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Abstract 

Chickpea cooking water, also known as aquafaba, generated in our homes is generally discarded 

as waste. However, this valuable resource contains high quantities of proteins with excellent 

techno functional properties. The current paper aimed at optimising the pH and the cooking 

conditions needed to improve the foaming and emulsifying capacity of aquafaba, as well as the 

stability of the generated foams and emulsions using a response surface methodology. In 

general, lowering the pH of the aquafaba using lemon juice and decreasing the chickpea:water 

ratio during boiling resulted in increased functional properties. The validation tests carried out 

confirmed the overall adequacy of the response surface models in predicting the functionality of 

the aquafaba. Moreover, the chickpea cooking water obtained using the optimised conditions 



was used to develop meringues and mayonnaises, which were compared to those obtained using 

egg proteins. 

Keywords: Chickpea cooking water, emulsifying capacity, foaming capacity, vegan meringue, 

vegan mayonnaise, response surface methodology. 

 

Introduction 

Agricultural practices in the near future will need to adapt and contribute to the mitigation of 

climate change, help preserve natural habitats, protect endangered species, and maintain high 

levels of bio- diversity. Protein production and consumption are pivotal to sustainability. 

Animal-derived proteins have been traditionally used to create edible foams, such as meringue, 

and emulsions like mayonnaise. However, producing 1 kg of animal protein requires 

approximately 6 kg of plant protein, rendering the large-scale production of animal protein one 

of the major drivers of diversity loss, climate change, freshwater depletion, and antibiotics 

resistance (Aiking, 2014). For this reason, together with an increase in the proportion of 

individuals choosing to follow a vegan diet (Radnitz et al., 2015), big efforts are being made in 

the development of novel foods which are suitable for those consumers who choose not to 

consume animal proteins for either cultural, traditional, or religious factors. Indeed, several 

products containing plant- derived proteins, utilised as meat or egg replacers, have been 

launched to the market over the last years and these include VeganEgg™ (Earth Island, USA), 

Økologisk Plantefars™ (Naturli’ Foods, Denmark), and Just Mayo (Hampton Creek Foods, 

USA) among others. Beyond their nutritional and bioactive attributes, proteins are especially 

interesting ingredients because of their functionality, which allows them to be used as 

ingredients in the development of a wide range of products. Industrially relevant functional 

properties of proteins include foaming and emulsifying capacities. Emulsions consist of two 

immiscible liquids, generally water and oil, with one of them being dispersed as small droplets 

in the other. Mayonnaise belongs to the oil-in-water emulsions group and consists of oil 

droplets dispersed in an aqueous phase. It is possible to form an emulsion using pure oil and 

pure water together, but emulsions are thermodynamically unstable systems and water and oil 



rapidly separate into two phases. For this reason, in order to obtain emulsions that are stable for 

a reasonable period of time it is necessary to use stabilisers such as emulsifiers (or texture 

modifiers, weighting agents, or ripening inhibitors) which usually are amphiphilic molecules 

such as proteins that are capable of adsorbing to an oil-water interface and avoid aggregation 

(McClements, 2015). Moreover, liquid and solid foams are encountered extensively not only in 

the food industry (i.e. meringues, cakes, beer) but also in the cosmetic and textile industries. 

Liquid foams can be considered as an “emulsion” of, for example, air in water and there are 

many similarities between the mechanisms underlying stability of emulsions and foams (Hunter 

et al., 2008). The key building component of most common aerated structures are protein 

foams. The inherent instability of foams, which can be improved by modifying the pH or 

adding co-solutes such as modified starch, make their use in industrial applications very 

difficult (Asghari et al., 2016). Other strategies such as sonication also showed to improve 

foaming capacity (Meurer et al., 2020). However, for some applications, egg white proteins 

remain the only industrially available alternative.  

