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Abstract: The present study describes a pilot-scale experimental validation of a 23 
forced-convection greenhouse solar dryer, combined with a biofilter, for controlled 24 
atmospheric emissions. This setup was applied to the dewatering of sewage sludge 25 
from a biological plant treating process wastewater in a commercial Mediterranean 26 
winery. Experiments were performed after the harvest, from September onwards, 27 
during the peak generation of sludge. The average drying rate during the first 10 28 
days of operation ranged from 1.17 to 2.24 kg m-2 d-1, depending on the 29 
measurement method, during which the water content of the sludge was reduced 30 
from 90% down to 67%. Biofiltration was quite inefficient against greenhouse 31 
gases (methane and dinitrous oxide), and direct emissions during the drying 32 
process were on average 57 g CO2-eq m-2 d-1. Ammonia and volatile organic 33 
compounds were removed with average efficiencies of 71% and 35%, but ammonia 34 
losses through volatilization represented less than 2% of the initial nitrogen 35 
content. The sludge was dried further during November, to the lowest possible 36 
water content of 14%. Both the intermediate and final sludge dried materials were 37 
characterized for their agronomical value as organic fertilizers. 38 
 39 
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drying  41 
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INTRODUCTION 42 

Wine is generally regarded as a traditional handcrafted product, with strong cultural 43 

implications and a reputation as a beverage that contributes to the preservation of historical 44 

landscapes. However, in the Mediterranean, vines are often cropped on exposed alkaline soils 45 

containing very little organic matter, and that are highly degraded either because of steep slopes 46 

or by land-levelling works. Such environmental and management conditions make these 47 

vineyards very vulnerable to erosive processes and to nutrient runoff (Ramos and Martínez-48 

Casasnovas 2006b). Further, due to their potential to reduce the cost of fertilisation, the use of 49 

organic fertilizers comes with several benefits concerning the preservation of soil quality. The 50 

application of composted cattle manure to vines in a winery has been shown to significantly 51 

increase water infiltration rates in the soil, thus reducing runoff and preventing sediment losses 52 

(Ramos and Martínez-Casasnovas 2006a). However, manure might not be readily available in 53 

extensive vineyard areas, and must be subjected to biological stabilization and hygienisation 54 

processes, such as the thermophilic temperatures achieved during composting, in order to 55 

prevent microbial contamination with faecal pathogens (Moral et al. 2009). 56 

The wine manufacturing process is also an important source of organic waste that could be 57 

valorised as agronomical fertilizers for vine crops. A survey of the winery sector in Spain, the 58 

largest producer in the European Union, concluded that for every litre of bottled wine roughly 59 

0.6 kg of waste is produced, and that 80–85% of this waste is organic (Ruggieri et al. 2009). 60 

Grape pomace and lees are the main organic waste products (76%), but these materials are 61 

currently valorised as by-products, while stalks (12%) and dewatered sewage sludge (12%) are 62 

still being incinerated or disposed of in landfills. Another specific problem related to winery 63 

organic waste is that it is primarily produced shortly after the grape harvest and lasts for a brief 64 

period between September and October, so intensive treatment technologies are not 65 

economically feasible for such short operational periods. The co-composting of dewatered 66 

sludge and stalks has been proposed as a suitable valorisation option with several economic and 67 

environmental benefits, because of the substitution of mineral fertilizers by in-house produced 68 

compost. Yet, the dewatering of sewage sludge down to the optimal ranges for composting 69 



 

(below 60% in water content) still requires complex energy-demanding dewatering systems 70 

