Comparative analysis of spectroscopic methods for rapid authentication of hazelnut cultivar and origin
View/Open
Author
Publication date
2024-11-01ISSN
1386-1425
Abstract
Hazelnut market prices fluctuate significantly based on cultivar and provenance, making them susceptible to counterfeiting. To develop an accurate authentication method, we compared the performances of three spectroscopic
methods: near infrared (NIR), handheld near infrared (hNIR), and medium infrared (MIR), on over 300 samples from
various origins, cultivars, and harvest years. Spectroscopic fingerprints were used to develop and externally validate
PLS-DA classification models. Both cultivar and origin models showed high accuracy in external validation. The hNIR
model effectively distinguished cultivars but struggled with geographic distinctions due to lower sensitivity. NIR and
MIR models showed over 93% accuracy, with NIR slightly outperforming MIR for geographicorigin. NIR proved to be a fast and suitable tool for hazelnut authentication. This study is the first to systematically compare spectroscopic tools for authenticating hazelnut cultivar and origin using the same dataset, offering valuable insights for future food authentication applications.
Document Type
Article
Document version
Published version
Language
English
Subject (CDU)
633 - Field crops and their production
663/664 - Food and nutrition. Enology. Oils. Fat
Pages
9
Publisher
Elsevier
Is part of
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Recommended citation
Torres-Cobos, B., A. Tres, S. Vichi, F. Guardiola, M. Rovira, A. Romero, V. Baeten, and J.A. Fernández-Pierna. 2025. “Comparative analysis of spectroscopic methods for rapid authentication of hazelnut cultivar and origin”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 326: 125367. doi: 10.1016/j.saa.2024.125367
Grant agreement number
MICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2020-117701RB-I00/ES/Desarrollo de herramientas de detección de fraudes en frutos secos españoles con alto riesgo de falsificación/TRACENUTS
MICINN/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/CEX2021-001234-M/ES/ /
FEDER/ / /EU/ /
Program
Fructicultura
This item appears in the following Collection(s)
- ARTICLES CIENTÍFICS [3467]
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/


