Fruit sizing using AI: A review of methods and challenges
Visualitza/Obre
Autor/a
Data de publicació
2023-09-23ISSN
0925-5214
Resum
Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
633 - Cultius i produccions
Pàgines
18
Publicat per
Elsevier
Publicat a
Postharvest Biology and Technology
Citació recomanada
Miranda, Juan Carlos, Jordi Gené-Mola, Manuela Zude-Sasse, Nikos Tsoulias, Alexandre Escolà, Jaume Arnó, Joan R. Rosell-Polo, Ricardo Sanz, José A. Martínez‐Casasnovas, and Eduard Gregorio. “Fruit Sizing Using AI: A Review of Methods and Challenges.” Postharvest Biology and Technology 206 (December 1, 2023): 112587. https://doi.org/10.1016/j.postharvbio.2023.112587.
Número de l'acord de la subvenció
MICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-094222-B-100/ES/Tecnologías de agricultura de precisión para optimizar el manejo de dosel foliar y la protección fitosanitaria sostenible en plantaciones de frutales/PAgFRUIT
MICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-126648OB-100/ES/Protección de cultivos de precisión para conseguir objetivos del Pacto Verde Europeo en uso eficiente y reducción de fitosanitarios mediate Agricultura de Precisión/PAgPROTECT
FEDER/ / /EU/ /
Programa
Ús Eficient de l'Aigua en Agricultura
Aquest element apareix en la col·lecció o col·leccions següent(s)
- ARTICLES CIENTÍFICS [3467]
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/


