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Abstract: Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the
heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although
TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly
unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the
maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total
of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties
were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado
Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide
polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were
analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a
previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in
the Entrepelado variety and 24 in the Retinto variety (g < 0.05), with mostly negative TRD values,
increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs.
No strong evidence of biological effects was found in genes with TRDLs. However, some biological
processes could be affected by TRDLSs, such as embryogenesis at different levels and lipid metabolism.
These findings could provide useful insight into the genetic mechanisms to improve the swine
industry, particularly in traditional breeds.

Keywords:  genome scan; maximum likelihood; segregation distortion; Sus scrofa;
ungenotyped parents

1. Introduction

Transmission ratio distortion (TRD) occurs when two alleles at a heterozygous locus are
not transmitted equally to the offspring, disrupting Mendelian segregation (0.5 probabilities of
transmission; [1-3]). The TRD phenomenon has been reported in humans [4-6], other mammals [3,7],
insects [8,9], and even in plants [10,11]. Different biological mechanisms can cause TRD before or after
fertilization [12-16]. In mammals, there are different mechanisms in sires and dams prior to fertilization
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during the meiotic or gametic stages. For example, the meiotic drive is restricted to female gametes
(asymmetry meiosis), whereas male gametes (symmetric meiosis) have gamete competition [13,17].
In this way, some causes of TRD could not be studied depending on the parents” data available.
Afterward, there are potential mechanisms of distortion during the zygotic stage, such as asymmetric
hybrid incompatibility. Thus, it is currently challenging to isolate the stage at which TRD occurs and
pinpoint a biological cause. However, the study by sex is often the first and most accessible step to find
the underlying mechanism.

In pigs, there is a lack of information about the TRD phenomenon, although it could induce bias
in genetic mapping studies [16-19]. The few references about pigs are mainly related to a specific locus
in genes or other kinds of segregation distortions [20-22]. So far, the greatest TRD study in pigs is the
mapping of TRD loci (TDRLs) in boars and part of their offspring using a Bayesian approach to detect
paternal TRDLs in the pig genome, but no maternal TRDLs [23]. There are no studies in pigs to assess
the segregation deviation by standard x2 [4,24], t-tests [25], or likelihood ratio tests [18,26].

The lack of information about the TRD phenomenon is more considerable in traditional swine
breeds, such as the Iberian breed, because of their lower commercial interest and the scarcity of their
organized breeding programs compared to modern swine breeds [27-29]. However, the interest
in these traditional breeds is increasing in recent decades due to their high-quality pork products
and socio-economic effects, and the Iberian breed is one of the most important worldwide from an
economic point of view [30-32]. Traditional swine breeds also have high genetic diversity [33-35].
The Iberian breed consists of small populations with remarkable phenotypic and genomic differences
categorized in varieties and strains that currently are crossed between them due to commercial goals,
such as higher prolificacy and neonatal survival, and better productive indexes [36-38]. Thus, mapped
TRDLs in these kinds of breeds can accelerate both the detection of TRD and the characterization of
their underlying genetic mechanisms. Moreover, these data could provide insight into genetic and
evolutionary mechanisms of individual fitness variation and population divergence for improving the
current Iberian swine production [39].

In this study, we aimed to describe the maternal TRD phenomenon prevalence and its genomic
distribution in two varieties of the Iberian pig breed. Moreover, we have developed an adaptation of a
Bayesian model [23] using a different statistical approach to detect TRDLs.

2. Materials and Methods

2.1. Animals, Data, and Ethics Statements

The management of animals was assessed and approved by the IRTA Committee of Ethics
in Animal Research (Institute of Agrifood Research and Technology, Caldes de Montbui, Spain;
IRTA-22032012). It was performed according to the Spanish Policy for Animal Protection (RD 53/2013),
which meets the European Union Directive 2010/63/UE on the protection of research animals.