(Christensen et al. 2015).  71 

Extensive reviews have been published on the use of solar drying techniques for the dewatering 72 

of urban sewage sludge (Bennamoun et al. 2013; Pirasteh et al. 2014), but using them to treat 73 

agricultural organic wastes is still relatively rare. A recent study has demonstrated the viability 74 

of combined solar greenhouse drying and composting to produce organic fertilizer from olive 75 

mill wastewater (Galliou et al. 2018). We have also tested the feasibility of drying pig slurries in 76 

a greenhouse, combined with acidification and an air biofiltration system for controlling 77 

gaseous emissions (Prenafeta-Boldú et al. 2020). Solar driers have also been applied in 78 

vineyards to produce raisins (Jairaj et al. 2009). Yet, even though solar energy is an abundant 79 

resource in most wine-producing areas, the literature on the technical viability of applying solar 80 

driers for the treatment and valorisation of winery organic waste is lacking. The benefits 81 

associated with solar drying include the need for only relatively simple infrastructure, a low 82 

carbon footprint, microbial hygienisation, and improvement of the agronomical value of the 83 

dried products as organic fertilizers. On the downside, depending on the climatic conditions, 84 

solar driers might require a large area and prompt undesired gaseous emissions.  85 

In this study, we describe a pilot-scale application of a greenhouse-based solar drier with forced 86 

aeration for the treatment of activated sludge produced by a wastewater treatment plant from a 87 

commercial winery. Assays were performed during the sludge production peak after harvest, 88 

during autumn, under Mediterranean conditions. A biofilter was also implemented in order to 89 

minimize the potential gaseous emissions associated with the thermal and biological processes. 90 

 91 

METHODS 92 

Experimental Setup 93 

The pilot-scale solar drier was installed at the wastewater plant (41°20'55.20"N; 1°39'37.80"E) 94 

of the winery Bodegas Torres (Vilafranca del Penedès, Catalonia, Spain). The drier was 95 

composed of a greenhouse equipped with a forced aeration system (66 W; 1 m3 min-1 nominal 96 

flow) and a biofilter for the treatment of emitted gases (Figure 1). The greenhouse was designed 97 



 

to have a Quonsep shape (LWH: 8.4×1.2×0.7 m). A structural frame of PVC tubes (32 Ø mm) 98 

supported a 200 µm low density PET sheet, with a 400 µm PET sheet at the base for sludge 99 

containment. The greenhouse was thermally isolated from the concrete floor by a geotextile 100 

cover. Indoor and outdoor temperature (T) and relative humidity (RH), as well as the weight of 101 

the sludge sample inside the greenhouse, were monitored online. The extracted air was forced 102 

into a biofilter packed with a mixture of ripe compost and pine bark (1:5 mass ratio; 113 L total 103 

volume), that was encased in a PVC tube (diameter 31.5 cm).  104 

Experimental runs were performed during autumn in 2018. The total amount of initial sewage 105 

sludge and the final dewatered product was weighed in a load cell. Samples from these materials 106 

were taken in triplicate for subsequent physicochemical analysis in the laboratory. Gas samples 107 

from the biofilter inlet and outlet were taken throughout the operational period (four samples) 108 

for the analysis of volatile compounds in the laboratory, within 48 hours. For volatile inorganic 109 

compounds (VIC), gas samples were collected by means of a calibrated sampling pump (flow of 110 

1 L min-1) and stored in a 3 L volume gas sampling bag (SamplePro FlexFilm, SKC Ltd., UK). 111 

For the analysis of volatile organic compounds (VOC), samples were transferred to pre-112 

evacuated 12.5 mL vials (Labco Ltd., Buckinghamsire, UK). 113 

Meteorological data on the daily temperature (mean, maximum, and minimum), relative 114 

humidity, and solar radiance were obtained from the weather station of La Granada 115 

(41°21'58.28"N; 1°43'42.85"E), located about 6 km from the pilot plant. This station belongs to 116 

the Meteorological Service of Catalonia, and the historical weather parameters are freely 117 

accessible for consultation (METEOCAT 2020). 118 

 119 

Monitoring and Analytical Methods 120 

A sensor for monitoring the air temperature and relative humidity (EWHS 284, Eliwell Ibérica, 121 

Spain; accuracy: ±0.1°C for T and ±3% for RH) was placed in the middle of the greenhouse, 122 

and a second identical sensor was installed outdoors. An electronic scale was also installed in 123 

the final section of the greenhouse, close to the air exhaust, for the continuous weighing of a 124 

20×30 cm tray containing the sample of sewage sludge (DVP02LC-SL, Delta Electronics Inc., 125 