Most common plant proteins used at industrial levels include those derived from pulses such as 

soy, chickpeas, and peas. Chickpeas (Cicer arietinum L.) are annual grain legumes native to the 

Mediterranean region and the major ingredient of many Mediterranean, Indian, and Middle 

Eastern dishes such as hummus or falafel. Chickpeas are generally soaked overnight and boiled 

to obtain both, a texture that is acceptable to consumers, and improve nutritional quality 

(Chenoll et al., 2009). Chickpea boiling water or aquafaba generated at domestic level or 

obtained from canned chickpeas is generally discarded. However, this resource is valuable not 

only because of its high content of health-promoting compounds such as polyphenols (Lafarga 

et al., 2019) but also because of its high protein content. Recently, Buhl et al. (2019) calculated 

the protein content of canned aquafaba as approximately 13 g/L. Over the last few years, a 

large number of recipes and online tutorials showed how chickpea boiling water could mimic 

functional properties of egg whites (Meurer et al., 2020). However, only a limited number of 

scientific studies assessed and measured the functionality of chickpea cooking water (CCW) or 

aquafaba (Damian et al., 2018; Mustafa et al., 2018; Stantiall et al., 2018; Meurer et al., 2020; 



Buhl et al., 2019). Functional properties of proteins in solution depend on different factors 

including protein concentration and pH. The effect of the pH on the functionality of proteins is 

related to the modification of their net charge (Drago and González, 2001). For this reason, the 

current paper aimed at optimising the pH and domestic boiling conditions (chickpea:water 

ratio) required to improve the foaming and emulsifying properties of CCW using response 

surface methodology (RSM). The CCW obtained using the optimised conditions was used to 

develop an edible foam and an emulsion that were compared against ones made using egg white 

proteins. 

Materials and methods  

Plant material and chemical reagents  

Chickpeas var. Blanco lechoso (Legumbres Luengo S.A., León, Spain), Azucarera® caster 

sugar (Azucarera Iberia S.L., Madrid, Spain), pasteurised egg whites (Guillén S.L., Valencia, 

Spain), Solimón® lemon juice (Derivados Citricos S.A., Murcia, Spain), and Solnatur™ 

sunflower oil (Borges Branded Foods S.L., Lleida, Spain) were purchased locally.  

Experimental design and sample processing  

Chickpeas were soaked in tap water for 24 h at a chickpea:water ratio (CWR) of 1:3 (w/v). 

After this period, the soaking water was discarded and the soaked chickpeas were boiled at 

different CWRs (Table 1) in a 3.9 L stainless steel cooking pot with lid. The total volume 

(chickpea plus boiling water) was kept constant by adding boiling water when needed. Boiling 

time was 190 min as this was the minimum time needed to reach tenderness for an adequate 

palatability and taste, according to Spanish eating habits. Once the chickpeas were cooked, the 

CCW or aquafaba was recovered and filtered using glass wool (SigmaAldrich Química S.L., 

Madrid, Spain). The pH of the CCW was adjusted after filtration using lemon juice added drop 

by drop (only a few drops were needed).  

Protein determination was performed using the Bio-Rad Protein Assay Kit, which is based on 

the Bradford method (Bradford, 1976). 



A response surface methodology, or more explicit a central composite face-centred design, was 

used to observe the effect of CWR and pH on the foaming capacity (FC) and emulsifying 

capacity (EC) of the CCW and on the stability of the generated foams and emulsions. To give a 

good estimation of the replicate error, five replicates at the centre point were conducted. Coded 

values for each parameter are shown in Table 1. Independent variables were CWR, which varied 

from 1:1.5 to 1:5.0, and pH, which varied from 3.5 to 6.5. The levels of each independent 

parameter were chosen considering conventional chickpea domestic cooking conditions and pH 

values of foods. The experimental runs were performed twice resulting in two blocks that were 

randomised and analysed in triplicate. Experimental data were fitted to a polynomial response 

surface, which was predicted by the following Equation (1):



       (1) 

where Y is the dependent variable, β0 is the centre point of the system, βi , βii , and βij are the 

coefficients of the linear, quadratic, and interactive effect, and Xi Xi2, and XiXj are the linear, 

quadratic, and interactive effect of the independent variables. The non-significant terms (p < 

0.05) were deleted from the second order polynomial model after ANOVA analysis and a new 

ANOVA was performed to obtain the coefficients of the final equation for better accuracy. The 

optimisation was done as described by Odriozola-Serrano et al. (2009). Design Expert 7.0 

software (Stat Ease Inc., MN, US) was used to generate the models that fit the experimental data 

and to obtain the response surface plots.  