A total of 109 purebred Entrepelado (n = 52) and Retinto dams (1 = 67) and their 247 daughters
were sampled from two selection farms located in Extremadura (southwestern Spain). While all dams
were purebred, daughters were either purebred or F; crosses with the alternative Iberian variety
(i.e., daughters from Entrepelado dams were purebred Entrepelado and Entrepelado-by-Retinto F1
crosses). Both Retinto (R) and Entrepelado (E) varieties of the Iberian pig breed are officially recognized
by Spain’s Iberian herd book (AECERIBER, Zafra, Spain). Animals belonged to commercial breeding
stocks founded in 2009 by Inga Food SA (Almendralejo, Spain). Biological samples were collected from
blood or tail tissue and kept frozen until laboratory processing. Procedures for DNA extraction relied
on standard phenol-chloroform (with a preliminary 24-h digestion by proteinase K) for tail samples,
whereas the Invisorb® Blood Mini HTS 96 kit/C (INVITEK Molecular GmbH, Berlin, Germany) was
used for blood samples. Quality control for DNA samples was performed by a NanoDrop™ 2000
(Thermo Fisher Scientific, Waltham, MS, USA) and Qubit Fluorometer (Thermo Fisher Scientific) with
a minimum DNA concentration of 40 ng/uL. All animals were genotyped with the Geneseek Genomic
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Profiler Porcine HD (Illumina, Inc., San Diego, CA, USA; 70,231 SNPs) at the Centre for Research in
Agricultural Genomics (CRAG, Bellaterra, Barcelona, Spain).

A total of 247 families (each dam and each genotyped daughter, in our case) were used for TRD
analyses. Families were classified, first, by the maternal Iberian pig variety and, second, by the paternal
Iberian pig variety. Among the Entrepelado dam families, 97 were from crosses with Entrepelado
sires (EE) and 32 from crosses with Retinto sires (RE). On the other hand, among the Retinto dam
families, 57 were from crosses with Entrepelado (ER) sires and 61 from crosses with Retinto sires
(RR). Entrepelado and Retinto dam families were independently analyzed for the TRD analyses,
as described below. Final analyzed genetic markers were obtained after filtering [23], among a
total of 63,060 single-nucleotide polymorphisms (SNPs) mapped in the Sus Scrofa 11.1 genome map.
Before TRD analyses, all SNPs with a minimum allele frequency (MAF) and a call rate of 0% (14,527
and 3046 SNPs, respectively) were removed to improve analysis time and resources. After TRD
estimations, SNPs were filtered based on the family consistency rate >75% (families with complete
information; Entrepelado, 31,286; Retinto, 29,696 SNPs). Second, they were filtered by a minimum
allele frequency of >5% (Entrepelado, 18,681; Retinto, 11,857 SNPs) and, finally, by within-variety dam
heterozygosity of >20%. This last parameter is particularly important in TRD analyses because families
with a heterozygous dam are useful to calculate the distortion estimate (described below in the model
description). Only 16,246 (25.8%) were used in final analyses for the Entrepelado variety and 9744
(15.5%) for the Retinto variety.

2.2. Transmission Ratio Distortion Analysis

The model used in the current study to identify the maternal TRD phenomena in both maternal
Iberian breed varieties, Entrepelado and Retinto, was a frequentist modification of an allelic TRD
model [23] allowing the use of ungenotyped ancestors within the TRD framework, which was based
on another method [24].

In brief, the original model assumes biallelic genetic markers (alleles Al and A2) and presents
an inheritance model, where the probability of each genotype in the offspring is defined by the
inheritance probability of a given allele from the sire and the dam. Assuming a heterozygous dam
and an ungenotyped sire, probabilities of inheritance for all three plausible genotypes in the offspring
were assumed:

Pofispring (A1AL) = paam (A1) psire (A1)
Poftspring (ATA2) = Pdam (A1) Psire (A2) + Pdam (A2) Psire (A1)
Poftspring (A2A2) = Pdam (A2) Psire (A2)
where allele probabilities could be easily defined for ungenotyped sires,
Psire (A1) = 0= 1 = psire (A2)
and genotyped and heterozygous dams,

Pdam (A1) =05+ «

Pdam (A2) =0.5-«

Note that 7t captured Al frequency in the sire population and ranged between 0 and 1. On the
other hand, @ was the estimate of the dam-specific TRD parameter and took values between —0.5 and
0.5. In this specific case, the maternal TRD estimates are assumed to be free from sire-specific TRD
influences (they would be masked within the 7 parameter of sire; [23]). Allele probabilities from A1A1l
homozygous dams were straightforwardly defined as

Pdam (Al) =1
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Pdam (AZ) =0

and the same rationale was applied to A2A2 dams.

