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Abstract 

The recent detection of tetrodotoxins (TTXs) in puffer fish and shellfish in Europe highlights the 

necessity to monitor the levels of TTXs in seafood by rapid, specific, sensitive and reliable 

methods in order to protect human consumers. A previous immunoassay for TTX detection in 

puffer fish, based on the use of self-assembled monolayers (SAMs) for the immobilization of 

TTX on maleimide plates (mELISA), has been modified and adapted to the analysis of oyster 

and mussel samples. Changing dithiol for cysteamine-based SAMs enabled reductions in the 

assay time and cost, while maintaining the sensitivity of the assay. The mELISA showed high 

selectivity for TTX since the antibody did not cross-react with co-occurring paralytic shellfish 

poisoning (PSP) toxins and no interferences were observed from arginine (Arg). Moreover, 

TTX-coated maleimide plates stored for 3 months at -20 °C and 4 °C were stable, thus when 

pre-prepared, the time to perform the assay is reduced. When analyzing shellfish samples, 

matrix effects and toxin recovery values strongly depended on the shellfish type and the 

sample treatment. Blank oyster extracts could be directly analyzed without solid-phase 

extraction (SPE) clean-up, whereas blank mussel extracts showed strong matrix effects and SPE 

and subsequent solvent evaporation were required for removal. However, the SPE clean-up 

and evaporation resulted in toxin loss. Toxin recovery values were taken as correction factors 

(CFs) and were applied to the quantification of TTX contents in the analysis of naturally-

contaminated shellfish samples by mELISA. The lowest effective limits of detection (eLODs) 

were about 20 and 50 µg/kg for oyster extracts without and with SPE clean-up, respectively, 

and about 30 µg/kg for mussel extracts with both protocols, all of them substantially below the 

eLOD attained in the previous mELISA for puffer fish (230 µg/kg). Analysis of naturally-

contaminated samples by mELISA and comparison with LC-MS/MS quantifications 

demonstrated the viability of the approach. This mELISA is a selective and sensitive tool for the 

rapid detection of TTX in oyster and mussel samples showing promise to be implemented in 

routine monitoring programs to protect human health. 
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maleimide-based enzyme-linked immunosorbent assay (mELISA), liquid chromatography-

tandem mass spectrometry (LC-MS/MS).  



1. Introduction 

 

Tetrodotoxin (TTX) is a potent low-molecular-weight (319 Da) marine neurotoxin, named for 

the family of fish Tetraodontidae [1]. Tetrodotoxin possesses a unique structure, consisting of 

a positively charged guanidine group connected to a highly oxygenated carbon backbone [1-3]. 

Although TTX was originally found in the ovaries of puffer fish [4], several marine organisms 

have been shown to contain the toxin such as blue-ring octopus, ribbon worms, starfish and 

xanthid crabs [5], as well as terrestrial animals such as frogs and newts [6]. Unlike many other 

marine toxins, which are of microalgal origin, TTX production is thought to be produced by 

bacteria of the genera Pseudomonas, Shewanella, Alteromonas or Vibrio [7], in symbiosis with 

certain animals [8]. Recently, the marine dinoflagellate Prorocentrum minimum has been 

described to produce TTXs in cultures, with possible implication of endosymbiotic bacteria [9]. 

Tetrodotoxin has the ability to selectively bind to voltage-gated sodium channels (VGSCs), 

blocking the influx of sodium ions into the nerve cells, affecting neuromuscular transmission 

[10]. The consumption of puffer fish contaminated with TTX may result in mild gastrointestinal 

effects, numbness, respiratory failure, and even in death [11]. Human intoxication has been 

reported worldwide, mainly caused by the ingestion of contaminated puffer fish, served in 

Japan as a delicacy known as “fugu” [8, 11]. A toxic species of puffer fish, Lagocephalus 

sceleratus, recently reached the Mediterranean through the Suez channel [12], resulting in 

new reports of food poisoning in the Western Mediterranean and further migration towards 

eastern waters [13-15]. In Europe, the first toxicity report related with TTX-contaminated 

shellfish occurred in Spain in 2007 and it was caused by the ingestion of contaminated trumpet 

shells, although the shellfish was bought in Portugal [16]. Since then, TTXs have been detected 

in bivalve shellfish in different parts of Europe, including England [17], Greece [18] and the 

Netherlands [19]. In humans, according to case studies, between 0.18 and 0.2 mg of TTX have 

been reported to cause severe symptoms, and a fatality was reported after ingestion of around 

2 mg of TTX [20]. Despite the fact that TTX is a toxin with a high fatality rate and worldwide 

distribution, neither a reference method nor regulatory limits have been specifically set for 

TTX. Nevertheless, in Japan a value of 2 mg TTX equiv./kg edible portion has been used as the 

acceptance criterion to consider puffer fish safe for consumption [21]. Moreover, in Europe, 

the Regulation (EC) no. 854/2004 stipulates that “fishery products derived from poisonous fish 

of the following families must not be placed on the market: Tetraodontidae, Molidae, 

Diodontidae and Canthigasteridae” [22]. Concern for TTX in Europe has been increasing, and 

just recently, the European Food Safety Authority has concluded that a concentration below 44 
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µg TTX equiv./kg shellfish meat, based on a large portion size of 400 g, is considered not to 

result in adverse effects in humans [19]. 

