell plate for the following analysis by ultra-high-performance liquid chromatography (UPLC)-high

resolution multiple reaction monitoring (HR-MRM) for quantification of target compounds. To evaluate the method extraction, a blank sample (control, in triplicate) fortified at 10 ng/mL was run in parallel to the set of samples (Supplementary material, Figure S1).

All analyses were performed using a SCIEX ExionLCTM AD system coupled to a hybrid SCIEX X500R QTOF system (Sciex, Redwood City, CA, U.S.) equipped with a Turbo VTM source and Electrospray Ionization (ESI). Fipronil and its metabolites were separated on a reverse phase Hibar® HR Purospher® STAR RP-C18 column (50 mm × 2.1 mm i.d., 2 µm particle size, Merck, Darmstadt, Germany), maintained at 40 °C in the column oven. The mobile phases consisted of 5 mM ammonium formate in water (A) and 5 mM ammonium formate buffer and 0.05 % formic acid MeOH (B) at a flow rate of 0.6 mL/min. The gradient elution program was as follows: 0.3–1.10 min 5–40 % B, 1.10–2.20 min 40–80 % B, 2.20–3.60 min 80–87 % B, 3.60–4.00 min 87–95 % B, 4.00–5.00 min 5 % B. The injection volume was 5 µL and the auto-sampler temperature was maintained at 8 °C. The QTOF system was operated in ESI negative with multiple reaction monitoring scan mode in high resolution (MRM-HR).

High resolution data were acquired using a multiple reaction monitoring (MRM^{HR}) workflow consisting of a TOF-MS survey (100–850 Da for 100 ms of Accumulation time (AT); Declustering Potential (DP) was set to –80 V and a Collision Energy (CE) to –10 V), and MRM^{HR} scanning mode was used for accurate quantification of product ion transitions. The Guided MRM^{HR} tool from SCIEX was used for the optimization of high resolution transitions (Fig. S2). The source conditions for the system were optimized as follow. Ion Spray Voltage was set to –4500 V; Source temperature and nitrogen gas flows (Atomizing gas, GS1 and Auxiliary gas, GS2) were set to 550 °C and 50 psi,

respectively. Curtain gas was set to 30 psi, Declustering Potential (DP) was set to -80 V.

Qualitative and quantitative analyses were performed using SCIEX OS[™] Software version 1.4 (Sciex, Redwood City, CA, U.S.). According to SANTE European Commission guideline for pesticides (SANTE/11813/2017), two ions with mass accuracy equal or mass difference lower than 5 ppm are necessary for confirming a positive finding for the identification in HR-QToF-MS analysis. In the present study, two high resolution ions were used for each compound, the most abundant product ion for the quantification and the precursor ion for the confirmation. Any drift in the mass accuracy of the SCIEX Q-TOF was automatically corrected and maintained throughout batch acquisition by infusion of a cluster of trifluoroacetic acid (5(TFA-Na)+TFA-, m/z 792.85963) for negative mode. Calibration was running every 5 samples during the batch acquisition making use of the Calibrant Delivery System (CDS).

Chemical analyses on muscle

Ethyl acetate was the solvent used for gas chromatography-ECD and FID from Merck (Darmstadt, Germany). QuEChERS Final Polish and QuEChERS dSPE EMR-Lipid were from Agilent (Santa Clara, CA, USA). Samples were freeze dried on a Telstar LyoAlfa 6 freeze dryer during 24 h at -80 °C and 0.1 mbar.

A standard stock solution of commercial Regent&800WG (80% fipronil) at 1000 µg/mL in ethyl acetate was prepared, step-wise diluted to 100 ng/mL and used to spike QuEChERS to assess recovery throughout the analytical procedure. Six QuEChERS Final Polish were spiked with 0, 50, 100, 150, 200 and 250 µL of the 100 ng/mL fipronil standard solution, respectively. A 6 points calibration curve ranging from 100 to 1000 ng/mL was prepared from the 1 µg/mL fipronil standard solution with ethyl