In our study, we independently analyzed Entrepelado and Retinto dam families. Within each
scenario, daughters were both purebred and F1 crosses. So, two independent 7 parameters were
required to accommodate the genetic background of the sire (i.e., nE for Entrepelado sires and nR
for Retinto sires). Consequently, previous expressions were modified as follows for offspring for
Entrepelado sires,

PsireE (Al)=nE=1- PsireE (A2)

and Retinto sires,
PsireR (Al) =nmR=1- PsireR (A2)

Unknown parameters («, g, 7r) were estimated for each population by maximizing the likelihood
function under a three-dimension gradient ascent approach. Statistical significance for « was evaluated
through a standard likelihood ratio test [40] under an SNP-by-SNP approach, as other previous TRD
models have used [18,26,41,42]. Ad hoc software was written in FORTRAN90 programming language.
The Al allele in our program was always the allele with the higher frequency, so all TRDL results have
the same pattern. Subsequent analyses and figures were carried out using R software [43]. Maternal
TRD results were corrected for multiple testing using the false discovery rate approach (FDR; o = 0.05;
g-values [44]).

2.3. Analysis of Gene Enrichment

Common genetic markers with significant TRD values (g > 0.05) were used for the analysis of gene
enrichment. Genes within a window of 500 Kb around each selected region (upstream and downstream)
were identified using the Ensembl BioMart tool with the Sus scrofa 11.1 genome map [45]. These genes
were directly used to identify enriched Gene Ontology (GO) terms for biological processes in Sus scrofa
as the reference genome with the Panther Tool using the PANTHER GO-slim v15.0 dataset [46]. Results
were corrected using Bonferroni correction for multiple testing. Moreover, genes with TRDLs were
found in the human and animal datasets of Mendelian disorders [47,48].

2.4. Data Availability

Raw p-values, maternal TRD, and sire frequency estimates of both family varieties from SNPs
analyzed are available (Table S1).

3. Results and Discussion

Ungenotyped ancestors can be a condition in research studies due to their characteristics of old
valuable datasets, previous designs, or complications during the development of studies. These missing
genotypes in the parental generation can become a major problem using previous methods that
need known expected frequencies in the last generation or offspring genotypes anticipated by the
experimental cross itself [24,25]. Our modified multinomial model based on an original method [23]
allowed us to study maternal TRDLs in swine, with only offspring and dam data. Moreover, the change
in the statistical approach of our model allows more straightforward interpretations of results and is
more accessible to researchers or end-users not familiarized with Bayesian inference. This statistical
method could also help to implement another statistical approach in the future, as evidential inference.
Thanks to the flexibility of our model, we have not only analyzed TRDLs in families without sire data,
but also we have analyzed, together, family datasets from different varieties of the same breed without
giving expected frequencies.
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3.1. Estimates of Maternal Transmission Ratio Distortion Loci