Given the occurrence of TTXs in European bivalve shellfish and the threat that this hazardous 

toxin poses to human health, the development of rapid, specific, sensitive, reliable and easy-

to-use methods for their detection is a matter of utmost importance. Accordingly, several 

methods have been reported for the detection of TTXs, including immunoassays [23-33] and 

immunosensors [23, 34-41]. Although some of these immunochemical approaches have been 

applied to the analysis of puffer fish [32, 33, 36, 38, 40-41], newts [26], caddisflies [27], 

terrestrial flatworms [29], sea snails [38], urine [36] and milk/apple juice [37], none of them 

has been applied to the analysis of bivalve mollusks. Indeed, up to date only the LC-MS/MS 

method has been applied to the detection of TTXs in mussels and oysters [42, 43]. However, 

this technique requires trained personnel, sample pre-treatment and expensive equipment. 

Taking as a starting point an immunoassay previously developed for the determination of TTXs 

in puffer fish samples [33], the aim of this research was to illustrate the development of an 

improved bioanalytical tool for the analysis of oyster and mussel samples. 

  



2. Materials and methods 

 

Reagents and solutions 

For mELISA, pure TTX standard was purchased from Tocris Bioscience (Bristol, UK) and 

standard solutions were prepared at 1 mg/mL in 10 mM acetic acid (AA). For LC-MS/MS 

analysis, pure TTX standard was purchased from Latoxan (Valence, France) and standard 

solutions were prepared at 1 mg/mL in 350 mM AA. Certified reference materials (CRMs), 

specifically gonyautoxin 1&4 (GTX1&4), gonyautoxin 2&3 (GTX2&3), decarbamoyl gonyautoxin 

2&3 (dcGTX2&3), gonyautoxin 5 (GTX5), neosaxitoxin (NEO), decarbamoyl neosaxitoxin 

(dcNEO), saxitoxin (STX), decarbamoyl saxitoxin (dcSTX) and N-sulfocarbamoyl gonyautoxin 

2&3 (C1&2), were obtained from the National Research Council of Canada (NRC, Halifax, NS, 

Canada). The anti-TTX monoclonal antibody (mAb) TX-7F was produced as described in 

Kawatsu et al. [25]. Pierce maleimide-activated plates were obtained from Thermo Fisher 

Scientific (Madrid, Spain). Ammonium hydroxide solution (NH4OH, 25%), amorphous 

graphitized polymer carbon Supelco ENVI-Carb 250 mg/3 mL cartridges, anti-mouse IgG (whole 

molecule)-horseradish peroxidase antibody produced in rabbit (IgG-HRP), L-arginine (Arg), 

bovine serum albumin (BSA), cysteamine hydrochloride, ethylenediaminetetraacetic acid 

(EDTA), formaldehyde solution, 4-morpholineethanesulfonic acid (MES) hydrate, potassium 

phosphate dibasic, potassium phosphate monobasic and 3,3’,5,5’-tetramethylbenzidine (TMB) 

liquid substrate were all supplied by Sigma-Aldrich (Tres Cantos, Spain). HPLC-grade 

acetonitrile (ACN), glacial AA and methanol (MeOH) were obtained from Chem-lab (Zedelgem, 

Belgium). Formic acid (FA) (98-100%) was purchased from Merck (Darmstadt, Germany). Ultra 

LC-MS ACN, Ultra LC-MS MeOH and Ultra LC-MS H2O were purchased from Actu-All (Oss, The 

Netherlands). Ultrapure Milli-Q water (18.2 MΩ/cm2) was used for the preparation of solutions 

(Millipore, Bedford, MA, USA). 

 

Instrumentation 

For toxin extraction, a water bath (model 6000138 600 W) purchased from J. P. Selecta S. A. 

(Barcelona, Spain), an Alegra X-15R centrifuge provided by Beckman Coulter (Barcelona, Spain) 

and a DVX-2500 multi-tube vortex mixer acquired at VWR International Eurolab S. L. 

(Barcelona, Spain) were used. 

