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Piglets inoculated by different routes are not susceptible to SARS-CoV-2, but those inoculated parenterally were immunized against the virus.  
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Abstract
Conventional piglets were inoculated with severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) through different routes, including intranasal, intratracheal, 
intramuscular and intravenous ones. Although piglets were not susceptible to SARS-
CoV-2 and lacked lesions or viral RNA in tissues/swabs, seroconversion was observed 
in pigs inoculated parenterally (intramuscularly or intravenously).
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The coronavirus disease 2019 (COVID-19) is an infectious disease 
that has caused a global pandemic with more than 36 million in-
fected people from around 200 countries or territories, with more 
than 1 million deaths to date (World Health Organization (WHO), 
2020). The causative agent of COVID-19, the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), is assumed to be origi-
nated in bats, since the bat-borne coronavirus RaTG13 is the closest 
genetic relative to date (Andersen et al., 2020; Zhou et al., 2020). 
Several species have been studied to determine their potential role 
as intermediate hosts (Shi et al., 2020). Moreover, animal models 
to recapitulate a COVID-19-like disease are considered a major re-
search line and required for the development of therapeutic drugs 
and prophylactic compounds.

Besides several modelling studies proposing potential ani-
mal species susceptible to SARS-CoV-2 (Damas et al., 2020; Qiu 
et al., 2020; Veljkovic et al., 2020), multiple experimental infec-
tions have already shown a broad range of susceptible animals. 
Specifically, Egyptian fruit bat, ferret, golden Syrian hamster, 
cat, mice expressing humanized angiotensin-converting enzyme 
2 (ACE2), BALB/c mice (using a mutated SARS-CoV-2 by sev-
eral cell culture passages) and some non-human primate species 
are permissive to viral infection, developing from subclinical to 
mild-to-moderate respiratory disease (Bao et al., 2020; Halfmann 
et al., 2020; Kim et al., 2020; Rockx et al., 2020; Shi et al., 2020; 
Yu et al., 2020). From an experimental point of view, dog sus-
ceptibility to SARS-CoV-2 is limited, since inoculated animals can 
partly seroconvert (Shi et al., 2020). In contrast, the intranasal 
inoculation of chicken, duck and pig resulted in no evidence of 
infection (Schlottau et al., 2020; Shi et al., 2020).

Pig is commonly used in research because of the similarities ex-
isting with humans in terms of anatomy, genetics, physiology and, 
also, immunology. Indeed, experiments in pigs are likely to be more 
predictive of therapeutic and preventive treatments in humans than 
experiments in rodents (Meurens et al., 2012). However, since pigs 
are not susceptible to SARS-CoV-2 infection when inoculated intra-
nasally (Schlottau et al., 2020; Shi et al., 2020), the possibility to de-
velop a swine infection model with this virus using other potential 
inoculation routes deserves investigation. The main rational to test 
pigs is that the ACE2 receptor of this species is functional either by 
transfecting swine ACE2 in HeLa cells (which do not express con-
stitutively the human ACE2) (Zhou et al., 2020) or that pseudopar-
ticles with the S protein of SARS-CoV-2 are able to infect swine 
kidney cells (Letko et al., 2020). Furthermore, the ACE2 protein is 
expressed in all major tissues of pigs as assessed by immunohisto-
chemistry (Xiao et al., 2020). In consequence, to set up a putative 
COVID-19 pig model, we investigated the effect of different natural 
and non-natural routes of SARS-CoV-2 inoculation in domestic pigs 
(Sus scrofa domesticus).