Using our model, we have analyzed a total of 21,803 SNPs (34.5%, after filtering described in
Material and Methods) from both Entrepelado and Retinto dam families to find TRDLs among the
Iberian pig genome. From this final SNP list, only 4187 SNPs (6.6%) analyzed were in datasets of both
maternal varieties due to different levels in the dam heterozygosity of each Iberian variety by SNP.
Nevertheless, the dam heterozygosity % (mean, min-max) was similar between the Entrepelado (45.6,
21.19-100%) and Retinto (43.45, 21.19-100%) dam family datasets used. Another cause of differences
between both varieties could be that the Retinto variety is considered more ancient than the Entrepelado
variety, even being a possible origin of the Entrepelado variety [49-52]. Moreover, the Retinto variety
founders from both farms used in our study had a single origin, while the Entrepelado variety founders
had four different origins (personal communication, E Mazallén). All these factors could affect
heterozygosity, as we could see after filtering. The Retinto variety lost two-thirds of available SNPs,
while the Entrepelado variety lost almost half. Proper filtering of bad markers (high counts of missing
genotypes, non-informative markers), before the TRDL search, is important to avoid loci distorted for
non-biological reasons [16]. Notably, this step was essential with our low sample size, after dividing
the total dataset by the maternal Iberian variety, to decrease the risk of overestimating TRDL effects
above a given statistical threshold.

A higher amount of maternal TRDLs were found in the Entrepelado (68 TRDLs, g > 0.05;
Table S2) than the Retinto variety (24 TRDLs, g > 0.05; Table S3) among the whole genome (Figure 1),
with distances between TRDLs in the same chromosome between 3.8 Kb and 99.1 Mb in both varieties.
The Entrepelado variety also showed a more extensive distribution (Figure 1A) than the Retinto variety
(Figure 1B), with TRDLs in all chromosomes except 12 and 17. In contrast, the Retinto variety only had
TRDLs in chromosomes 1, 2, 4, 6,7, 9, 13, 18, and X. This could be related to the greater amount of
TRDLs found in the Entrepelado variety. In a unique previous study of TRDLs among the whole pig
genome, chromosome 12 was the only one without TRDLs [23]. Nevertheless, this chromosome is the
smallest in the pig genome and has the lowest amount of SNPs, being a critical point to find TRDLs.
On the other hand, the minimum dam heterozygosity percentage of detected maternal TRDLs was 30.2
in the Entrepelado variety (mean: 59.5, max: 100%) and 44.5 in the Retinto variety (mean: 59.5, max:
100%). These values are greater than our cut-off limit of the dam heterozygosity percentage to filter
SNPs (20%). Thus, our cut-off point did not alter the search for possible TRDLs. This overall description
of both Entrepelado and Retinto maternal TRDL sets must be carefully interpreted because we could
think that the Entrepelado variety has more TRD phenomena than the Retinto variety. However,
we have to take into account that the Entrepelado variety dataset analyzed was larger than the Retinto
variety dataset (discussed above). Even almost 60% of significant Entrepelado variety TRDLs were not
in the Retinto variety dataset. In a previous study carried out with a final dataset of nearly 30,000 SNPs
from five half-sib families and 352 offspring, there were 84 significant TRDLs with between 20 and 80%
heterozygous sires [23]. So, it seems clear that the larger the marker dataset, parent heterozygosity,
and sample size, the greater the potential to find TRDLs, as expected [16].

Regarding TRD estimates (Figure 2), most of them were concentrated around 0, between —0.15
and 0.15. The Entrepelado variety showed wider ranges of TRD (0.252-0.393 and —0.223-—0.495;
Table S2) than the Retinto variety (0.313-0.436 and —0.241--0.495; Table S3), particularly in the positive
values. The amount of significant negative TRD values was greater than the significant positive
TRD values in both Entrepelado (84%; Figure 2A) and Retinto (92%; Figure 2B) varieties. Therefore,
there would be more Mendelian TRDs promoting the minor allele than the greatest frequency allele in
our sample, according to our method of analysis. However, there were more positive TRD values than
negative in the study of Casellas et al. (2014) and with lower minimum absolute TRD values than in
our results. No significant common TRDLs were found between this previous study and our results.
Neither TRDLs were found in the IGF2 locus (also described in humans) and the histocompatibility
antigen loci [20,21,53]. Even though these results were in other pig breeds, it is important to consider
that our study has analyzed datasets from dams but not sires. Although isolating the stage or sex
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at which TRD occurs is rarely enough to find a biological cause, it is often the first step to know
the underlying mechanisms. The TRD phenomenon can result from a variety of selective processes
during meiosis, gametogenesis, fertilization, and early zygote development [13,14,16,17,54]. In our
study, it is possible to discard sperm competition from males as a cause, but not a distortion during
chromosomal competition during meiosis or ovule competition from females: neither fertilization
nor zygotic mechanisms. Therefore, further research using analyses with both parents (trios) and
separately could be interesting to distinguish the specific maternal and paternal (meiotic/gametic
mechanisms) influences and zygotic mechanisms on TRD.
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Figure 1. Distribution of maternal transmission ratio distortion loci (TRDLs) in families of Entrepelado
(A) and Retinto (B) varieties across pig chromosomes. The top hit marker ID on each chromosome
below the g-value threshold (0.05, corrected p-value; line) is annotated.

