Almond yield prediction at orchard scale using satellite-derived biophysical traits and crop evapotranspiration combined with machine learning
Visualitza/Obre
Data de publicació
2025-11-20ISSN
2673-3218
Resum
Accurate almond yield prediction is essential for supporting decision-making across multiple scales, from individual growers to international markets. This is crucial in the Mediterranean region, where diminishing water resources pose significant challenges to the almond industry. In this study, remote sensing-based evapotranspiration estimates were evaluated for predicting almond yield at the orchard scale using machine learning (ML) algorithms. The almond prediction models were calibrated and validated using data provided by commercial growers, along with meteorological reanalysis and remote sensing products. The remote sensing products included: i) spectral indices, ii) vegetation biophysical traits retrieved from Sentinel-2, and iii) actual evapotranspiration (ETa) estimated using the Priestley-Taylor two-source energy balance (TSEB-PT) model driven by Copernicus-based data. Almond yield data were collected from commercial orchards located in Spain’s Ebro and Guadalquivir basins from 2017 to 2022. Data collected from growers enables the establishment of almond water production functions at the orchard scale, yielding results comparable to those reported in experimental study sites. Almond yield prediction models calibrated with remote sensing data demonstrated predictive accuracy comparable to that of models relying on ground-truth variables provided by farmers, such as irrigation, orchard age, tree density, and cultivar. Among them, the PMCRS model—which integrates the fraction of absorbed photosynthetically active radiation (fAPAR), the normalized difference moisture index (NDMI), canopy chlorophyll content (Cab), ETa, and meteorological data—achieved a RMSE of 399.1 kg ha-¹ in July. These findings highlight the potential of remote sensing-based models for accurately estimating almond yield. Furthermore, the PMCRS model proved scalable and effective when applied across four almond-producing regions in the Ebro basin. Future improvements may be realized through enhanced ETa retrieval using upcoming thermal satellite missions, integration of irrigation estimates, and the adoption of advanced machine learning and deep learning algorithms.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
631/635 - Gestió de les explotacions agrícoles
633 - Cultius i produccions
Pàgines
19
Publicat per
Frontiers Media
Número de l'acord de la subvenció
EC/H2020/823965/EU/Accounting for Climate Change in Water and Agriculture management/ACCWA
MICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/TED2021-131237B-C21/ES/Evaluation of the digital twin paradigm applied to precision irrigation/DigiSPAC
Programa
Fructicultura
Ús Eficient de l'Aigua en Agricultura
Citació recomanada
Aquesta citació s'ha generat automàticament.
Aquest element apareix en la col·lecció o col·leccions següent(s)
- ARTICLES CIENTÍFICS [3561]
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/


