Using transcriptomic data to improve the prediction of immunity traits in pigs
Ver/Abrir
Fecha de publicación
2025-12-16ISSN
1751-7311
Resumen
Considering health-related traits among breeding selection criteria has been proposed as a way to improve pig robustness. This study investigated the potential of whole blood RNA-sequencing data for predicting immunity-related traits, stress indicators and carcass weight, using data from 255 pigs belonging to a commercial Duroc population. The prediction performance of mixed models fitting either genomic (G), transcriptomic (T) or both effects as independent (GT) was evaluated and compared. Three additional models addressing the redundant information between G and T were also evaluated: the GTC model that subtracts the genetic effect from the transcriptome, the GTCi model that makes this correction based on the estimated heritability of T effects, and a multiomic model that weights G and T effects in a multiomics relationship matrix. The models including gene expression information captured a higher proportion of variance than the genomic model for all studied traits but carcass weight. Adding transcriptomic effects improved both model fit and phenotypic prediction of all immunity traits, particularly those with a high transcriptomic contribution such as the abundance of T helper and γδ T cells, the haptoglobin concentration and the leukocyte counts. Considering the interaction between genomic and transcriptomic effects led to greater prediction accuracies, with the GTCi model performing the best. Our work demonstrates the value of considering gene expression data to predict immunity traits as well as the importance of adequately modelling the interaction between genomic and transcriptomic effects.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Materias (CDU)
577 - Bioquímica. Biología molecular. Biofísica
Páginas
13
Publicado por
Elsevier
Publicado en
Animal
Número del acuerdo de la subvención
MICINN/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2020-112677RB-C21/ES/FISIOLOGIA MOLECULAR DEL INMUNOMETABOLISMO EN PORCINO: BASES PARA LA SELECCION DE POBLACIONES MAS ROBUSTAS/
MICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2023-148961OB-C21/ES/MEJORA GENETICA DE LA SALUD PORCINA: IDENTIFICACION Y VALIDACION DE BIOMARCADORES Y MODELOS PREDICTIVOS DE LA INMUNOCOMPETENCIA/
Program
Genètica i Millora Animal
Citación recomendada
Esta citación se ha generado automáticamente.
Este ítem aparece en la(s) siguiente(s) colección(ones)
- ARTICLES CIENTÍFICS [3561]
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/