For the purpose, four groups of five 5- to 6-week-old conven-
tional piglets (Landrace × Large White) were selected and inoculated 
by means of different routes: intranasal (IN, 1.5 ml/nostril; total vol-
ume of 3 ml), intratracheal (IT, 3 ml) as previously described (Garcia-
Morante et al., 2016), intramuscular (IM, 1 ml in each side of the neck 

muscles; total volume 2 ml) or intravenous (IV, 2 ml), with a final dose 
of 105.8 tissue culture infectious dose (TCID50) of the SARS-CoV-2 
isolate (GISAID ID EPI_ISL_510689) per each animal. The IT and IV 
groups were anaesthetized with 10 mg/kg of ketamine and 0.8 mg/
kg xylazine prior inoculation. A passage-2 SARS-CoV-2 was propa-
gated and titrated in Vero E6 cells (ATCC CRL-1586), following the 
same protocol as for other coronaviruses (Rodon et al., 2019). Two 
extra pigs were used as negative controls.

All animals were seropositive against porcine respiratory coro-
navirus, as determined by a commercial ELISA (INgezim Corona 
Diferencial 2.0 [TGEV/PRCV]). Taking into account that no anti-
body cross-reactivity between alpha- and beta-coronaviruses has 
been described (Okba et al., 2020), the animals were kept into the 
study. Initial reactivity against PRCV was expected since this virus 
is ubiquitous in the European swine livestock (Saif et al., 2012; Vidal 
et al., 2019).

Animal experiments were approved by the Institutional 
Animal Welfare Committee of the Institut de Recerca i Tecnologia 
Agroalimentàries (CEEA-IRTA) and by the Ethical Commission 
of Animal Experimentation of the Autonomous Government of 
Catalonia and conducted by certified staff. Experiments with 
SARS-CoV-2 were performed at the Biosafety Level-3 (BSL-3) 
facilities of the Biocontainment Unit of IRTA-CReSA (Barcelona, 
Spain).

On 2 and 22 days post-inoculation (dpi), two and three ani-
mals/group (IT, IM and IV), respectively, were euthanized. Since 
IN inoculation was already demonstrated as non-effective to 
cause SARS-CoV-2 infection (Shi et al., 2020), pigs inoculated 
by this route were euthanized on days 1 and 2 pi to assess evi-
dence of a possible transient early infection in tissues. Negative 
control animals were euthanized prior to the start of the ex-
periment. Samples were collected and processed as previously 
described (Vergara-Alert et al., 2017). Briefly, complete necrop-
sies were performed in all animals. Several tissues (frontal, me-
dial and caudal turbinates; proximal, medial and distal trachea; 
large and small bronchus, left cranial, mediodorsal and caudal 
lung areas; kidney; liver; heart; and spleen) were taken, fixed 
by immersion in 10% neutral-buffered formalin, embedded in 
paraffin and sectioned at 3 µm to prepare slides. Histology 
slides were stained with haematoxylin and eosin (HE) to assess 
potential microscopic lesions. Besides, the same tissues plus 
ileum, cervical lymph node (LN), mediastinal LN, mesenteric LN, 
olfactory bulb, tonsil, thymus, parotid salivary gland, adrenal, 
pancreas, brainstem, eyelids and bone marrow were also taken 
in Dulbecco's modified Eagle medium (DMEM) in tubes with 
beads to perform SARS-CoV-2 upE gene detection by RT-qPCR 
(Corman et al., 2020). Nasal and rectal swabs were also taken 
(daily during the first week and at 14 and 22 dpi) to analyse 
them for the presence of viral RNA by means of the above-men-
tioned RT-qPCR. Serum samples collected on days 0, 14 and 22 
pi were tested for the presence of antibodies against SARS-
CoV-2 spike S1 + S2 and nucleocapsid (N) proteins by in-house 
ELISAs (Institut de Recerca de la sida (Irsicaixa), 2020). Also, a 
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virus neutralization assay was performed following a previous 
protocol with a minor modification (Rodon et al., 2020), the se-
rial dilutions of sera and SARS-CoV-2 were incubated for 1 hr at 
37°C prior the plate assay performance.