 

Taiwan; accuracy: ±2 g). All sensors were connected to a datalogger (DOP-B03E211, Delta 126 

Electronics Inc., Taiwan), and data measurements were recorded every 15 min. Air flow was 127 

monitored with a portable thermal anemometer (TA4, Airflow Instruments, NJ). 128 

Fresh and dried sludge samples were characterized in terms of pH, total and volatile solids (TS, 129 

VS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total ammonia nitrogen 130 

(TAN), total phosphorous, (TP), total potassium (TK), and sulphate (SO4), following the 131 

Standard Methods for the Examination of Water and Wastewater (APHA et al. 2005). 132 

Additionally, the heavy metals copper (Cu) and Zinc (Zn) were measured by acid extraction and 133 

optical emission spectrometry (U.S. Department of Agriculture, 2018).  134 

Different methods were used for the analysis of volatile inorganic compounds (VIC) from 135 

collected gas samples. Methane was quantified with a Thermo 2000 gas chromatograph 136 

(Thermo Finnigan, USA) equipped with a flame ionization detector (FID), in accordance with 137 

the method described by Palatsi et al. (2010). The simultaneous analysis of carbon dioxide and 138 

nitrous oxide was carried out with an Agilent 7890A gas chromatograph (Agilent Technologies, 139 

CA) equipped with an electron capture detector (ECD), similar to that described by Martínez-140 

Eixarch et al. (2018). The concentration of ammonia at the biofilter inlet and outlet was 141 

measured in situ with a portable electrochemical sensor (VRAE, RAE Systems, CA). The 142 

concentration of volatile organic compounds (VOC) was analysed by adapting the protocols of 143 

NIOSH 1500 (Eller and Cassinelli 1994) and EPA 325 (Boulding 2019), using a Thermo 2000 144 

gas chromatograph. 145 

 146 

Calculations 147 

The total content of specific compounds in the loaded sludge and the recovered dried product 148 

was calculated as the product of the measured mass and concentration average values. The mass 149 

water balance was determined from the cumulative products of the air inlet and outlet absolute 150 

humidity values (15 min pace readings) by the measured air flow blown by the ventilator during 151 

operation. The air absolute humidity was calculated from the saturation vapour pressure (eS; 152 

kPa) according to the Tetens formula, as a function of the air temperature (T; °C) (Equation 1). 153 



 

𝑒𝑆 = 0.6108 exp [17.27𝑇/(𝑇 + 237.3)]  [eq. 1] 154 

The vapour pressure (e; kPa) at a given relative humidity (RH; %) was then derived from 155 

Equation 2. Absolute humidity (χ; g m-3) was finally determined from vapour pressure (e; kPa) 156 

and temperature (T; °C) (Equation 3). 157 

  𝑒 = (𝑒𝑠  𝑅𝐻)/100     [eq. 2] 158 

𝜒 = 2165𝑒/(𝑇 + 273.16)    [eq. 3] 159 

 160 

RESULTS AND DISCUSSION 161 

Operational Runs 162 

Experiments were performed at the height of the grape harvest season, when the sewage sludge 163 

production in the winery was at its maximum. On the 17th of September 2018, the greenhouse 164 

was loaded with 278 kg on a wet basis of a sewage slurry that contained 10.44% total solids 165 

(specific area loading 27.8 kg m-2). The internal online weight measurement system contained 5 166 

kg on a wet basis of a sludge sample (equivalent to 83.3 kg m-2). The ventilation was then 167 

turned on by an automatic working command between 9:00 and 20:00, if the online relative 168 

humidity (RH) readings from the sensor in the middle of the greenhouse were above 50%. This 169 

automatic ventilation programming ensured that the exhaust air was close to the RH saturation 170 

most of the time (condensates were observed continuously at the air exhaust during aeration). 171 

The continuous monitoring of T and RH revealed strong daily fluctuations (Figure 2), with 172 

minimum and maximum T inside the greenhouse falling between 16.8 °C and 20.1 °C, and 27.1 173 

°C and 48.6 °C, respectively, while the daily minimum and maximum RH ranged between 174 