Foaming capacity and foam stability  

To create foams, samples were homogenised using a T-25 digital ULTRA-TURRAX® 

homogeniser (IKA, Saufen, Germany) operating at 14,000 rpm for 1 min and the volume of 

foam generated was measured using a graduate cylinder. The volume of the graduated cylinder 

was 250 mL and the initial volume of liquid was 30 mL. FC was calculated as volume of foam 

generated as a percentage of the initial volume of solution and foam stability (FS) was 

expressed as the percentage of decrease of foam after 10 min described by Garcia-Vaquero et al. 

(2017). FC and FS were calculated using the equations: 

𝐹𝐶	(%) = 	!!"	!"
!!

· 100  

where V0 is the volume of CCW before homogenisation and VF is the volume of foam generated 

after homogenisation, and 

𝐹𝑆	(%) = 	!#"
!!
· 100  

where V10 is the volume of foam remaining after 10 min and VF is the initial volume of foam 

generated after homogenisation.  



Emulsifying capacity and emulsion stability  

Emulsions were generated by adding sunflower oil to the CCW at an oil:aqueous phase ratio of 

3:2 (v/v) and homogenising the mixture using a T-25 digital ULTRA-TURRAX® homogeniser 

(IKA, Saufen, Germany) operating at 14,000 rpm for 2 min. Emulsions were then centrifuged at 

14,000 rpm for 5 min using a Sigma 3–18 KS centrifuge (Sigma Laborzentrifugen GmbG, 

Osterode am Harz, Germany). EC was expressed as the percentage of emulsion generated and 

was measured as described by Garcia-Vaquero et al. (2017). To determine the emulsion stability 

(ES), the previously generated emulsions were heated at 85 °C for 10 min, cooled at room 

temperature for 5 min, and further centrifuged at 14,000 rpm for 2 min. ES was expressed as the 

percentage of emulsion remaining after centrifugation as determined by Garcia-Vaquero et al. 

(2017). EC and ES were calculated using the equations: 

𝐸𝐶	(%) = 	
𝑉$
𝑉%
· 100 

where VE is the volume of the emulsion layer after centrifugation and VT is total volume inside 

the tube and 

𝐸𝑆	(%) = 	
𝑉&
𝑉'
· 100 

where VH is the volume of the emulsion remaining after heating and Vi is volume of emulsion 

subjected to heating. 

Development of vegan edible foams and emulsions  

Meringues were made as described by Stantiall et al. (2018). Each batch consisted of 160 g of 

either CCW (pH adjusted using lemon juice) or commercial pasteurised egg whites and 230 g of 

caster sugar. Foaming agents were whipped for 3 min at a medium speed (level 4) using an AM-

7000 mixer (Orbegozo, Murcia, Spain) equipped with a 15-wire whip whisk. The caster sugar 

was then incorporated into the foam and whipped for a further 13 min period at maximum speed 

(level 6). Doses of 15 ± 1 g were weighed, placed on a baking tray, and each batch was baked at 



100 °C for 75 min in a Rational SCC WE-101 oven (Rational AG, Landsberg am Lech, 

Germany). Meringues were allowed to cool at room temperature for 1 h before being placed in 

sealed polyethylene bags at room temperature until analysis took place. Mayonnaises were 

made following the recipe described by Di Mattia et al. (2015) with some modifications. 

Mayonnaise made using egg whites contained: 500 g of sunflower oil, 120 g of egg whites, 30 g 

of vinegar, and 1 g of table salt. Mayonnaise made using CCW contained 500 g of sunflower 

oil, 150 g of CCW (pH adjusted using lemon juice), and 1 g of table salt. Mayonnaises were 

prepared using a T-25 digital ULTRA-TURRAX® homogeniser (IKA, Saufen, Germany) in a 

two-step process. Eggs or CCW, vinegar or tap water, and salt were preliminary mixed at 100 

rpm for 3 min. Once these ingredients were mixed, oil was added under homogenisation at 

14,000 rpm for 5 min. Both emulsions were prepared in triplicate and stored at 4 °C until further 

analysis.  