Among TRDLs of both maternal Iberian varieties, only 10 of them were common (Table 1).
These TRDLs were in six different chromosomes and separated at least by 1.8 Mb. Their range of dam
heterozygosity (mean: 90.2, 58.5-100%) was lower than in separated TRDLs by the maternal Iberian
variety, and TRD values were always negative (—0.252-—0.495) and roughly similar between maternal
varieties. Although these varieties belong to the same breed, phenotypic and genomic differences
between Iberian populations are remarkable due to the genetic drift and a scarce genetic flow [34].
In this situation, inbreeding depression may cause single-locus TRD at the zygotic level, affecting the
homozygosity of lethal or highly deleterious recessive alleles that reduce biological fitness. This TRDL
would make the purge of this kind of allele difficult. Indeed, inbreeding depression has already been
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reported in most of the Iberian pig varieties [39,52,55]. Among the common genes with at least one
TRDL, none were related to lethal recessive alleles. Indeed, most of the TRDLs detected overall in the
current study are intron variants. However, we have found a missense variant in an olfactory receptor
5B2-like gene and a TRDL in the ADCY10 gene, associated with hypercalciuria in humans [47,56].
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Figure 2. Distribution of maternal transmission ratio distortion (TRD) values in families of Entrepelado
(A) and Retinto (B) varieties across pig chromosomes. Light grey points are significant TRD (g < 0.05).
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Table 1. Common maternal transmission ratio distortion loci (TRDLs) detected in both Iberian varieties.

ID Marker Chr Pos (Mb) TRD_E g-val_E CallR_E TRD_R g-val_R CallR_R  Gene with TRD Locus
rs339672482 2 12.698 —-0.495 8.5 x 10736 100.0 —-0.495 1.8x 10733 100.0 ENSSSCG00000031496
1rs343381067 2 14.467 —0.495 5.3 x 1073 98.9 —0.409 1.4 x 10715 99.4 ENSSSCG00000031436
rs335768329 4 83.114 -0.378 1.3x 10712 96.6 —-0.495 8.8 x 10728 94.5 ADCY10
rs81476539 6 72.737 —0.402 1.3 x 10716 100.0 —-0.322 41x10708 100.0

rs324128272 9 2.722 -0.473 48 %1072 99.4 -0.447 5.5 % 10723 99.4

rs346413844 9 11.795 —-0.367 1.8 x 10710 93.7 —0.346 52x 10711 97.8

rs319847656 9 23.041 -0.453 43 x 1072 99.4 -0.495 1.8 x 10733 100.0 ENSSSCG00000049020
rs344225789 18 49.209 -0.439 5.5 % 10720 99.4 -0.252 0.0131 99.4

rs331690240 20 14.2345 -0.278 1.4 x 1079 100.0 -0.26 1.2 x 10704 99.4 ENSSSCG00000050465
rs343278080 20 26.079 —-0.265 0.0231 100.0 —-0.485 1.8 x 1072 100.0

Results from two Iberian pig varieties: Entrepelado (_E) and Retinto (_R). CallR: call rate. Pos: position. Q-val: g-value.