Extraction clean-up was performed with a Rapid Trace SPE workstation supplied by Caliper Life 

Sciences (Waltham, MA, USA). 



Colorimetric measurements were performed with a Microplate Reader KC4 from BIO-TEK 

Instruments, Inc. with GEN 2.09 software (Winooski, VT, USA). 

For LC-MS/MS analysis, the separation was performed on a Waters Acquity I-Class UPLC 

system (Waters, Milford, MA, USA) and mass spectrometric analysis on a Waters Xevo TQ-S 

(Waters, Milford, MA, USA). 

 

Shellfish samples 

For the evaluation of matrix effects and toxin recovery, Pacific oyster (Crassostrea gigas) and 

mussel (Mytilus galloprovincialis) samples from the Ebro Delta (Alfacs Bay, NW Mediterranean 

Sea) were used. These shellfish samples were determined as TTXs negative by LC-MS/MS 

analysis. For the analysis of naturally-contaminated shellfish, three oyster (Crassostrea gigas) 

and three mussel (Mytilus edulis) samples were obtained from production sites at the 

Oosterschelde in The Netherlands. 

 

mELISA protocol 

The protocol was similar to that previously described by our group [33], with some 

modifications regarding the TTX immobilization. The first step was the self-assembling of 1 mM 

cysteamine in phosphate buffer for 3h, followed by the direct immobilization of TTX (2 µg/mL) 

with formaldehyde (3.4 %) in the same buffer overnight. A competitive assay was then 

performed by incubating 50 µL of free TTX/shellfish extract and 50 µL of 1:3,200 anti-TTX mAb 

dilution in 1% BSA-phosphate buffer for 30 min. A blocking step was then performed with 200 

µL of 1% BSA-phosphate buffer for 30 min and, finally, 100 µL of IgG-HRP at 1:1,000 dilution in 

1% BSA-phosphate buffer was incubated for 30 min. Colorimetric response was measured at 

620 nm after 10 min of TMB liquid substrate incubation. 

 

Storage stability of TTX-coated maleimide plates 

Tetrodotoxin was immobilized through cysteamine self-assembled on maleimide-activated 

plates as described in the section above, and TTX-coated maleimide plates were kept at 4 °C 

and -20 °C. Absorbance values of wells with mAb (maximum response) and without mAb 

(background) in the absence of free TTX were measured in triplicate at day 0 (reference value) 

and during several weeks up to 3 months. 

 



Interference study 

The selectivity of the mELISA was assessed by the analysis of the following Paralytic Shellfish 

Poisoning (PSP) toxins: GTX1&4, GTX2&3, dcGTX2&3, GTX5, NEO, dcNEO, STX, dcSTX and 

C1&2, as well as L-arginine (Arg). A concentration of 100 ng/mL was chosen taking into account 

that TTX almost completely inhibits the mAb binding. The protocol was the same as that 

explained in the mELISA protocol section, but replacing free TTX by PSP toxins or Arg prepared 

in 1% BSA-phosphate buffer in the competition step. Percentage of mAb binding was 

calculated with respect to the response obtained without toxin (maximum response). 

 

Toxin extraction and SPE clean-up 

For the analysis of toxins in shellfish by mELISA, extracts were obtained following the single 

dispersive procedure described in the literature [43] for other paralytic shellfish toxins, 

adapted to the amount of sample available. In brief: 1 g ± 0.1 g of shucked shellfish 

homogenate was weighed into a 15-mL tube and 1 mL of AA/H2O (1:100, v:v) was added. After 

shaking the tube for 90 s on a multi-tube vortex mixer, samples were boiled in a water bath for 

5 min at 100 °C. Tubes were then cooled and shaken again with the multi-vortex mixer for 90 s. 

Finally, samples were centrifuged at 4,500 rpm for 10 min, and the supernatants were filtered 

through 0.2-µm nylon filters and kept at -20 °C until analysis. The resulting extracts contained 

fresh shellfish matrix at a concentration of 1,000 mg equiv./mL. 

For the clean-up of shellfish sample extracts, SPE was performed using graphitized polymer 

carbon ENVI-carb cartridges by adapting the automated protocol described by Boundy et al. 

[43]. Briefly, a 0.5-mL aliquot of the AA extract was transferred to a polypropylene tube and 

1.25 µL of NH4OH solution was added. The cartridges were conditioned with 3 mL of 

ACN/H2O/AA (20:80:1, v:v:v), followed by 3 mL of H2O/NH4OH (1000:1, v:v). Then, 400 µL of 

sample extracts were loaded onto the conditioned cartridges and were washed with 700 µL of 

deionized H2O. Finally, the retained TTX was eluted with 2 mL of ACN/H2O/AA (20:80:1, v:v:v) 

and stored at -20 °C until analysis. Resulting extracts were at a shellfish matrix concentration of 

200 mg equiv./mL. Further dilutions for mELISA experiments were performed in phosphate 

buffer. When required, shellfish sample extracts were evaporated for solvent exchange (from 

ACN/H2O/AA to phosphate buffer). 