Colour  

Colour readings of the meringues and mayonnaises were taken in triplicate using a Minolta CR-

200 chroma meter (Minolta INC, Tokyo, Japan). Calibration was performed using a standard 

white tile provided by the manufacturer and the D65 illuminant, which approximates to 

daylight. CIE values were recorded in terms of L* (lightness), a* (redness/greenness), and b* 

(yellowness/blueness). Chroma (Ch) and difference from the control (ΔE), which compares 

foams or emulsions made using CCW and those made using egg white, were calculated using 

the equations: 

𝐶ℎ = 	/𝑎∗) + 𝑏∗) 

 

where L*CCW, a*CCW, and b*CCW  are the colour parameters of the foam or emulsion made using 

CCW and L*EW, a*EW, and b*EW  the colour parameters of foams or emulsions made using egg 

whites. 



Sensorial analysis 

Sensory evaluation was undertaken approximately 24 h after meringues and mayonnaises were 

made with 40 untrained panellists recruited from IRTA Fruitcentre. Sensory evaluation was 

conducted in triplicate in a sensory laboratory with separate booths as described by Lafarga et 

al. (2018b). Briefly, samples were place on white polystyrene plates labelled with random codes 

and presented to consumers in a randomised order (mayonnaises were served spread on a slice 

of soft white bread). Each panellist assessed all the samples and was asked to indicate his or her 

opinion on the overall appearance, overall acceptance, flavour, and texture of the products using 

a 9-point hedonic scale (from 1: dislike extremely to 9: like extremely). The acceptability index 

was calculated using the following equation: 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	(%) = 	
𝑋
9
· 100 

where X is the mean of the scores obtained for overall acceptance.  

Statistical analysis  

Results are expressed as mean ± standard deviation (S.D.). Difference between samples were 

analysed using analysis of variance with JMP 13 (SAS Institute Inc., Cary, USA). Where 

significant differences were present, a Tukey pairwise comparison of the means was conducted 

to identify where the sample differences occurred. The criterion for statistical significance was p 

< 0.05.  

Results and discussion  

Effect of chickpea:boiling water ratio and pH on foaming capacity and foam stability  

Table 1 shows the effect of the different conditions studied on the FC and FS of the CCW 

obtained varying CWR and pH values. Although the capacity of CCW to generate foams is now 

well known, and CCW is used for developing vegan foams such a meringues in many homes, 

scientific data assessing the FC and FS of CCW is scarce. This makes it difficult to compare the 



results obtained herein with those previously reported by other research groups. Mustafa et al. 

(2018) recently evaluated the foaming capacity and stability of aquafaba and obtained foaming 

capacity values ranging from 400 to 500%. However, the aquafaba assessed in that study was 

obtained from commercial chickpea cans and the method used for evaluating the foaming 

capacity was different to the one reported herein: whipping time varied from 1 min in the 

current study to 2–15 min in the paper authored by Mustafa et al. (2018). In addition, Stantiall et 

al. (2018) assessed the foaming ability of the cooking water of haricot beans, chickpeas, green 

lentils, and split yellow peas, obtained after boiling at a pulse:water ratio of 1:1.75 (w/ w), and 

reported foaming capacities ranging from 39 to 97%. The foaming ability of the chickpea 

cooking water in that study was 58%. Results obtained by Stantiall et al. (2018) are lower to the 

ones obtained herein. However, in that study the pH of the cooking water was not adjusted and 

lowering the pH of the solution is of key importance to obtain increased foaming abilities 

(Lafarga et al., 2018a). The effect of the pH on the FC of proteins is related to the modification 

of their net charge, which affects foam formation as well as film viscoelastic properties (Drago 

and González, 2001).  

The FC could be fitted by a polynomial quadratic equation in terms of the studied conditions as 

described in Equation (2). 

  (2) 

The statistical analysis indicates that the proposed quadratic model for FC was adequate (p < 

0.001) with good determination coefficient (R2 = 0.9224; Table 2). Both CWR and pH had a 

significant effect on FC (p < 0.001) as well as the combined effect of both parameters (p < 

0.05). The linear term of both CWR and pH was negative, which indicates that an increase in 

these parameters will cause a decrease on FC. This is clear as a higher CWR means a lower 

protein content in the cooking water and both, protein content and pH are of key importance for 

good foaming abilities. Previous studies suggested that FC is higher at low pH values because 



of increased net charges on the proteins, which weaken the hydrophobic interactions but 

increase the flexibility of the proteins (Ragab et al., 2004). Kaur and Singh (2007) also linked 

good foaming abilities with flexible molecules that can reduce surface tension. Although foams 

are thermodynamically unstable as their decay results in decrease of the free energy, the kinetic 

mechanisms involved in their breakdown can be slow enough so that they can be considered as 

metastable for their application (Hunter et al., 2008).  