8 of 16
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Intra-population TRD may be useful to measure inbreeding depression and study diversity. In our
result, there are more negative TRD values, meaning there is an increase in the transmission of the
minor allele. Evidence in humans showed that minor alleles are more likely to be risk alleles on
complex diseases, so this could affect their physiology [57,58]. However, there are other possible links
to allele frequencies. One could be their association with possible adaptations of the Iberian breed,
traditionally reared in extensive conditions, to its new environment in intensive rearing conditions,
as an environmental selection. Another could be an increase in genetic drift because of the increase in
both varieties’ populations in recent decades [51,59]. On the other hand, inter-population TRD, such as
our study, could lead to the wrong inference of meiotic drive or fertilization, but by increasing the
tracking power of grandparental alleles using next-generation genotyping approaches, this will likely
decrease [16,60]. Moreover, the TRD phenomenon can influence genetic mapping studies by reducing
the sample size of informative genotypes and bias quantitative trait locus (QTL) estimate [18,19].
Therefore, increasing knowledge about this phenomenon may help to improve breeding programs
and conservation strategies in the future, particularly for traits linked to TRD phenomena. However,
further research is still necessary to understand the TRD phenomenon better. In this way, our model
could be used to take advantage of all the data generated for genomic selection to analyze the TRD
phenomenon as a novel trait with likely important implications for the livestock industry, especially
from the reproductive point of view.

3.2. Possible Biological Implications of Transmission Ratio Distortion Loci

Both Entrepelado and Retinto varieties showed some TRDLs in genes (Table 2) with inherited
disorders described in humans and/or animals, although there are no data of TRD for them [47,48].
In the Entrepelado variety, there are some genes with at least one TRDL related to different disorders
in humans, such as NUP214 (leukemia, 2 TRDLs), GCNT?2 (cataracts, 2 TRDLs), and DPP6 (Ventricular
fibrillation). The ATP8B1 gene, associated with cholestasis and hepatic injury in mice, also had two
TRDLs. Finally, EVC2, with one TRDL, is related to Ellis van Creveld syndrome, a chondrodysplasia
detected in bovines, humans, dogs, and pigs. On the other variety (Retinto), ZFAT (autoimmune
thyroid disease) and CD36 (vascular diseases and the thrombospondin receptor in goats) genes had a
TRDL. The ZFAT gene can also affect early embryonic lethality and placenta development in rodents.
We have found several candidate genes susceptible to inherited disorders due to variant changes,
but we can predict no clear implications of the TRDLs found. Besides, some TRDLs are close, so further
analyses with larger sample sizes and useful marker datasets could improve this kind of approach and
add the evaluation of linkage loci, such as using a haplotype model [16,61,62].

Another described cause of TRD could be the unconscious selection, the environmental selection,
especially in inter-population or interspecific crosses. This idea could add a biological reason for
the differences found between TRDLs of this study and previous studies in different pig breeds.
The analysis of genes from common regions containing TRDLs in both Iberian varieties showed
different enriched categories (Table 3), mainly related to developmental processes in embryos, such as
morphogenesis, axogenesis, and neural development. Most of these GO biological processes or
associations with the same parental lineages of embryogenesis were also found separately enriched
in Entrepelado and Retinto varieties (Table 4). In addition, genes that encode transcription factors
involved in embryogenesis were also in previous studies of TRDLs in animals, mainly related to the
mesoderm and neural system [23,63,64]. In this way, the Entrepelado variety showed an enriched GO
linked to histone methylation generally associated with transcriptional repression and playing a vital
role in the developing embryo [65,66]. Indeed, changes near histone genes might lead to the alteration
of epigenetic marks and compromise embryo survival [67,68]. In this variety (Entrepelado), we could
also find more GOs related to embryo development at the level of eye and heart development in the
same address than some genes with at least one TRDL (described above). Given these results, it could
be interesting to use the TRD phenomenon in assessing traits linked to reproduction and embryos in
the future, as we commented above.
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Table 2. Genes with no common maternal transmission ratio distortion loci (TRDLs) detected in both

Entrepelado and Retinto varieties.

