X-Ray computed tomography meets robust chemometric latent space modeling for lean meat percentage prediction in pig carcasses
Visualitza/Obre
Data de publicació
2024-07-31ISSN
0886-9383
Resum
This study presents a case of processing X-ray computed tomography (CT) data for pork scans using chemometric latent space modeling. The distribution of voxel intensities is shown to exemplify a multivariate, multi-collinear signal mixture. While this concept is not novel, it is revisited here from a chemometric perspective. To extract meaningful information from such multivariate signals, latent space modeling based on partial least squares (PLS) is an ideal solution. Furthermore, a robust PLS approach is even more effective for latent space modeling, as it can extract latent spaces unaffected by outliers, thereby enhancing predictive modeling. As an example, lean meat percentage is predicted using X-ray CT data and robust PLS regression. This method is applicable to X-ray CT quantification analysis, particularly in cases where unclear, erroneous, and outlying observations are suspected in the data.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
663/664 - Aliments i nutrició. Enologia. Olis. Greixos
Pàgines
7
Publicat per
Wiley
Publicat a
Journal of Chemometrics
Citació recomanada
Mishra, Puneet, and Maria Font‐i‐Furnols. 2024. “X‐Ray computed tomography meets robust chemometric latent space modeling for lean meat percentage prediction in pig carcasses”. Journal of Chemometrics. doi:10.1002/cem.3591.
Programa
Qualitat i Tecnologia Alimentària
Aquest element apareix en la col·lecció o col·leccions següent(s)
- ARTICLES CIENTÍFICS [3467]
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/


