Integrating whole-genome resequencing and machine learning to refine QTL analysis for fruit quality traits in peach
Visualitza/Obre
Data de publicació
2025-07-01ISSN
2052-7276
Resum
Increasing marker density results in better map coverage and efficiency of genetic analysis. Here, we resequenced a large (N = 235) F1 progeny from two distant peach cultivars, ‘Zhongyou Pan #9’ and ‘September Free’, and constructed two parental maps (1:1 segregations) and one combined map (1:2:1 segregations) with 134 277 SNPs. Markers with the same genotype for all individuals studied were grouped in bins and a unique genotype for each bin was inferred to avoid mapping problems derived from erroneous data. The total genetic distance of the two parental maps was 431.9 and 594.2 cM with a short mean distance, 0.9 cM, between contiguous bins (groups of markers with the same genotype) and high collinearity with the peach genome. The genetics of eight fruit-related traits was analyzed for 2 years, allowing the positions of two major genes, fruit shape (S) and flesh adhesion to the stone (F), to be established, along with nine quantitative trait loci (QTLs) for quantitative traits including fruit soluble solids concentration, titratable acidity, weight, maturity date, and flesh color (yellow to orange). We developed a machine learning-based linear model to assess flesh color, which proved more efficient than physical colorimetric parameters (L, a*, b*), detecting consistent QTLs. Based on map position, gene expression patterns, and function, candidate genes were identified. Overall, our results provide two new elements: ultra-high-density maps with resequencing data to enhance mapping resolution and phenotyping strategies based on machine learning models that improve the quality of quantitative measurements to help understand the genetic control of key fruit quality traits.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
633 - Cultius i produccions
Pàgines
13
Publicat per
Oxford University Press
Publicat a
Horticulture Research
Citació recomanada
Fan, Jiaqi, Jinlong Wu, Pere Arús, Yong Li, Ke Cao, and Lirong Wang. 2025. “Integrating Whole-genome Resequencing and Machine Learning to Refine QTL Analysis for Fruit Quality Traits in Peach.” Horticulture Research 12 (7). https://doi.org/10.1093/hr/uhaf087.
Programa
Genòmica i Biotecnologia
Aquest element apareix en la col·lecció o col·leccions següent(s)
- ARTICLES CIENTÍFICS [3467]
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/