acetate as a solvent. Standard solutions of 100, 200, 300, 400, 500 and 1000 ng/mL were used to calibrate the Gas Chromatography-Mass Spectrometry (GC/MS) instrument before the samples and spiked tubes analysis. Sample preparation was based on the QuEChERS method with ethyl acetate. 0.5 g of freeze dried fish muscle sample were weighed in a QuEChERS Final Polish tube and 10 mL ethyl acetate were added. The tube was hand-shaken until total solid suspension. QuEChERS Final Polish tubes were then vortexed for 1 minute and centrifuged for 10 minutes at 5,000 rpm, tap covered. 6 mL supernatant were transferred to a QuEChERS dSPE EMR-Lipid tube, vortexed for 2 minutes and centrifuged 5 minutes at 5,000 rpm at room temperature. 4 mL supernatant were evaporated to dryness under a gentle stream of nitrogen. Extracts were solved in 50 μ L ethyl acetate, 2 μ L to be injected in the GC/MS instrument. A GC/MS equipment QP 2010 from Shimadzu (Kyoto, Japan) was used to instrumentally determine fipronil in muscle samples. Analyser was used in electronic ionization mode. Column used was a SPB-1 Supelco (Bellefonte, PA, USA) 30 m long, 0.25 mm d.i. and 0.25 µm film thickness. Injector temperature was 260 °C. The GC oven temperature program was as follows: 60 °C held for 1 min, ramped at 20 °C/min to 160 °C held for 1 min, then ramped at 3 °C/min to 200 °C held for 2 min, followed by 4 °C/min to 250 °C and held for 4 min. MSD transfer line was at 250 °C, and ion source was set at 200 °C. Electron impact energy was -70 eV, solvent delay was 5 min and detector gain was 2.0 kV. Carrier gas was helium at a flow of 1.00 mL/min. Acquisition mode was SIM (Selected ion monitoring) for m/z 367, 369, 213, 255 (fipronil most abundant ions in the scan mass spectrum). For method evaluation, a blank and 5 standard spiked tubes were run in parallel to the set of samples.

Data analyses

Prior to statistical treatment, Kolmogorov-Smirnov test was used for testing normality and Levene's test for checking homoscedasticity of all variables. The presence of outliers was evaluated and some variables were log- or square-root transformed to comply with normality and homoscedasticity requirements. Relationships among biological variables (SL, BW, HSI, GSI, CF, visceral fat and sex) and between them and biochemical variables were tested by Pearson' or Spearman' rank correlations (in the case of continuous variables) and by Student's t-tests or Mann-Whitney U-tests (for sex-related differences).

Differences in the level of activity of digestive enzymes between anterior and posterior parts of the digestive tract were tested for each experimental temperature using the Wilcoxon pairwise test with repeated measurements using PAST 3.

Possible effects of treatment duration (four categories: t0, t7, t14 and t21) and temperature (two categories: 13 °C and 16 °C) on fish biological and biochemical variables were tested by general linear models (GLMs) or generalized linear models (GZMs). Fish biological variables that had previously displayed significant correlations with biomarkers were incorporated as covariates in GLMs/GZMs to test possible interactions with the two factors assessed (i.e. treatment duration and temperature). Afterwards, Student's t-test/Mann-Whitney U-test and one-way ANOVA/Kruskal-Wallis tests were performed to determine differences between/among categories of factors temperature and time, respectively, when a significant effect was detected in previous GLMs/GZMs.

Pearson' or Spearman' rank correlations were used to explore relationships among activities of CYPs in liver microsomal fraction, among antioxidant enzymes in liver cytosolic fraction and between both. Associations among metabolites quantified within plasma and mucus, and between metabolites of both matrices were assessed in the same way. Significant associations among digestive enzymes activities were assessed by means of a Spearman' rank correlations in anterior and posterior portions of digestive tract.

A permutation multivariate analysis (PERMANOVA) was carried out using individual fish as replicate samples in order to assess a global biochemical response to the factors temperature and treatment duration (i.e. exposure to fipronil). Permutation p-values were obtained under unrestricted permutation of raw data (9999 permutations). Finally, a principal component analysis (PCA) was performed and plotted in two dimensions. Pearson's correlation between each variable and PCA axes was calculated. The two multivariate analyses were applied on a Euclidean distance-based matrix derived from normalized data after square-root transformation. For PCA, data were grouped according to combination of temperature with treatment durations. All biomarkers included in the present work were considered in these analyses, with the exception of digestive enzymes, plasma ammonia content and ECOD activity, for which an excessive number of missing values occurred.