Blank, TTX-spiked and naturally-contaminated shellfish sample extracts were analyzed by 

mELISA at 3 different stages: (1) after SPE clean-up, (2) after SPE clean-up, evaporation and 



solvent exchange, and (3) directly after toxin extraction (without SPE clean-up nor evaporation 

and solvent exchange). The matrix effects of blank samples were evaluated and the TTX 

contents obtained in spiked and naturally-contaminated samples at each stage were 

determined. 

 

LC-MS/MS analysis 

For the analysis by LC-MS/MS, naturally-contaminated shellfish sample extracts were obtained 

as follows: 1 g of shellfish homogenate was accurately weighed, and 2 mL of H2O/MeOH 

(50:50, v:v) containing 15 mM AA solution was added. First, TTX was extracted by a 15-min 

head-over-head extraction. The sample was then centrifuged for 10 min at 5,200 g and the 

supernatant was transferred to a volumetric tube. A second extraction was performed by 

adding 1.5 mL of extraction solvent and vortex mixing during 1 min. After centrifugation, the 

total volume was brought to 4 mL with the same extraction solvent. The extract was diluted 

1:9 with ACN/H2O (70:20, v:v) containing 6.7 mM AA. Subsequently, the diluted extract was 

centrifuged at 16,200 g during 5 min and the supernatant was transferred to a vial. For the 

construction of calibration curves, matrix-matched standards were prepared by spiking blank 

shellfish material with known concentrations of TTX, respectively 0, 20, 50, 75, 150 µg/kg. 

Chromatographic separation was achieved using a UPLC system. The system consisted of a 

binary solvent manager, a sample manager and a column manager. The column temperature 

was at room temperature and the temperature of the sample manager was kept at 10 °C. For 

the analysis of TTX, a 10-µL injection volume was used. Mobile phase A was H2O and B was 

ACN, both containing 50 mM FA. The analytical column used was a Tosoh Bioscience TSKgel 

Amide-80 column (250x2 mm, 5-µm particles). A flow rate of 0.2 mL/min was used. A gradient 

started at 30% A and after 1 min it was linearly increased to 95% A in 7.5 min. This composition 

was kept for 5 min and returned to 30% A in 0.5 min. An equilibration time of 6 min was 

allowed prior to the next injection. The effluent was directly interfaced in the electrospray 

ionization (ESI) source of the triple quadrupole mass spectrometer. The mass spectrometer 

operated in ESI positive ionization mode and two transitions for TTX were measured, m/z 

320.1 > 162.1 and m/z 320.1 > 302.1. 

 

 

 



Data analyses and statistics 

Measurements were performed in triplicate for the mELISA experiments and singular in LC-

MS/MS analysis. In the mELISA, calibration curves were background-corrected with respect to 

the controls with no mAb and adjusted to sigmoidal logistic four-parameter equations using 

SigmaPlot software 12.0 (Systat Software Inc., San José, CA, USA). From the equations, 

inhibitory concentrations (ICs) were calculated. Specifically, the midpoint (IC50), the limit of 

detection (LOD) established as the IC20, and the working range (IC20-IC80), were determined. In 

this work, the limit of quantification (LOQ) has been considered equal to the LOD. 

To evaluate differences in the quantifications provided by the three approaches (mELISA with 

SPE clean-up/evaporated samples, mELISA with no SPE clean-up/not evaporated samples and 

LC-MS/MS analysis), a one-way analysis of variance was conducted using SigmaStat 3.1 

software (Systat Software Inc., San José, CA, USA). Prior to the analysis, a normality and equal 

variance test was performed. Differences in the results were considered statistically significant 

at the 0.05 level. 

  



3. Results and discussion 

 

mELISA performance 

Rapidity, low-cost and simplicity are key parameters for the success of immunoassays. To this 

purpose, the mELISA described previously elsewhere [33] was improved by using reagents 

readily available, reducing the protocol time and cost. The carboxylate-dithiol used for TTX-

coating of the microtiter plate was replaced by cysteamine, which simplifies the protocol by 

eliminating 3 steps and shortens the analysis time by 90 min. Cysteamine can be readily 

purchased from different companies and it costs about 1,000-fold less than carboxylate-

dithiol. 