In the present study, the ANOVA also indicated that the proposed two-factor interaction model 

for FS was suitable and showed a good determination coefficient (p < 0.0001; R2 = 0.9583; 

Table 3). CWR and pH also affected FS (p < 0.001 and p < 0.0001, respectively). FS could be 

modelled by Equation (3). 

   (3) 

No significant lacks of fit were obtained in both cases, suggesting that they both fit properly for 

prediction across the design space. Both, the pH and the CWR were indirectly related to FC and 

FS values (Fig. 1). 

Effect of chickpea:boiling water ratio and pH on emulsifying capacity and emulsion stability 

Table 1 also shows the effect of the different conditions studied on the EC and ES of the CCW 

obtained varying CWR and pH values. Results obtained for EC and ES were comparable to 

those obtained for FC and FS, as lower pH and CWR values resulted in increased EC and ES 

(Fig. 1). Results also correlate well to those reported for other legume-derived proteins where 

both FC and EC were higher at lower pH values (Lafarga et al., 2018b). This is caused because 

both the EC of proteins and the ES depend on the hydrophilic-lipophilic balance, which is pH-

dependant (Ragab et al., 2004). In the current study, a negative correlation was observed 

between CWR and protein concentration (R2 = 0.9866; 0.05) indicating that the protein content 

of the aquafaba obtained boiling the chickpeas at a lower CWR had a higher protein 

concentration. The protein concentration of the aquafaba obtained at CWR of 1.50, 3.25, and 

5.00 was measured as 0.48 ± 0.01, 0.23 ± 0.04, and 0.08 ± 0.00 mg/100 mL, respectively. 



Proteins are surfactants which contain a hydrophilic “head” group that interacts with water and a 

lipophilic “tail” group which has affinity for oil and improve emulsion formation and stability 

(McClements, 2015). Gharsallaoui et al. (2009) reported higher EC and ES of pea proteins at 

pH 2.4, when compared to alkaline conditions, attributed to a lower adsorption of proteins 

combined with interfacial film reorganisation, which prevented film rupture increasing ES. 

Moreover, addition of sodium chloride, generally used at home level during the preparation of 

mayonnaise, could also affect the EC of the proteins as Khalid et al. (2003) observed that 

incorporation of salt increased EC by increasing the solubility of the proteins. Again, only a 

limited number of studies evaluated the technofunctional capacity of aquafaba. Damian et al. 

(2018) recently reported EC values for the cooking water of haricot beans, chickpeas, whole 

green lentils, and split yellow peas, cooked at a legume:water ratio of 1:1.75 (w/w), as 22.8, 

38.6, 47.1, and 16% respectively. Although these values were within the range measured in the 

current study (3.9–72.3%), these cannot be compared as the pH in that study was not adjusted 

and ranged between 6.07 and 6.47 for haricot beans and lentils, respectively. In the current 

study, the EC could be fitted by a polynomial quadratic equation in terms of the studied 

conditions as described in Equation (4). 

     (4) 

The statistical analysis indicates that the proposed quadratic model for EC was adequate (p < 

0.0001) with good determination coefficient (R2 = 0.9659; Table 2). Both CWR (p < 0.0001) 

and pH (p < 0.05) had a significant effect on FC. Moreover, ES could be modelled by Equation 

(5). 

     (5) 

The ANOVA also indicated that the proposed two-factor interaction model for ES was accurate 

and showed a good determination coefficient (p < 0.0001; R2 = 0.9234). CWR and pH 

influenced FS (p < 0.0001 and p < 0.005, respectively). Again, as it happened with FC and FS, 



no significant lacks of fit were obtained, suggesting that both EC and ES fit properly for 

prediction within the ranges studied herein. 