Student t-test, Mann-Whitney U-test, Kruskal-Wallis test, one-way ANOVA, GLM, GZM and correlation tests were run in IBM SPSS (Statistics for Windows, Version 20.0) or Statistica 6 (StatSoft[®], Richmond, USA). Wilcoxon pairwise tests with repeated measurements were performed using PAST 3. Multivariate analyses were carried out using PRIMER PERMANOVA+ v6 (Anderson et al., 2008).

Results

Chemical analyses on bile

Levels of fipronil-desulfinyl quanified in bile were below the limit of quantitation (LOQ) and thus not reported. MS/MS conditions of the target compounds were

optimized in negative HR ESI mode. The optimal MRM-HR parameters including precursor ions, product ions, DP, and CE are shown in Table S7. Linearity was determined using the peak areas of the product ions obtained from the MRM-HR acquisition. Results are provided in Table S8. The standard calibration curves consisted of 9 concentration levels (0.05-200/ng mL) and were set up by plotting the target analyte concentrations against the peak areas. However, the TOF detector responses were linear from 0.05 to 10 ng/mL ($R^2 < 0.998$). A recovery experiment was performed to determine the accuracy and precision of the extraction method fortifying 3 blank samples at 10 ng/mL (Fig. S1). The average recoveries of fipronil and its metabolites ranged from 93.3% to 109.3% with a relative standard deviation (RSD) of 1.7-3.8% (n = 3) (Table S8). The limits of detection (LODs) were calculated at 3 times the signal to noise ratio generated from all the samples, and the LOQs were taken as the minimum concentration of a compound that can be measured by the instrument; both are reported in Table S8.

Chemical analysis on muscle

Regarding method evaluation, ion m/z 367 was the base peak in fipronil mass spectrum, but an interference with this m/z ion was detected in blank samples. Recoveries from the spiked tubes calculated using m/z 367 as quantitation ion were inconsistent and over 100 % in some cases. In order to disregard interferences, quantitation ion was changed to m/z 369. In this case, recoveries were low but consistent: mean 29.7 %, standard deviation 2.7 % (n = 4). An outlier result was disregarded. Sample concentrations were then corrected by this recovery mean result.

References

Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK.

SANTE/11813/2017: Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. rev.0, 21–22 November 2017, European Commission, Brussels, 42 pp.

Tables

Table S1. Mean \pm standard error of the mean for metabolites quantified in plasma and skin mucus, and plasmatic osmolality, of seabass exposed to Fipronil under two temperature regimes before exposure (t0), after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day depuration period following exposure (t21). Biomarker units can be found in the corresponding sections throughout the text.

Tissue	Biomarker	13 °C				<u>16 °C</u>				
		t0	t7	t14	t21	t0	t7	t14	t21	
Plasma	Glucose	11.04 ± 1.42	19.04 ± 2.60	15.23 ± 1.91	21.23 ± 2.22	11.86 ± 1.46	19.19 ± 1.99	15.66 ± 0.93	15.58 ± 1.32	
	Lactate	5.27 ± 0.55	6.36 ± 1.11	6.50 ± 0.45	7.81 ± 0.88	5.83 ± 0.41	7.93 ± 0.71	6.60 ± 0.44	7.55 ± 0.54	
	Osmolality	370.50 ± 4.69	390.86 ± 8.03	383.29 ± 4.92	392.63 ± 3.98	374.57 ± 5.61	397.29 ± 4.92	395.00 ± 7.15	400.50 ± 9.12	
Mucus	Glucose	1.17 ± 0.22	1.10 ± 0.14	0.88 ± 0.10	0.57 ± 0.07	1.09 ± 0.09	1.10 ± 0.15	1.24 ± 0.11	0.60 ± 0.09	
	Lactate	0.74 ± 0.13	0.71 ± 0.16	0.76 ± 0.11	0.42 ± 0.08	0.64 ± 0.09	1.08 ± 0.12	1.11 ± 0.14	0.49 ± 0.09	
	Glucose/protein	6.15 ± 1.67	6.39 ± 0.98	3.31 ± 0.47	5.99 ± 1.42	4.02 ± 0.61	4.97 ± 0.75	4.64 ± 0.64	4.11 ± 0.54	
	Lactate/protein	4.00 ± 0.92	3.57 ± 0.65	2.70 ± 0.36	3.30 ± 0.56	2.28 ± 0.24	4.59 ± 0.37	3.94 ± 0.50	3.10 ± 0.50	
	Glucose/lactate	1.61 ± 0.25	1.65 ± 0.21	1.37 ± 0.10	1.95 ± 0.29	1.67 ± 0.16	1.06 ± 0.12	1.22 ± 0.15	1.17 ± 0.11	