62.4–78.6% and 93.8–97.9%. On-line weight measurements of the sludge sample inside the 175 

drier displayed a characteristic “saw-tooth” decreasing regular pattern, with an average 176 

evaporation rate of 2.24 kg m-2 d-1 (Figure 3). No weight loss occurred during the night, and 177 

some mass was even briefly gained during the morning hours, just after the aeration was turned 178 

on. This phenomenon could be explained by the mixing of saturated air inside the greenhouse 179 

(the formation of condensates all over the inner greenhouse surfaces was clearly visible at those 180 

times), and to the well-known hygroscopic properties of the sewage sludge material (Bougayr et 181 



 

al. 2018). The hourly drying rates during the sunny hours of the day ranged from 0.26 to 0.63 kg 182 

m-2 h-1 (n > 20; r2 > 0.98), depending on the meteorological conditions. When comparing the 183 

cumulative daily evaporation during this period with that resulting from the difference between 184 

the daily maximum and minimum water content, thus excluding sludge rehydration from the 185 

global balance, it became apparent that the hygroscopic behaviour of the sludge reduced the 186 

process efficiency by about 20%. Hence, the removal of condensates that are formed inside the 187 

greenhouse during the cool periods might significantly improve the drying process. 188 

After nine days of operation, the sludge had a dry aspect and, therefore, it was decided to stop 189 

the process in order to collect and analyse this material (this first operational run has henceforth 190 

been referred as Period 1). At that point, the ventilation system had been active for 106 hours 191 

(46% of the total operational time). The weather during this time was characterized by sunny 192 

and mild days, with average daily measurements that, according to a nearby meteorological 193 

station, ranged from 18.8–23.2 °C T and 63–92% RH. These T and RH values were rather 194 

coincident with those obtained from continuous measurements outside the greenhouse, which 195 

ranged from 19.7–25.0 °C and 55.5–80.9% (Figure 2). Differences between these two datasets 196 

could be explained by microclimatic particularities in the weather station, and the solar drying 197 

induced by the presence of constructions and vegetation in the surroundings, proximity to the 198 

ground, and so forth. Despite the variability of the meteorological parameters, the amount of 199 

water that evaporated every day was fairly correlated with the daily solar radiance, which 200 

ranged from 10.5 to 21.1 MJ m-2 d-1 (Figure 3). 201 

The weight of the collected dried sludge after Period 1 was 129 kg on a wet basis (12.9 kg m-2), 202 

which corresponded to a 53.6% mass reduction in relation to the loaded sewage sludge (65.4% 203 

in terms of the initial water content). Such a decrease was equivalent to an average daily drying 204 

rate of 1.66 kg m-2 d-1, a value that was lower than the rate measured from the sample in the on-205 

line weight measurements. This difference could be explained by the higher thermal exchange 206 

of the sludge sample on the scale with the surrounding hot air than from the total load on the 207 

ground of the greenhouse. Furthermore, a strong humidity gradient was observed along the 208 

greenhouse longitudinal axis (the sludge had more moisture close to the air outlet than at the 209 



 

inlet), and the crusty nature of the dried sludge prevented effective drying of the inner core of 210 

the coarse aggregates. The amount of evaporated water was also calculated through direct flow 211 

measurements of the discharged air (43±4 m3 h-1) and from the cumulative differences in 212 

absolute humidity between the greenhouse inlet and outlet air during operation. Such estimate 213 

yielded an average daily drying rate of 1.17 kg m-2 d-1 that accounted for 70% of the weighed 214 

total sludge mass loss. This difference might indicate that some degree of evaporation still 215 

occurred when the aeration system was turned off. 216 

In order to investigate the process further under less favourable climatic conditions, it was 217 

decided to continue with the solar drying of the partly dehydrated sludge from the 7th of 218 

November onwards (operational Period 2). Until then, the material was stored outdoors, covered 219 

from the rain, before it was mixed thoroughly and reintroduced into the greenhouse. A sludge 220 

sample of 1.5 kg on a dry basis was also placed on the scale for on-line weight measurements. 221 