Optimisation and validation of the boiling conditions  

The combined CWR and pH conditions that led to, on the one side, higher FC and FS, and on 

the other, higher EC and ES, were determined. Overall, higher foaming and emulsifying 

abilities were obtained when working at lower pH and CWR (higher protein content) values, 

which correlates well with the results shown in Fig. 1. To obtain the highest FS and FC, the 

optimum CWR and pH conditions were predicted to be 1.50 and 3.50, respectively (Desirability 

= 1.000). In addition, in order to obtain the optimum (highest) EC and ES values, the predicted 

CWR and pH values were 1.72 and 3.50, respectively (Desirability = 1.000) – The nearest the 

Desirability is to the unit, the more adequate the system is (Odriozola-Serrano et al., 2009). To 

complete the study, a set of experiments was conducted in order to validate the predictive 

models. The data, shown in Fig. 2, demonstrated that the predicted FC, FS, EC, and ES values 

were accurate enough to fit the experimental results, as correlation coefficients were 0.9261, 

0.9609, 0.9706, and 0.9274 for FC, FS, EC, and ES, respectively. In addition, the optimum 

conditions were also validated against experimental results. The optimised FC, FS, EC, and ES 

values were predicted 332.4, 93.6, 73.0, and 80.0%. These values were validated in vitro and 

were calculated as 325.6 ± 8.3, 91.6 ± 5.5, 76.2 ± 4.9, and 80.9 ± 4.6%, respectively. 

Comparison between vegan and egg-based meringues and mayonnaises 

Colour attributes of the egg-based and vegan meringues and mayonnaises are listed in Table 4. 

Overall, no differences were observed between the colour parameters of meringues made using 

egg of aquafaba – except for a small difference in a* values (p < 0.05). The ΔE value between 

both samples was calculated as 1.7. Those samples with ΔE > 3 display a colour deviation 

which is visible to the human eye (Wibowo et al., 2015), suggesting that no colour differences 

could be seen between both samples (Fig. 3B). Results contrast with those recently reported by 

Stantiall et al. (2018), who made meringues using either egg proteins or aquafaba obtained after 



boiling different legumes and observed that the visual appearance as well as the volume of the 

legume-derived meringues was lower than that of the control. In that study, the cooking 

conditions were not optimised to obtain higher FC and FS values. Moreover, the authors of that 

study used fresh egg white (in the current paper we utilised pasteurised eggs) and that can 

partially explain the observed differences. Mayonnaises made using egg or aquafaba did show 

colour differences (p < 0.05). Egg-based mayonnaises showed higher L* and lower Ch values (p 

< 0.05), which suggest a lighter appearance and a lower colour intensity when compared to 

mayonnaises made using aquafaba or CCW. In addition, ΔE was higher than three suggesting a 

visible colour difference between both mayonnaises.  

No differences were detected between the sensorial (flavour, texture, and overall acceptance) 

scores of meringues made using pasteurised egg whites or aquafaba (Table 4). Results on 

sensorial analysis are preliminary and must be taken with caution, especially those on overall 

acceptance as the ideal would have been to assess acceptability using ∼100 consumers. Similar 

results were observed for mayonnaises, although the overall acceptance score was lower for the 

mayonnaises formulated using CCW (p < 0.05). Results were comparable to those recently 

published by Damian et al. (2018), who observed no significant differences between the 

appearance of mousse made using chickpea proteins and the control made using egg-derived 

proteins. 

Mustafa et al. (2018) also obtained good quality sponge cakes after substituting egg proteins by 

aquafaba, although in that case the aquafaba was obtained from commercial chickpea cans and 

not simulating domestic cooking conditions. Because of its high foaming ability, chickpea 

cooking water also showed potential for being used as texture improvers in gluten-free breads. 

Indeed, Bird et al. (2017) observed reduced crumb hardness after incorporating chickpea boiling 

water into a bread formulation and when compared to the breads obtained by using xanthan 

gum. Ma et al. (2016) also suggested that pulse-derived proteins were promising and valuable 

replacements of egg proteins in emulsion-type food products. The authors of that study 

optimised a salad dressing formulation using RSM and obtained products with textural 



properties that were comparable to those of the control. Although products made using egg 

whites obtained higher acceptability indexes, all of the samples had an acceptability of over 

80%. For a product to be accepted in terms of sensorial characteristics, it is necessary to achieve 

an acceptability index greater than 70% (Lucas et al., 2018). Therefore, based on the sensorial 

analysis we can expect that the manufactured vegan meringues and mayonnaises would have a 

good acceptance. However, as highlighted previously, results on sensorial analysis are 

preliminary and further studies using a larger group of panellists are required. In addition, 

panellists were not told which sample was made using egg whites and which ones not. 