Table S2. Values of statistical parameters obtained when testing relationships between biomarkers and fish biological variables (SL: standard length, TW: total weigth, CF: condition factor, HSI: hepatosomatic index and GSI: gonadosomatic index). Pearson's or Spearman correlation coefficients are provided for bivariate correlations (in the case of continuous variables) and t statistic for Student's t-test (for differences between sexes). Abbreviations an units for enzymatic markers can be found in the corresponding sections throughout the text. * p<0.05; **p<0.01; *** p<0.001; - non-significant result. n = 64 (except for digestive biomarkers, for which n = 48).

Tissue	Biomarker	SL	тw	CF	HSI	GSI	Visceral fat weight	Sex
Muscle	I PO	_	_	_	_	_		_
Liver - S9	I DH	_	_	_	_	_	_	_
	LPO	0 286*	_	_	_	_	_	_
Liver - cytosol	GR	-0.336*	-0 494***	-0 299*	_	_	-0 333**	_
Liver Cytosof	t-GPX	_	_	_	_	_	_	_
	САТ	_	_	_	_	_	_	_
	GST	0 308*	0 423**	0 305*	_	_	0 320*	2 707**
Liver -microsomes	FROD	-	_	_	-0 484***	_	-0.273*	_
	BROD	_	_	_	-0 324**	_	_	_
	MROD	_	_	_	-0.587***	_	-0 293*	_
	BECOD	_	_	_	_	_	_	_
	CECOD	_	_	_	-0 262*	_	_	_
	ECOD	_	_	-0 292*	-0.651***	_	_	_
	LIDPGT	_	_	0.391**	0.440***	_	0.285*	_
	NADPH-Cvt C reductase	_	_	_	_	_	0.285*	_
	NADH-Cyt C reductase	_	_	_	_	-0 257*	_	_
	NADH-Eyr C reductase	_	_	_	_	-0.237	_	_
Kidney	Na ⁺ /K ⁺ - A TPase	_	_	_	_	_	_	_
Plasma	Glucose	0 315*	0 430**	0 357**	0 413**	_	0 375**	_
1 Iusinia	Lactate	0.515	0.450	0.557	0.415	_	0.300*	_
	Osmolality		0.520	0.511	0.400		0.500	_
	Ammonia				0.312*		- 0.336*	_
	Lysozume	-		-	0.207*	-	0.330*	_
Skin muous	Chucose	0.287	0.438	0.270*	0.297	0.290	0.434	-
Skiii Inucus	Lastata	-	-	0.200	-	—	-	-
	Chucago/protoin	-	-	0.538	-	_	0.303	—
	Giucose/protein	0.281	0.255	-	-	_	-	—
		-	0.295*	-	-	_	-	-
Digestive tract -	Glucose/lactate	_	-	-	_	-	_	_
anterior	Trypsin	_	_	-	_	_	-	_
	Cnymotrypsin	_	_	-	_	_	-0.323*	_
	Lipase	-	-	-	-	_	-	-
	Esterases	-	_	0.342*	0.42/**	_	_	_
	Amylase	-	_	-	-	_	_	_
	Alkaline phosphatase	_	_	-0.453**	-0.496**	_	-	_
	Aminopeptidase	-	-	-	0.318*	_	-	-
Digestive tract -	Maltase	-	-	-	-	_	-	-
posterior	Trypsin	-	-	-	-	_	-	-
	Chymotrypsin	-	-	-	0.336*	-	-	-
	Lipase	0.304*	-	-	-	-	-	-
	Esterases	_	-	-	-	-	-	_
	Amylase	_	-	-	-	_	-	_
	Alkaline phosphatase	-	-0.438**	-0.313*	-0.475**	-	-0.394**	—
	Aminopeptidase	-	-	_	-	-	-	_
	Maltase	-	_	_	_	_	_	_

Table S3. Mean \pm standard error of the mean for enzymatic markers quantified in muscle, liver, kidney and plasma of seabass exposed to Fipronil under two temperature regimes before exposure (t0), after 7 and 14 days of exposure (t7 and t14, respectively) and after a 7-day depuration period following exposure (t21). Abbreviations and units for biomarkers can be found in the corresponding sections throughout the text.