The meteorological conditions during Period 2 were characteristic of the end of autumn, with a 222 

tendency towards cooler and moister days. The average daily T and RH inside the greenhouse 223 

during the drying intervals, when the aeration system was on, ranged between 8.7–17.5 ºC and 224 

67.8–90.5%, respectively (Figure 4). These indoor T values were about 5 ºC higher than those 225 

from outside the greenhouse during the first 10 days of operation—conditions that were 226 

sufficient to trigger a specific drying rate of 0.93 kg m-2 d-1, as measured by the on-line scale 227 

during the first two weeks of operation. After that, the drying rate tended to decrease along with 228 

T values, until the sludge mass stabilized after 25 days of operation (Figure 4). The assay was 229 

stopped at day 33 and the collected dried sludge weighed only 29 kg (2.9 kg m-2). During 230 

operational Period 2 the aeration system worked for 327 hours (41% of the total runtime). 231 

 232 

Sludge Physicochemical Characterization and Atmospheric Emissions 233 

The physicochemical parameters of the sewage sludge and of the two dried materials obtained 234 

after operational Periods 1 and 2 are summarized in Table 1. In general, the content of total 235 

solids, organic matter, and nutrients in the sewage sludge fell within the range that is known in 236 

the literature for the winery sector (Jin and Kelly 2009; Semitela et al. 2019). During 237 



 

operational Period 1, the moisture content of the sludge was reduced from 89.6% down to 238 

66.8%, which is close to a suitable level for the composting process of below 60% in water 239 

content. If sludge co-composting is to be applied, and considering that the typical C/N ratio for 240 

winery sewage sludge is well below the optimum, supplementation with fibre-rich materials 241 

such as stalks and pruning residues will be required (Semitela et al. 2019). Sludge mixed with 242 

those structuring materials will also reduce the humidity content within the compostability 243 

range. 244 

After operational Period 2 the sludge was dried down to just 14.3% humidity content, which 245 

could not be reduced further, possibly due to hygroscopic water. The dehydrated material 246 

displayed a stabilized behaviour during storage, with no evidence of biological activity either in 247 

terms of microbial colonization or off-odour emissions. The recovered nutrients had a 248 

composition equivalent to an NPK index of 4.3:1.4:0.1 (mass percentage equivalences to N, 249 

P2O5, and K2O; Table 1). Only 3% of the total nitrogen was recovered in the form of 250 

ammonium, and the remaining 97% as organic nitrogen. Concerning the European regulations 251 

for fertilizing products (EC 2016), the dried material obtained in this study must be regarded as 252 

a solid organic fertilizer (Product Function Category 1A-I). As for the content of copper and 253 

zinc, the concentration of these two metals increased with dewatering, up to 96 mg-Cu kg-1 and 254 

246 mg-Zn kg-1 on a wet basis in the dried material after Period 2 (Table 1). The reason for the 255 

presence of copper and zinc in the winery sewage sludge is due to their generalised use as 256 

fungicides in the vineyard to control leaf diseases (Brunetto et al. 2014). Yet, if expressed on a 257 

dry matter basis, the amount of these metals in the dried material would correspond to 112 mg-258 

Cu kgTS-1 and 287 mg-Zn kgTS-1 which, according to regulations in the European Union, is 259 

below the thresholds of 200 mg-Cu kgTS-1 and 600 mg-Zn kgTS-1 for their compulsory 260 

declaration on the product label (EC 2016). 261 

Gaseous emissions were also monitored during operational Period 1. Concerning VIC, the 262 

concentration of methane and dinitrous oxide in the greenhouse air exhaust was very low, with 263 

average values of 7 mg-C m-3 and 0.7 mg-N m-3 (Table 2). If expressed in terms of the 264 

greenhouse warming potential and considering the volume of vented air, these emissions would 265 



 

account for 57 g CO2-eq m-2 d-1. As for carbon dioxide, the average concentration of 540 mg-C 266 

m-3 was about 2.5-fold higher than that from the ambient air, but given its biogenic origin it 267 

should not counted as a net contribution to the greenhouse effect. These measurements indicate 268 

that both aerobic (heterotrophs and nitrifying) and anaerobic (methanogenic and denitrifying) 269 

microbial populations from the sludge were still active to some extent during the drying process. 270 