ID Marker Chromosome Position (b) Gene with TRDL Ibeflan Marker
Variety Call Rate

rs337916686 1 162,977,295 ATP8B1 Entrepelado 100.0
rs80864027 1 163,382,446 IGDCC4 Entrepelado 100.0
rs81305791 1 271,207,043 NUP214 Entrepelado 100.0
rs339672482 2 12,697,523 ENSSSCG00000031496  Entrepelado 100.0
rs343381067 2 14,467,327 ENSSSCG00000031436  Entrepelado 98.9
rs81221692 3 102,885,453 PRKD3 Entrepelado 100.0
rs335768329 4 83,113,768 ADCY10 Entrepelado 96.6
rs81385903 5 83,334,157 ANO4 Entrepelado 100.0
rs55618893 5 91,751,676 LUM Entrepelado 100.0
rs320534160 7 1,148,169 GMDS Entrepelado 100.0
1580939667 7 7,368,476 GCNT2 Entrepelado 100.0
rs338044350 7 7,378,724 GCNT2 Entrepelado 100.0
rs327255612 8 4,896,260 EVC2 Entrepelado 100.0
rs81420408 9 2,210,850 SYT9 Entrepelado 100.0
rs319847656 9 23,040,656 ENSSSCG00000049020  Entrepelado 99.4
rs81262274 9 135,247,805 ENSSSCG00000031141  Entrepelado 100.0
1s335996850 10 24,233,693 RNPEP Entrepelado 100.0
rs320095885 14 42,820,750 SGSM1 Entrepelado 100.0
rs80994847 14 43,934,858 SEZ6L Entrepelado 100.0
rs334182161 18 3,613,926 DPP6 Entrepelado 100.0
rs327443567 18 17,971,591 ENSSSCG00000051610  Entrepelado 100.0
rs326744865 18 18,486,229 CPA1 Entrepelado 100.0
rs331690240 20 14,234,646 ENSSSCG00000050465  Entrepelado 100.0
rs320767193 20 120,168,429 ENSSSCG00000042120  Entrepelado 100.0
rs80947114 1 252,918,477 SUSD1 Retinto 100.0
rs333078973 1 268,840,777 CERCAM Retinto 100.0
rs339672482 2 12,697,523 ENSSSCG00000031496 Retinto 100.0
rs343381067 2 14,467,327 ENSSSCG00000031436 Retinto 99.4
rs323787335 4 7,369,788 ZFAT Retinto 100.0
rs335768329 4 83,113,768 ADCY10 Retinto 94.5
rs81414835 9 9,862,005 MAP6 Retinto 99.4
rs81414870 9 9,898,353 MAP6 Retinto 99.4
rs342178816 9 11,759,440 ENSSSCG00000014877 Retinto 100.0
rs319847656 9 23,040,656 ENSSSCG00000049020 Retinto 100.0
rs81280147 9 99,713,062 CD36 Retinto 100.0
rs331690240 20 14,234,646 ENSSSCG00000050465 Retinto 99.4

Table 3. The analysis of Gene Ontology (GO) biological process enrichment of the regions with common

maternal transmission ratio distortion loci (TRDLs) detected in both Iberian varieties.

GOID Term Genes Found  Fold Enrichment  p-Value Corrected
GO0:0030307 Cell growth 1 56.78 0.0217
GO0:0097061 Dendrite 1 56.78 0.0217
GO:0043542  Endothelial cell migration 1 45.42 0.026
GO:0048332 Mesoderm morphogenesis 1 22.71 0.0472
GO:0045216 Cell-cell junction 2 18.17 0.00622
GO:0050770 Axonogenesis 2 10.32 0.0174
GO:0010975 Neuron development 2 6.88 0.0359
GO:0000904 Cell morphogenesis 4 5.05 0.00881
GO:0000902 Cell morphogenesis 5 438 0.00617
GO:0009653 Morphogenesis 6 2.98 0.0163
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Table 4. The analysis of Gene Ontology (GO) biological process enrichment of the regions with maternal transmission ratio distortion loci (TRDLs) detected separately
in both Entrepelado and Retinto varieties.