Conclusions  

When prepared at home level, both the boiling conditions and the adjustment of the pH resulted 

to be of key importance in order to maximise the foaming and emulsifying abilities of chickpea 

aquafaba as well as the stability of the developed foams and emulsions. Once the pH and the 

boiling conditions were optimised, the obtained aquafaba was used to develop meringues and 

mayonnaises that showed quality and sensorial properties which were comparable to those of 

the controls, made using egg proteins. Overall, chickpea cooking water or aquafaba may be 

potential replacers of egg whites in the manufacture of high quality meringues and 

mayonnaises. Future studies will evaluate the effect of processing (heat and sonication) as well 

as the effect of NaCl and other common food ingredients on the functional properties of 

aquafaba.  
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Figure Captions 

Fig. 1. Model graphs obtained for (A) foaming capacity, (B) foam stability, (C) 

emulsifying capacity, and (D) emulsion stability. 

Fig. 2. Scatter plots of the predicted and experimental data of (A) foaming capacity, 

(B) foam stability, (C) emulsifying capacity, and (D) emulsion stability. 

Fig. 3. Comparison between (A) foaming/emulsifying agents, (B) meringues and 

(C) mayonnaises made using: (i) egg whites or (ii) chickpea cooking water. 

 Table 1. Central composite response surface design and calculated responses under different 

conditions   

Parameters Variables b    

Run a CWR (w/v) pH FC (%) FS (%) EC (%) ES (%) 
1 1:3.25 5.0 264 ± 14 59.2 ± 5.0 56.1 ± 1.0 43.6 ± 2.8 
2 1:3.25 5.0 264 ± 6 56.8 ± 3.2 55.6 ± 0.6 40.2 ± 0.9 
3 1:5.00 3.5 294 ± 1 78.3 ± 1.7 15.7 ± 0.0 0.0 ± 0.0 
4 1:5.00 6.5 175 ± 7 3.4 ± 3.1 3.9 ± 0.0 0.0 ± 0.0 
5 1:3.25 6.5 185 ± 1 31.8 ± 5.5 47.2 ± 2.0 12.5 ± 1.8 
6 1:1.50 5.0 270 ± 3 70.2 ± 3.4 62.8 ± 1.5 66.0 ± 2.7 
7 1:3.25 5.0 260 ± 9 64.8 ± 1.1 40.1 ± 1.4 25.6 ± 1.8 
8 1:5.00 5.0 162 ± 1 36.9 ± 0.6 6.3 ± 1.2 0.0 ± 0.0 
9 1:1.50 6.5 199 ± 3 44.8 ± 4.0 58.1 ± 0.5 32.7 ± 2.3 
10 1:3.25 3.5 296 ± 7 81.5 ± 4.6 61.5 ± 0.9 44.8 ± 3.4 
11 1:3.25 5.0 223 ± 2 47.4 ± 1.3 57.6 ± 0.4 40.6 ± 1.5 
12 1:3.25 5.0 260 ± 3 60.0 ± 5.4 54.0 ± 0.9 37.6 ± 1.0 
13 1:1.50 3.5 324 ± 15 93.4 ± 1.9 72.3 ± 1.0 76.3 ± 2.3 

Abbreviations: CWR, chickpea:boiling water ratio; FC, foaming capacity; FS, foam stability; EC, emulsifying 

capacity; and ES, emulsion stability.  

a Run number does not correspond to the order of processing.  

b Data shown are the average of three independent experiments ± S.D. 

 

  



Table 2. ANOVA calculated for the response surface quadratic models of foaming and 

emulsifying capacities at different conditions. 