Ammonia emissions were also observed at an average concentration of 7 mg-N m-3 (Table 2), 271 

but these nitrogen volatilization losses accounted for 1.8% of the total nitrogen present in the 272 

fresh sludge (Table 1). The biofiltration efficiency for methane was very low, and even null for 273 

dinitrous oxide, but ammonia was reduced on average by 71%. 274 

The emission of volatile organic compounds (Period 1) from the greenhouse exhaust was, in 275 

average concentration terms, 71 mg m-3. The identified chemical compounds belonged to the 276 

ketones (acetone, methylacetone and methylethylacetone), hydrocarbons (p-cymene, toluene, 277 

cyclohexane, n-pentane, n-hexane), organohalogens (trichloroethylene), and mercaptans 278 

(ethanethiol and 1-propanethiol), and the effectivity of the biofilter in reducing VOCs was, on 279 

average, 35%. These VOCs are commonly found in composting off-gases treated by 280 

biofiltration, but the relatively low removal efficiency might be explained by the empty bed 281 

contact times of the treated air of just 9.4 sec, which is quite below the range at above 60 sec 282 

found in similar biofilters packed with pine bark (Prenafeta-Boldú et al. 2012). 283 

 284 

Treatment Efficiency 285 

The mass balance differences between the fresh and dried sludge compounds, as derived by 286 

multiplying their concentrations and the total mass of sludge (Table 1), were very difficult to 287 

compare. While the amount of bulk components such as total solids (TS), total Kjeldahl 288 

nitrogen (TKN), and chemical oxygen demand (COD) were down to 28% lower in the final 289 

dried material (after Period 2) compared to the fresh sludge, they were instead up to 54% higher 290 

in the intermediate dried material (after Period 1). The main explanation for these deviations 291 

might be because of the heterogeneity of the water content, particularly after Period 1, both 292 

because of the core/crust uneven drying of the sludge aggregates, and because of the effect of 293 



 

the humidity gradients along the greenhouse. The implementation of a mechanical mixing 294 

strategy might therefore significantly improve the process efficiency, and has in fact been 295 

deployed in full-scale solar driers for the treatment of urban sewage sludge (Table 3). 296 

The energy balance between the incident solar radiation and the absorbed enthalpy for the 297 

vaporization of water (2.44 MJ kg-1 under normal conditions) was also considered. During 298 

Period 1 about 14.9 kg m-2 of water was effectively evaporated and the cumulative incident 299 

solar radiation was 135.5 MJ m-2, so that the energy balance was 27%. The water vaporization 300 

enthalpy to radiative energy ratio calculated for Periods 1 (September) and Period 2 (November) 301 

combined was 19%. The remaining incident solar energy might have been initially reflected by 302 

the greenhouse cover, reemitted to the environment as thermal radiation, and lost through 303 

conduction into the external ground/air and via convection through the extracted hot air. The 304 

lower apparent solar energy efficiency values from this study in relation to other pilot and large 305 

scale installations (Table 3), could be attributed to the used construction materials (use of thin 306 

polyethylene foils versus thick polycarbonate plates), to operational aspects (differences in the 307 

aeration regime), and to the climatic conditions (operation under relatively high irradiative 308 

conditions). 309 

Concerning the non-solar energy inputs, taking into account the nominal electrical power of the 310 

air pump of 66 W and a working time of 106 h during operational Period 1, it is estimated that 311 

about 7.0 kWh of electricity was consumed in the ventilation system. This energy consumption 312 

is equivalent to 47.2 kWh t-1 of evaporated water, which is about half of the energy 313 

requirements reported in other full-scale sludge solar drying systems (Table 3). It must be noted 314 

that exhaust ventilators at the latter plants worked under aeration regimes considerably higher 315 

than those applied in the present study, and that additional energy must have been spent in 316 

mechanical sludge transport and mixing systems that were absent in our pilot-scale plant. 317 