To enable the substitution of carboxylate-dithiol by cysteamine, the amount of cysteamine 

required for the SAM formation had to be determined, and according to the solubility of 

cysteamine, the solvent was changed from ethanol into an aqueous (phosphate) buffer. Thus, 

concentrations of 1, 10, 50 and 100 mM of cysteamine were tested in competition assays, 

using 2 µg/mL of TTX, 1:3,200 mAb dilution and 1:1,000 IgG-HRP dilution. All competitive 

assays showed appropriate trends according to the free TTX concentrations and provided 

similar IC50 values. Moreover, similar absorbance values were obtained for the positive 

(without free TTX) and negative (without mAb) controls, altogether indicating that 1 mM of 

cysteamine is a saturated concentration. Therefore, subsequent experiments were performed 

with 1mM cysteamine. Under the selected conditions, an IC50 of 8 ng/mL, an LOD, established 

as the IC20, of 2 ng/mL and a working range (IC20-IC80) between 2 and 43 ng/mL were attained 

(Fig. 1), with an R from the sigmoidal adjustment of 0.996. The standard deviation (SD) values 

for the calibration points were lower than 8% of the mAb binding signal. The LOD attained with 

the mELISA described herein was similar to that obtained with the previous mELISA (using 

carboxylate-dithiol). In contrast, a narrower working range was obtained in the mELISA using 

cysteamine with respect to the previous mELISA using dithiol (2-43 vs. 2-95 ng/mL, 

respectively). This difference is attributed to the higher sensitivity of the cysteamine-based 

mELISA. The LOD provided by the mELISA described herein was in accordance with other 

immunoassays reported for TTX (~2 ng/mL [23, 25, 33]) and lower than others (5 ng/mL [32] 

and 10 ng/mL [28]). 

Additionally, to investigate the possibility of further shortening the time of the mELISA 

protocol, the storage stability of TTX-coated maleimide plates at 4 and -20 °C was evaluated. 

The mAb binding signal was constant up to 3 months at both 4 °C and -20 °C, demonstrating 

the stability of the maleimide plates with immobilized TTX (Fig. 2). The great stability of the 



TTX-coated plates significantly reduces the assay time, as multiple plates can be prepared on 

the same day and stored until use. Consequently, provided that TTX-coated plates are ready-

to-use, the analysis of samples can be performed in less than 2 h on the same day, making a 

substantial improvement with respect to the previously reported mELISA [33]. Moreover, the 

preparation of multiple plates using the same solutions reduced the variability between 

assays, making the system more reproducible, particularly for a commercialization. 

 

Interference studies 

The protocol applied for TTX extraction from shellfish is also adequate to extract PSP toxins. 

Therefore, the TTX extraction process may extract PSP toxins, if present. As a consequence, 

prior to the analysis of naturally-contaminated samples, it is necessary to ensure that potential 

PSP toxins will not interfere in the TTX immunoassay performance. With this aim, the possible 

recognition of several PSP toxins (GTX1&4, GTX2&3, dcGTX2&3, GTX5, NEO, dcNEO, STX, dcSTX 

and C1&2) by the anti-TTX antibody was evaluated. As the mAb binding obtained for all toxins 

analyzed was close to 100% (Fig. 3), the cross-reactivity of the PSP toxins at a concentration of 

100 ng/mL can be neglected, demonstrating the high specificity and selectivity of the mELISA. 

As a positive control, TTX tested at the same concentration resulted in a mAb binding decrease 

of more than 90% (Fig. 1). This study illustrates that those PSP toxins, for which standards are 

available, that may co-exist with TTX in shellfish extracts will not interfere with the 

immunorecognition of TTX in the assay. 

Additionally, since multiple reaction monitoring (MRM) transitions for Arg have been found to 

suppress TTX response in the mass spectrometer source [42], the possible interference of this 

amino acid in the mELISA was also evaluated. As can be seen in Fig. 3, no significant effects of 

Arg on the mAb binding were observed. 

 

Evaluation of matrix effects and establishment of matrix correction factors 

Mussel and oyster matrix effects were studied by the analysis of blank shellfish extracts at 

different matrix concentrations (50, 75, 100 and/or 150 mg equiv./mL) at 3 different stages of 

the extraction protocol.  

1) After SPE clean-up without solvent evaporation: Although SPE clean-up should reduce 

matrix effects, the highly acidic nature of the ACN/H2O/AA solvent mixture used in the SPE 

protocol had a negative impact on the system, since mAb binding percentages obtained were 



not consistent with the shellfish matrix concentration used. The detrimental effects observed 

in the mELISA were assumed to be due to the solvent composition rather than to the shellfish 

matrix. Even decreasing the solvent mixture percentage by 4 times respect to the extract 

arising from the SPE column (i.e. 12.5% of the total volume of the well), the solvent effect 

could not be avoided. 