 FC (%)   EC (%)   

Mean square F value Prob > F Mean square F value Prob > F 
Model 5580.83 16.64 0.0009 a 1169.22 39.63 < 0.0001a 
CWR 11344.80 33.82 0.0007 a 4664.88 158.11 < 0.0001a 
pH 10982.48 32.74 0.0007 a 270.68 9.17 0.0191 a 
CWR × pH 2714.41 8.09 0.0249 a 1.44 0.049 0.8315 
CWR2 2197.18 6.55 0.0376 a 847.00 28.71 0.0011 a 
pH2 35.90 0.11 0.7531 14.46 0.49 0.5065 
Lack of fit 1107.15 1.19 0.4195 b 0.70 0.014 0.9975 b 
Pure error 369.05   51.11   
Corrected total 310.22   6052.60   
S.D. 18.31   5.43   
Mean 237.18   45.48   
C.V. (%) 7.72   11.94   
R2 0.9224   0.9659   
Adjusted R2 0.8669   0.9415   
Abbreviations: FC, foaming capacity; EC, emulsifying capacity; CWR, chickpea:boiling water ratio; S.D., standard 

deviation; and C.V., coefficient of variation.  

a Model terms are significant (p < 0.05).  

b Lack of fit is not significant relative to the pure error (p < 0.05). 

 

Table 3. ANOVA calculated for the response surface 2FI models of foam and emulsion 

stability at different conditions. 

 FS (%)   ES (%)   
Mean square F value Prob > F Mean square F value Prob > F 

Model 2177.21 68.98 < 0.0001 a 2179.85 36.17 < 0.0001a 
CWR 1359.02 43.05 0.0001 a 5104.17 84.69 < 0.0001a 
pH 4999.71 158.39 < 0.0001 a 960.14 15.93 0.0032 a 
CWR × pH 172.92 5.48 0.0440 a 475.24 7.89 0.0204 a 
Lack of fit 20.54 0.45 0.7960 b 69.34 1.42 0.3787 b 
Pure error 45.35   48.93   
Corrected total 6815.73   7081.98   
S.D. 5.62   7.76   
Mean 56.23   32.30   
C.V. (%) 9.99   24.04   
R2 0.9583   0.9234   
Adjusted R2 0.9444   0.8979   

Abbreviations: FC, foaming capacity; EC, emulsifying capacity; CWR, chickpea:boiling water ratio; S.D., standard 

deviation; C.V., coefficient of variation. 



a Model terms are significant (p < 0.05). 

b Lack of fit is not significant relative to the pure error (p < 0.05). 

 

Table 4.  Comparison between the colour and sensorial attributes of the formulated vegan and 

egg-based meringues. 

 
Meringue made using Mayonnaise made using 
chickpea cooking 
water 

pasteurised egg 
whites 

chickpea cooking 
water 

pasteurised egg 
whites 

L* 94.9 ± 0.4 A 95.0 ± 0.4 A 84.6 ± 0.2 A 88.5 ± 0.30B 
A* −0.6 ± 0.0 A −0.8 ± 0.0 B −3.4 ± 0.1 A −3.2 ± 0.0 A 
b* 3.5 ± 0.3 A 3.5 ± 0.2 A 13.0 ± 0.1 A 9.9 ± 0.1 B 
Ch 3.5 ± 0.3 A 3.6 ± 0.2 A 13.5 ± 0.1 A 10.5 ± 0.1 B 
ΔE 1.69 ± 0.22  4.95 ± 0.46  
Visual acceptance 
score 7.7 ± 1.0 7.6 ± 0.9 7.8 ± 0.8 8.5 ± 0.5 

Flavour score 7.2 ± 1.0 7.5 ± 1.2 7.3 ± 1.0 7.6 ± 1.2 
Texture score 8.0 ± 0.9 7.5 ± 1.1 8.0 ± 0.7 8.4 ± 0.5 
Overall acceptance 
score 7.3 ± 1.3 7.8 ± 1.1 7.2 ± 0.6 8.3 ± 0.7 
Acceptability index 
(%) 81.7 86.1 80.0 92.2 

Values represent the mean of three independent experiments  ±  S.D. Different letters indicate significant differences 

between meringues or emulsions made using aquafaba or egg whites. Sensorial scores were assessed using a 9-point 

hedonic scale – panellists were not told which sample was made using egg whites and which one was made using 

AQUAFABA. The criterion for statistical significance was p  <  0.05. 
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