Instead, energy consumption during the overall process, including Periods 1 and the less 318 

favourable Period 2 (433 h of operation and 249 kg of weight loss), amounted to 114.8 kWh t-1 319 

of evaporated water. 320 



 

 321 

CONCLUSIONS 322 

We have demonstrated that the direct exploitation of solar energy for drying sewage sludge 323 

from the winery industry after harvest is feasible. Assays were performed at the pilot scale using 324 

a relatively simple greenhouse setup coupled with a biofiltration unit, which was demonstrated 325 

to be effective for minimizing residual ammonia emissions and VOC contaminants. The 326 

obtained dried material retained and concentrated the nutrients that were originally present in 327 

the sludge, and can therefore be valorised as an organic fertilizer. The dewatering degree of the 328 

treated sludge could easily be adjusted for co-composting, or lowered to the levels of biological 329 

stability for direct storage and utilization. Our results also highlight that the use of copper and 330 

zinc-derived fungicides in the field did not compromise the value of the obtained organic 331 

fertilizers. Further research on the solar drying of winery organic waste is currently being 332 

focused on the mathematical modelling of the process in order to maximize the process 333 

efficiency through optimized design parameters and operational conditions. The co-composting 334 

of partly dried sludge with other winery organic waste, as well as agronomical assays with the 335 

obtained fertilizers, are currently being performed to further validate and improve this 336 

innovative treatment technology. 337 
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 424 

Table 1. Physicochemical characteristics of freshly collected sludge from a winery wastewater 

treatment plant, and of the dried material after 10 days (September; Period 1) and 33 additional 

days (November; Period 2) of treatment. Most values correspond to the average and standard 

deviation (between brackets) of three independent samples. 

Parameter Units Fresh sludge 

Dried sludge 

(Period 1) 

Dried sludge 

(Period 2) 

Total mass  (kg) 278  129  29  

pH — 7.54 (0.02) 7.24 (0.06) 7.67 (0.04) 

CE (µS) 821 (5) 1476 (2) 2760 (52.92) 

ST (%) 10.44 (0.25)  33.23 (2.95) 85.70 (0.34) 

SV (%) 8.13 (0.21) 25.17 (2.26) 62.78 (0.52) 

COD  (g kg-1) 140.84 (5.85) 464.45 (21.44) 981.14 (39.18) 

TKN  (g kg-1) 6.24 (0.19) 16.00 (0.26) 42.97 (1.95) 

TAN  (mg kg-1) 574 (20) 1083 (42) 849 (53) 

Pt (mg kg-1) 569 (93) 2496 (110) 6229 (525) 

S-SO4
2- (mg kg-1) 55 (5) 267 (6) 1181 (36) 

K+ (mg kg-1) 152 (34) 426 (103) 1123 (160) 

Cu (mg kg-1) 20  40  96  

Zn (mg kg-1) 90  360  246  

 

 425 

 426 

 427 

Table 2. Averages and standard deviations of four measurements taken at the operational Period 1 (days 

1, 4, and 9) of the concentration of selected contaminants in the air biofilter inlet and outlet, and of the 

removal efficiency. The composition of the outdoor air has also been considered. 

Parameter 

Outdoor air 

(mg m-3) 

Biofilter inlet 

(mg m-3) 

Biofilter outlet 

(mg m-3) 

Removal 

efficiency (%) 

C-CO2  217 540 (171) 505 (146) 11 

C-CH4 0.90 7.03 (2.37) 6.43 (2.99) 10 

N-N2O  b – 0.67 (0.01) 0.68 (0.01) –1 

N-NH3 – 6.97 (5.01) 2.03 (1.98) 71 

Total VOCs a – 71 (27) 58 (16) 35 

a Volatile organic compounds. 
b Not detected. 
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Table 3. Comparative assessment of the operational parameters and performance obtained with the solar drier in the present study, with literature accounts on different aerated greenhouse solar 

driers for treating sewage sludge and related organic waste. 