2) After SPE clean-up, evaporation and solvent exchange: SPE cleaned-up extracts were 

evaporated until dryness, dissolved in phosphate buffer and analyzed by mELISA at the same 

matrix concentrations. mAb binding percentages were between 92 and 108% in either oyster 

or mussel extracts, regardless of the matrix concentration used (Table 1). Taking into 

consideration that the highest RSD value obtained was of 10%, negligible matrix effects are 

assumed when mAb binding percentages are between 90 and 110%. Thus, results obtained 

with this protocol indicate that evaporation completely removes the previously observed 

undesirable effects. These results also reaffirm that when no evaporation was performed, the 

inhibition of the mAb binding was not due to the shellfish matrix, but to the solvent mixture 

presence, which could be harming the cysteamine and/or TTX immobilization. Therefore, 

mELISA enables loading up to 150 mg equiv./mL of shellfish matrix after SPE clean-up and 

evaporation. 

3) Directly after toxin extraction (without SPE clean-up nor evaporation and solvent exchange): 

In order to evaluate if the SPE clean-up can be avoided to simplify the protocol or if, on the 

contrary, is a crucial step in the analysis of oyster and mussel extracts, extracts without SPE 

clean-up and not evaporated were tested. Under these conditions, differences between oyster 

and mussel extracts were observed (Table 1). In the case of oyster, no matrix effects were 

observed (i.e. mAb binding percentages were between 103 and108%), indicating that the 

mELISA tolerates up to 150 mg equiv./mL of oyster matrix without SPE clean-up and with no 

need of solvent exchange. These results indicate that whereas solvent evaporation is crucial 

for the analysis of SPE cleaned-up oyster extracts, oyster extracts without SPE clean-up 

containing up to 7.5 % of the extraction solvent do not to interfere with the assay performance 

and, therefore, solvent evaporation is not required for the analysis of these extracts. However, 

in the analysis of mussel, pronounced matrix effects were obtained for all matrix 

concentrations tested. Although loading a lower matrix concentration could in principle 

remove remaining matrix effects, this would compromise the effective LOD (eLOD) of the 

assay. While the reason for the different behavior between mussel and oyster extracts remains 

unclear, it is evident that in the analysis of mussel extracts, SPE clean-up and subsequent 

solvent exchange are recommended to avoid non-desired matrix interferences. 



Toxin recovery in oysters and mussel samples 

From the experiments performed with blank oyster extracts, it was concluded that up to 150 

mg equiv./mL of oyster extract can be loaded on the immunoassay without requiring a clean-

up step nor solvent exchange. Nonetheless, solvent evaporation is required if the oyster 

extract undergoes a SPE clean-up step. Mussel extract after SPE clean-up also requires solvent 

evaporation prior to analysis to avoid solvent interference in the immunoassay. However, 

mussel extracts without SPE clean-up and with no evaporation suffer from undesirable matrix 

effects even at 50 mg equiv./mL of mussel matrix. Consequently, oyster and mussel tissue 

homogenates were spiked and extracted, and toxin recovery was evaluated without SPE clean-

up/not evaporated and after SPE clean-up/evaporated. Taking into account the matrix 

concentrations of the resulting extracts and to fit into the TTX calibration curves, extracts were 

spiked at 2 different levels of TTX in order to evaluate the toxin recovery. 

1) After SPE clean-up, evaporation and solvent exchange: As SPE cleaned-up and evaporated 

extracts can be analyzed at 150 mg equiv./mL of shellfish matrix concentration, shellfish 

tissues were spiked at 75 µg TTX/kg (concentration that should provide about 50% of mAb 

binding inhibition when extract is analyzed at 150 mg equiv./mL of matrix concentration). 

Under these conditions, low toxin recovery values were obtained for both oyster and mussel 

tissue extracts (Table 2). These low recovery values can be attributed to toxin loss during the 

SPE clean-up and solvent exchange and/or interference of the shellfish matrix on the free 

toxin/antibody recognition. Nevertheless, these toxin recovery values can be taken as 

correction factors (CFs) and will be applied in the quantifications obtained in the subsequent 

analysis of naturally-contaminated samples extracted and treated under these conditions. 

2) Directly after toxin extraction (without SPE clean-up nor evaporation and solvent exchange): 

Mussel extracts with no SPE clean-up showed higher matrix effects and, therefore, samples 

had to be analyzed at lower matrix concentrations. Consequently, to test these conditions, a 

higher TTX concentration (250 µg TTX/kg) was spiked in mussels (also for oysters, although it 

was not a requirement). Under these conditions, toxin recovery values were higher than those 

obtained for SPE cleaned-up extracts. Regarding oyster samples, the lower the matrix 

concentration, the higher the toxin recovery. The excellent toxin recovery at 75 mg equiv./mL 

(96%) indicates that these extracts do not suffer from toxin loss during SPE or solvent 

exchange. Consequently, the inhibition of mAb binding at higher matrix concentrations can 

only be due to the effect of the matrix on the free toxin/antibody recognition, which obviously 

decreases as the matrix concentration decreases. Again, these toxin recovery values can be 

taken as CFs and will be applied in the quantifications obtained in the subsequent analysis of 



naturally-contaminated oyster samples extracted and treated under these conditions. 