Tissue	Biomarker	13 °C				16 °C			
		t0	t7	t14	t21	t0	t 7	t14	t21
Plasma	Lysozyme	7.14 ± 0.38	11.60 ± 1.25	8.11 ± 0.70	10.73 ± 1.02	6.24 ± 1.45	9.03 ± 2.78	12.36 ± 0.50	13.24 ± 2.53
Muscle	LPO	2.99 ± 0.74	3.03 ± 0.46	5.57 ± 1.37	4.12 ± 0.72	3.14 ± 1.06	6.21 ± 1.09	5.30 ± 0.70	5.41 ± 1.88
Liver (S9)	LDH	15.11 ± 0.90	14.85 ± 1.11	16.25 ± 1.17	16.23 ± 1.00	15.48 ± 1.48	14.58 ± 1.42	15.61 ± 1.37	15.49 ± 1.38
	LPO	10.10 ± 1.74	15.81 ± 1.72	14.12 ± 1.57	16.82 ± 2.18	10.15 ± 1.45	13.69 ± 1.21	13.02 ± 1.62	17.35 ± 1.96
Liver (cytosol)	GR	7.48 ± 1.02	6.03 ± 0.86	6.85 ± 0.68	7.98 ± 0.84	7.39 ± 0.63	7.20 ± 0.94	5.56 ± 1.05	7.84 ± 1.17
	t-GPX	7.11 ± 0.37	6.60 ± 0.40	6.70 ± 0.33	7.16 ± 0.54	8.12 ± 0.40	6.64 ± 0.38	7.13 ± 0.52	7.97 ± 0.31
	CAT	103.68 ± 12.47	90.70 ± 8.68	92.85 ± 11.35	63.84 ± 10.27	96.70 ± 7.19	108.92 ± 8.75	111.12 ± 6.28	76.88 ± 11.33
	GST	36.94 ± 1.73	39.49 ± 1.51	42.83 ± 3.52	43.26 ± 2.71	39.44 ± 2.62	36.45 ± 2.43	48.27 ± 2.52	51.05 ± 5.80
Liver (microsomes)	EROD	22.04 ± 2.09	18.75 ± 2.98	15.48 ± 1.38	15.33 ± 1.31	25.35 ± 3.86	24.36 ± 4.37	17.01 ± 3.23	18.14 ± 2.56
	BROD	0.69 ± 0.06	0.66 ± 0.07	0.54 ± 0.05	0.55 ± 0.07	0.76 ± 0.11	0.63 ± 0.07	0.49 ± 0.08	0.47 ± 0.07
	MROD	4.70 ± 0.32	3.74 ± 0.51	2.80 ± 0.34	2.34 ± 0.18	5.00 ± 0.71	4.17 ± 0.64	2.91 ± 0.60	3.40 ± 0.78
	BFCOD	62.91 ± 5.23	88.69 ± 13.95	94.29 ± 11.36	98.97 ± 22.34	87.23 ± 19.95	65.81 ± 10.38	68.65 ± 12.07	64.05 ± 9.80
	CECOD	31.06 ± 5.11	30.65 ± 4.68	19.14 ± 1.63	21.66 ± 2.09	33.45 ± 5.34	29.98 ± 3.73	23.44 ± 4.39	24.80 ± 2.31
	ECOD	9.42 ± 1.47	8.51 ± 1.66	3.99 ± 1.05	3.35 ± 0.66	10.03 ± 3.17	6.34 ± 1.40	6.53 ± 3.52	7.18 ± 1.97
	UDPGT	0.78 ± 0.09	0.76 ± 0.07	0.77 ± 0.14	0.78 ± 0.08	0.81 ± 0.13	0.75 ± 0.09	0.77 ± 0.08	0.82 ± 0.08
	NADPH Cyt C reductase	19.42 ± 0.98	19.06 ± 1.08	22.14 ± 1.57	22.98 ± 2.24	18.04 ± 1.49	17.07 ± 1.22	18.99 ± 1.11	18.94 ± 1.44
	NADH Cyt C reductase NADH Ferricyanide reductase	31.94 ± 2.33 1079 ± 93	23.58 ± 4.11 1145 ± 111	22.79 ± 3.36 1167 ± 103	23.12 ± 3.84 1095 ± 66	31.97 ± 5.34 1184 ± 107	28.69 ± 3.80 1006 ± 95	26.15 ± 4.86 1208 ± 108	29.02 ± 3.60 1184 ± 75
Kidney	Na ⁺ /K ⁺ -ATPase	1.94 ± 0.51	1.17 ± 0.14	1.39 ± 0.27	1.40 ± 0.13	1.10 ± 0.17	0.91 ± 0.11	1.09 ± 0.22	1.35 ± 0.17