Dried substrate 

Region/ 

Country 

Initial total 

solids (%) 

Final total 

solids (%) 

Drying 

area (m2) 

 

Plant type 

and scale a 

Superficial 

airflow b 

(m h-1) 

Solar 

irradiance 

(MJ m-2 d-1) 

Electrical 

consumption 

(kWh tH2O-1) 

Drying 

rate 

(kg m-2 d-1) 

Energy 

balance c 

(%) Reference 

Winery sewage sludge Catalonia 

(Spain) 

10.4 33.2 10 PET, TL, PS 4.3 16.9 47.2 2.2 27 This work (Period 1) 

Winery sewage sludge Catalonia 

(Spain) 

10..4 85.7 10 PET, TL, PS 4.3 9.7 114.8 0.7 19 This work (Periods 1 and 2) 

Pig slurries 

 

Catalonia 

(Spain) 

11.7 89.6 10 PET, TL, PS 6.0 19.0 30.2 2.0 26 Prenafeta-Boldú et al. (2020) 

Olive mill sewage Crete 

(Greece) 

4.9 52.0 4.2 UP, TL, LS n/a d 12.9–29.2 n/a 5.2 n/d d Galliou et al. (2018) 

Urban sewage sludge Rhodope 

(Greece) 

15.0 94.0 <1 PC, MM, LS n/a 8.6–19.4 n/a 4.0–12.0 e n/d Mathioudakis et al. (2009) 

Urban sewage sludge Warsaw 

(Poland) 

20.0 48.0 90 PC, TL, DP 133.3 16.9 n/a 2.3 34 Krawczyk and Badyda (2012) 

Urban sewage sludge Tassos 

(Greece) 

9.7–16.4 82.3–94.3 66 PC, MM, DP 75.8 11.8–25.9 83.0 4.0–11.4 n/d Mathioudakis et al. (2013) 

Urban sewage sludge Paphos 

(Cyprus) 

14.9–23.7 55.7–91.3 3,853 PC, MM, FS 101.3 18.8 77.3 3.1 41 Oikonomidis and Marinos  (2014) 

a PET: polyethylene film greenhouse cover; PC: polycarbonate plates greenhouse cover; UP: unspecified plastic cover; TL: static thin layer of sludge; MM: mechanical mixing of sludge; LS: 

laboratory-scale plant; PS: pilot-scale plant; DP: demonstration plant; FS: full-scale plant. 
b Ratio between the ventilation air flow (m3 h-1) and the drying area (m2). 

c Ratio between the water enthalpy of vaporization (at 25 °C) and solar irradiance during operation. 
d n/a: not available; n/d: not determined. 
e Maximum measured values. 
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Legends to Figures 432 

Figure 1. Schematic representation of the solar drying plant design and dimensions: 433 

greenhouse (A), air inlet (B), indoor and outdoor temperature and relative humidity 434 

sensors (C and D), data logger and PLC (E), electronic mass scale (F), suction 435 

ventilation system (G), and biofiltration unit (H). 436 

Figure 2. Time course evolution of the temperature (graph A) and relative humidity 437 

(graph B) recorded inside (black line) and outside (grey line) the greenhouse during the 438 

first period of operation. 439 

Figure 3. Time course evolution of the of a sewage sludge mass sample inside the 440 

greenhouse (solid line) and the ventilation intervals (grey bars) during operational 441 

Period 1 (graph A); the correlation line corresponds to an area-specific drying rate of 442 

2.24 kg m-2 d-1 (n=855; r2=0.98). Correlation between the average evaporation rate and 443 

the solar irradiance during this same period of operation (n=8; r2=0.75), excluding the 444 

first and last days of partial operation (graph B). 445 

Figure 4. Average daily temperature (diamonds) and relative humidity (circles) 446 

measured inside (empty markers) and outside (solid markers) the greenhouse during the 447 

operational Period 2 (graph A). Time course evolution of the of a sewage sludge mass 448 

sample inside the greenhouse during this same period (graph B); the linear regression 449 

line corresponds to an area-specific drying rate of 0.93 kg m-2 d-1 (n=701. r2=0.98). 450 

451 
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