Regarding mussel samples, only one matrix concentration (50 mg equiv./mL) was analyzed 

(matrix effects at higher matrix concentrations were considered too high to conduct spiking 

trials), and the toxin recovery obtained was very high (166%). In this case, it is evident that the 

mussel matrix inhibits the response (as observed in the previous experiment where no TTX was 

present), causing an overestimation of the TTX content. Taking into account the toxin recovery 

value (166%) and the percentage of mAb binding obtained in the analysis of blank mussel 

tissue at 50 mg equiv./mL (74%), a CF of 123% is obtained, which will be used in the 

quantifications obtained in the subsequent analysis of naturally-contaminated mussel samples 

extracted and treated under these conditions. 

Once obtained all toxin recovery values, eLODs in µg TTX/kg shellfish were calculated for each 

shellfish matrix and for both protocols. These eLODS were calculated as the ratio of the LOD 

obtained in buffer (2 ng/mL ± SD) to the shellfish matrix concentration used and applying the 

corresponding CF (Table 3). 

Regarding oysters, eLOD obtained for extracts without SPE clean-up and not evaporated were 

lower than for SPE cleaned-up and evaporated extracts. Consequently, SPE clean-up is 

certainly not worth conducting as this additional step increases the analysis time. Regarding 

mussels, similar eLODs were obtained after SPE clean-up at 150 mg equiv./mL of matrix and 

without SPE clean-up at 50 mg equiv./mL. These results reaffirm that SPE clean-up is not a 

requirement for the analysis of oyster and mussel extract samples. 

The eLOD values obtained for both shellfish matrices are higher than those previously reported 

for TTX by LC-MS/MS (5 µg/kg in this work, 3 µg/kg [17], 7.2 µg/kg [18] and 15 µg/kg [43]), but 

still very acceptable. Notably, they are substantially below from the eLOD obtained for puffer 

fish with the previous mELISA (230 µg/kg) [33]. Moreover, the eLODS values obtained herein 

proved the capability of the mELISA of detecting TTX below or only slightly above the 

concentration of 44 µg TTX equiv./kg shellfish meat, level that is considered not to result in 

adverse effects in humans [19]. Therefore, the mELISA described herein is absolutely 

appropriate for the screening as well as for the quantification of TTX contents in natural 

shellfish samples. 

 

Analysis of oyster and mussel samples and comparison with LC-MS/MS analysis 

After evaluating the matrix effects and establishing the CFs according to the toxin recovery 

values obtained, the mELISA was applied to the analysis of 3 oyster and 3 mussel samples from 



the Oosterschelde, The Netherlands. Oyster and mussel extracts were analyzed using the two 

different protocols (without SPE clean-up not evaporated and with SPE clean-up and 

evaporated). The corresponding CF values were applied to the TTX content determined in each 

sample, and resulting quantifications were compared to those obtained by LC-MS/MS analysis 

(Table 4). 

Although the number of samples was too low for statistical treatment (due to the limited 

availability of natural samples of shellfish containing TTX), no significant differences (P=0.702) 

were observed in the quantifications provided by the three approaches (mELISA with SPE 

clean-up/evaporated samples, mELISA with no SPE clean-up/not evaporated samples and LC-

MS/MS analysis). In the analysis of samples by LC-MS/MS, only TTX was detected (other TTX 

analogues were not found at detectable levels). This toxin profile, with only TTX, contributes to 

the similarity between techniques, even though they are based on different recognition 

principles. 

The TTX content in the shellfish samples ranged from slightly below 44 µg/kg up to 4- or 5-fold 

higher. Thus, we provide the first immunoassay capable of screening and quantifying TTX in 

shellfish samples at levels that may be considered of concern for human health. 

 



4. Conclusions 

A modified SAM-based immunoassay has been applied to the determination of TTX in mussel 

and oyster samples. The replacement of dithiols by cysteamine for the SAM formation allowed 

decreasing the required time and cost, while maintaining the sensitivity of the previously 

reported mELISA (LOD of 2 ng/mL). Storage at -20 and 4 °C of the TTX immobilization up to at 

least 3 months, provided ready-to-use microtiter plates, enabling a user to perform the assay 

in less than 2 h. Additionally, as proven by the absence of interferences from PSP toxins and 

Arg, the mELISA is highly selective for TTX, and certainly TTX analogues, as demonstrated in 

our previous work [33, 40, 41, 44]. 