GO ID Term Entrepelado Variety Retinto Variety
Genes Found Fold Enrichment  p-Value Corrected GenesFound Fold Enrichment p-Value Corrected

GO:0060048 Cardiac muscle 3 8.91 0.00649
GO:0048813 Dendrite 2 8.41 0.0294
G0:0002088 Eye 3 7.57 0.00966
GO:0050953 Light stimulus 3 7.57 0.00966
GO:0034968 Histone-lysine methylation 3 7.21 0.0109
GO:0050803 Synapse structure 3 6.88 0.0122 2 9.47 0.0216
GO:0045216 Cell-cell junction 3 6.06 0.0166 2 8.33 0.027
GO:0017156 Calcium 3 5.41 0.0219
G0:0051592 Calcium 3 473 0.0301
GO:0050770 Axonogenesis 4 4.59 0.014 3 7.1 0.0101
GO:0015850 Compound transport 4 4.49 0.015
GO:0055002 Striated muscle 3 4.45 0.0348
GO:0010975 Neuron development 5 3.82 0.0123 3 4.74 0.0281
GO:0099504 Synapse structure 4 3.11 0.0453
GO:0000904 Cell morphogenesis 8 2.24 0.031 5 2.89 0.0322
GO:0009653 Morphogenesis 19 2.1 0.00348 7 1.6 0.218
GO:0000902 Cell morphogenesis 10 1.95 0.0432 6 241 0.0416
GO:0030307 Cell growth 1 26.05 0.0466
GO:0097061 Dendrite 1 26.05 0.0466
GO0:0009247 Lipid biosynthesis 4 13.02 0.000369
GO:0044255 Lipid metabolism 9 3.14 0.00285
GO:0007606 Chemical stimulus 8 3.35 0.0033
GO:0046467 Lipid biosynthesis 4 6.72 0.00361
GO:0030148 Lipid biosynthesis 3 8.93 0.0056
GO:0007186 Receptor 16 1.94 0.0117
G0:0031623 Receptor 2 10.42 0.0183
GO:0007584 Response to nutrient 1 26.05 0.0466
GO0:0015909 Lipid transport 1 26.05 0.0466
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On the other hand, other GO biological processes were enriched separately in both Iberian varieties.
In the Entrepelado variety, a GO related to the metabolism of calcium ion was significant, in line with
a gene with a TRDL detected in this study (described above). The Iberian pig is known to show a
fatty phenotype and lipid metabolism different from other commercial breeds, partly due to due to
its thrifty genotype, and adaptive mechanisms to uneven feed availability [69]. In the Retinto variety,
several biological processes associated with lipid metabolism and synthesis were found enriched,
some of them related to cell membrane lipids, especially in the brain, such as sphingolipids and
glycolipids [70]. These second lipids play fundamental roles in a variety of cellular processes and
energy homeostasis [71]. In this way, some biological processes linked to nutrients and the sensory
perception of chemical signaling, which are related to the TRDL found in an olfactory receptor gene
(described above), were enriched in the Retinto variety. Unlike other studies, no common genes were
found with previous gene regions affected by the TRDLs mapped (Table 54; [17,23]).

4. Conclusions

In conclusion, we have successfully modified a model to detect TRDLs with ungenotyped ancestors
of different populations using the likelihood ratio test. Thanks to this model, we have screened the
whole pig genome, and maternal TRDLs have been identified in both Entrepelado and Retinto Iberian
varieties showing different and common points between them. No strong evidence of direct biological
TRD effects was found, but there were possible biological processes affected in regions with TRDLs.
The study of TRDLs could provide priceless insight into the genetic and evolutionary development
of pig breeds, particularly in traditional breeds. These results may promote future research and the
development of new strategies to further knowledge about TRD phenomena in the livestock industry.
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distortion (TRD) loci detected in Retinto Iberian families and Table S4: Genes belonging to significant Gene
Ontology (GO) biological processes identified in the regions with maternal transmission ratio distortion loci
(TRDLSs) separately in both Entrepelado and Retinto varieties.
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