Table S4. Mean \pm standard error of the mean for enzymatic markers quantified in anterior and posterior parts of the digestive tract of seabass exposed to Fipronil under two temperature regimes before exposure (t0), after 14 days of exposure (t14) and after a 7-day depuration period following exposure (t21). Units for biomarkers can be found in the corresponding sections throughout the text.

Tissue	Fissue Fraction		13 °C			16 °C			
			t0	t14	t21	t0	t14	t21	
Digestive tract	Pancreatic	Trypsin	51.00 ± 10.56	60.80 ± 2.25	48.80 ± 1.25	49.90 ± 7.52	61.20 ± 2.63	45.60 ± 3.07	
anterior		Chymotrypsin	104.70 ± 33.26	94.70 ± 32.25	80.50 ± 10.13	95.40 ± 33.75	69.00 ± 24.63	61.60 ± 15.87	
		Lipase	42.70 ± 11.33	23.50 ± 2.48	21.80 ± 3.23	27.30 ± 3.52	34.10 ± 4.57	21.50 ± 3.73	
		Alpha-amylase	7.70 ± 1.33	4.40 ± 0.92	4.50 ± 1.54	5.50 ± 0.41	5.30 ± 0.92	5.70 ± 1.26	
		Non-specific esterases	523.70 ± 55.64	517.70 ± 77.30	457.90 ± 34.76	541.50 ± 32.53	564.40 ± 35.19	415.60 ± 38.22	
	Brush border	Alkaline-phosphatase	918.00 ± 309.79	966.60 ± 233.57	$1,\!023.40 \pm 147.92$	$1,\!026.40 \pm 163.29$	742.40 ± 116.31	$1,\!177.40 \pm 284.87$	
		Aminopeptidase	148.10 ± 24.04	218.80 ± 33.60	220.50 ± 22.80	177.80 ± 25.03	117.30 ± 22.32	149.20 ± 22.70	
		Maltase	42.90 ± 8.63	250.10 ± 50.02	242.30 ± 24.02	43.50 ± 3.30	127.10 ± 21.62	214.00 ± 39.23	
Digestive tract	Pancreatic	Trypsin	57.10 ± 12.98	47.70 ± 2.55	47.80 ± 1.78	64.40 ± 10.03	52.10 ± 3.38	45.70 ± 3.22	
posterior		Chymotrypsin	117.30 ± 39.39	231.40 ± 84.12	176.10 ± 59.25	340.30 ± 142.84	180.20 ± 85.15	332.30 ± 145.94	
		Lipase	30.00 ± 5.69	30.80 ± 3.94	30.40 ± 6.06	27.30 ± 8.46	28.60 ± 3.71	24.90 ± 3.82	
		Alpha-amylase	3.10 ± 0.44	4.90 ± 0.79	9.70 ± 2.48	3.40 ± 0.40	5.80 ± 1.15	6.20 ± 1.52	
		Non-specific esterases	587.70 ± 56.37	477.20 ± 43.85	519.70 ± 27.89	481.00 ± 12.44	553.70 ± 58.99	447.40 ± 43.69	
	Brush border	Alkaline-phosphatase	626.70 ± 193.56	826.20 ± 175.18	749.70 ± 97.03	776.90 ± 95.46	540.80 ± 109.19	745.00 ± 176.76	
		Aminopeptidase	97.20 ± 6.81	159.30 ± 21.09	178.90 ± 27.34	154.20 ± 19.76	93.50 ± 11.08	104.70 ± 15.78	
		Maltase	26.20 ± 2.92	158.20 ± 23.95	150.50 ± 25.26	32.80 ± 2.44	93.60 ± 11.88	116.30 ± 17.48	

Table S5. Values of Pearson's coefficient for bivariate correlations performed among the activities of digestive enzymes in the anterior part of the digestive tract. * p<0.05; **p<0.01; *** p<0.001. – non-significant result.