All animals were daily monitored but none of them showed clini-
cal signs after SARS-CoV-2 inoculation. Also, no gross or microscopic 
lesions attributable to SARS-CoV-2 infection were found in any of 
the studied animals from all inoculation groups as well as control 
ones (data not shown).

None of the pigs had nasal or rectal shedding of viral RNA. 
Proximal trachea from one IN-inoculated animal was positive at 1 dpi 
for viral RNA (Cq = 24.36). The remaining tissues from this animal 
and the rest of pigs resulted negative for RT-qPCR (qPCR detection 
limit of 38.6 cycles).

By 14 and 22 dpi, low levels of antibodies directed against 
the Spike protein could be detected in all animals from IM and 
IV groups (Figure 1a). Furthermore, these pigs also showed neu-
tralizing antibody titres at 22 dpi (ranging from 74 to 317 SNT50 
reciprocal dilution titre) (Figure 1b). Also, low antibody levels tar-
geting the N protein were found in one out of three IM and all IV 
inoculated animals by the end of the experiment (data not shown). 
Importantly, one single animal from the IT group did not show 
antibodies against the S but had antibodies against the N protein 
as well as neutralizing titres (SNT50 reciprocal dilution titre of 29) 
at day 0 pi, which might suggest a potential cross-reaction with 

another coronavirus infecting swine. Of note, these antibodies 
against the N protein decreased by the time the experiment fin-
ished, suggesting they were of maternal origin. In addition, this 
animal did not show seroneutralizing antibodies at the 22 dpi 
(Figure 1b).

Present data indicate that SARS-CoV-2 was not able to infect 
pigs by any of the tested routes, namely IN, IT, IM and IV. Therefore, 
our efforts confirm earlier experiments indicating lack of suscepti-
bility of infection by the pig (Schlottau et al., 2020; Shi et al., 2020), 
although it can be used for assessing the immunogenicity of the up-
coming vaccine candidates.

Importantly, the current study goes beyond other studies 
with SARS-CoV-2 and pigs since we tested a broader number 
of inoculation routes. However, none of them resulted in a 
productive infection in piglets. A significant outcome of this 
study was the evidence of seroconversion against the Spike 
glycoprotein at days 14 and 22 pi and presence of neutralizing 
antibodies at day 22 pi in pigs inoculated by parenteral routes 
(IM and IV). Considering the short duration of the experiment 
(22 days), such seroconversion emphasizes the potential inter-
est of the pig to be used in immunogenicity studies for SARS-
CoV-2. In fact, the interest of swine as a suitable animal model 
for immunology, as well as physiology, pharmacology and sur-
gery, applicable to human medicine is widely acknowledged 
(Rothkötter, 2009).

F I G U R E  1   (a) Antibody detection of 
pigs experimentally inoculated with SARS-
CoV-2. Detection of antibodies against 
the spike protein (days 0, 14 and 22 pi) 
by ELISA in sera from animals inoculated 
intratracheally (No. 8–10, IT group), 
intramuscularly (No. 13–15, IM group) and 
intravenously (No. 18–20, IV group). (b) 
Antibody detection of pigs experimentally 
inoculated with SARS-CoV-2. Detection 
of neutralizing antibodies (days 0 and 
22 pi) in sera from animals inoculated 
intratracheally (No. 8–10, IT group), 
intramuscularly (No. 13–15, IM group) and 
intravenously (No. 18–20, IV group). The 
graph shows the reciprocal serum dilution 
showing neutralization activity versus dpi. 
Dotted line indicates limit of detection 
of the assay (1/20 serum dilution). A 
value of 5 was assigned to undetectable 
neutralization activity. Unpaired Student's 
t tests were performed to assess whether 
neutralizing antibodies significantly 
increased at 22 dpi. ns, not significant; 
*p-value < .05
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In conclusion, the present study confirms that piglets are not a 
suitable animal model for COVID-19, but its potential usefulness as a 
model for immunogenicity in preclinical vaccine development stud-
ies deserves further investigation.
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