	Trypsin	Chymotrypsin	Lipase	Non-specific esterases	Alpha- amylase	Alkaline phosphatase	Aminopeptidase	Maltase
Trypsin								
Chymotrypsin	_							
Lipase	_	_						
Non-specific esterases	_	_	0.537***					
Alpha-amylase	_	_	0.411**	0.326*				
Alkaline phosphatase	_	_	_	-0.362*	_			
Aminopeptidase	_	_	_	-	_	0.343*		
Maltase	_	_	_	_	-0,420**	0.482**	0.516***	

Table S6. Values of Pearson's coefficient for bivariate correlations performed among the activities of digestive enzymes in the posterior part of the digestive tract. * p<0.05; **p<0.01; *** p<0.001. – non-significant result.

	Trypsin	Chymotrypsin	Lipase	Non-specific esterases	Alpha- amylase	Alkaline phosphatase	Aminopeptidase	Maltase
Trypsin								
Chymotrypsin	_							
Lipase	_	_						
Non-specific esterases	_	_	0.550***					
Alpha-amylase	_	0.351*	_	_				
Alkaline phosphatase	_	-0.331*	_	_	_			
Aminopeptidase	_	_	_	_	_	0.593***		
Maltase	_	_	_	-	_	0.504***	0.573***	

Compound ID	Precursor ion (m/z)	Fragment ion (m/z)	Retention time (min)	Accumulation time (sec)	Declustering potential (V)	Collision energy (V)
Fipronil	434.9309	329.96	2.76	0.05	-25	-20
Fipronil Sulfone	450.9258	414.9508	2.84	0.05	-25	-20
Fipronil- desulfinyl	386.9639	350.9889	2.72	0.05	-100	-20
Fipronil-(13C3, cyano-13C)	438.9317	333.9745	2.75	0.05	-25	-20

Table S7. Parameters for analysis of fipronil and its metabolites in bile: exact mass, transitions and retention time obtained by UPLC-HR-QToF-MS.

Table S8. Linear regression parameters of the calibration curve of fipronil and its metabolites in bile.

Compound	Linearity range (ng/mL)	LOD (ng/mL)	LOQ (ng/mL)	R ²	Accuracy (%)
Fipronil	0.05-10	0.01	0.05	0.99963	109.3 (2.4)
Fip. Sulfone	0.05-10	0.01	0.05	0.99985	93.3 (1.7)
Fip. Desulfynil	0.05-10	0.01	0.05	0.99844	93.8 (3.8)

Figure captions

Figure S1. Extracted Ion Chromatograms (XIC), TOF/MS and MS/MS spectra of fipronil (A) and its metabolites, fipronil sulfone (B) and fipronil-desulfinyl (C) in fortified samples spiked at 10 ng/ml.

Figure S2. Extracted Ion Chromatograms (XIC), TOF/MS and MS/MS spectra of fipronil metabolites in Sample #13 after 21 days. A, fipronil sulfone and B, fipronil-desulfinyl.

Declaration of interests

¹ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Authors: Sara Dallarés, Priscila Dourado, Ignasi Sanahuja, Mikhail Solovyevd, Enric Gisbert, Nicola Montemurro, Amparo Torreblanca, Mercedes Blázquez, Montserrat Solé

Manuscript: Multibiomarker approach to fipronil exposure in the fish Dicentrarchus labrax under two temperature regimes

Manuscript: Multibiomarker approach to fipronil exposure in the fish Dicentrarchus labrax under two temperature regimes

Authors: Sara Dallarés, Priscila Dourado, Ignasi Sanahuja, Mikhail Solovyevd, Enric Gisbert, Nicola Montemurro, Amparo Torreblanca, Mercedes Blázquez, Montserrat Solé

Since this manuscript considers many disciplines all contributed to a particular topic:

- I. Sanahuja: mucus and plasma biomarkers
- M. Solovyevd and E. Gisbert: digestive enzymes
- N. Montemurro: chemical analysis
- A. Torreblanca: osmoregulatory parameters

S. Dallares, P. Dourado, M. Blazquez and M. Sole: designed and conducted the laboratory experiment, analysed the remaining parameters, coordinated and wrote the manuscript as well as the final English version of the revised manuscript.