In the analysis of blank shellfish, oyster extracts did not show matrix effects even without the 

SPE clean-up step. The SPE clean-up of mussel extracts removed the strong matrix effects 

observed when no SPE was used. However, the SPE clean-up and the required solvent 

evaporation resulted in low toxin recovery percentages when analyzing TTX-spiked samples, 

probably because of toxin lost in the column and during the evaporation step. Toxin recovery 

values were obtained for all protocols and shellfish types, and can be used as CFs to be applied 

to the quantification of TTX contents in naturally-contaminated samples. Taking them into 

account, the lowest eLOD values obtained were about 20 and 50 µg TTX/kg for oyster extracts 

without and with SPE clean-up, respectively, and about 30 µg TTX/kg for mussel extracts with 

both protocols, substantially below the eLOD obtained by the previous mELISA for puffer fish 

(230 µg TTX/kg). This is in relatively good agreement with the level of 44 µg TTX equiv./kg 

shellfish meat, which is considered not to result in adverse effects in humans by the EFSA. 

Highly analogous results were determined on the comparison of the analysis of naturally-

contaminated shellfish by mELISA with LC-MS/MS analysis. 

Overall, the mELISA developed herein meets the requirements in terms of selectivity and 

sensitivity. Although toxin recovery values, and thus CFs, were obtained for all protocols, 

shellfish samples can be rapidly processed and analyzed by mELISA without SPE clean-up, 

which is a clear advantage over LC-MS/MS methodologies, where SPE is required. Therefore, 

the implementation of the mELISA for the screening of TTXs in bivalve shellfish samples in 

routine monitoring programs could be straightforward, providing a complementary analytical 

technique suitable for ensuring food safety and consumer protection.  
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Figure legends 

Figure 1. TTX calibration curve obtained by mELISA. Response is expressed as percentage of mAb 

binding, normalized to the signal when no TTX is present. Error bars represent the standard 

deviation values for 3 replicates. 

 

Figure 2. Storage stability of TTX-coated maleimide plates. Bars represent the percentage of 

mAb binding obtained with plates stored at 4 °C (black bars) and at -20 °C (grey bars). Error bars 

represent the standard deviation values for 3 replicates. 

 

Figure 3. Percentage of mAb binding obtained by mELISA with 100 ng/mL of PSP toxins and Arg. 

Error bars represent the standard deviation values for 3 replicates. 
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Table 1. Percentages of mAb binding obtained in the analysis of blank oyster and mussel 

tissues extracted under different conditions (n=4 replicates). 

Shellfish tissue Protocol 
[Matrix] (mg equiv./mL) 

150 100 75 50 

Oyster 

SPE clean-up / not evaporated X X X X 

SPE clean-up / evaporated 106 92 97 - 

no SPE clean-up / not evaporated 103 110 108 108 

Mussel 

SPE clean-up / not evaporated X X X X 

SPE clean-up / evaporated 105 96 108 - 

no SPE clean-up / not evaporated 57 63 71 74 

X: not consistent; -: not tested 

 

Table 2. Percentages of toxin recovery obtained in the analysis of TTX-spiked oyster and 

mussel tissues extracted under different conditions (n=4 replicates). 

Shellfish tissue Protocol 
TTX level 

(µg/kg) 

[Matrix] (mg equiv./mL) 

150 100 75 50 

Oyster 
SPE clean-up / evaporated 75 29 - - - 

no SPE clean-up / not evaporated 250 71 83 96 - 

Mussel 
SPE clean-up / evaporated 75 50 - - - 

no SPE clean-up / not evaporated 250 - - - 166 

-: not tested 

 

Table 3. eLODs (µg TTX/kg shellfish) determined for SPE cleaned-up evaporated and no SPE 

cleaned-up not evaporated oyster and mussel extracts at different matrix concentrations. 

Shellfish tissue Protocol 
[Matrix] (mg equiv./mL) 

150 100 75 50 

Oyster 
SPE clean-up / evaporated 47 ± 17 - - - 

no SPE clean-up / not evaporated 19 ± 7 25 ± 9 28 ± 10 - 

Mussel 
SPE clean-up / evaporated 27 ± 10 - - - 

no SPE clean-up / not evaporated - - - 33 ± 12 

-: not tested  



Table 4. TTX content of 3 oyster and 3 mussel samples from the sanitary monitoring program 

of The Netherlands by the cysteamine-based mELISA under two different extraction protocols 

and comparison with LC-MS/MS analysis. 

 

Method Protocol 
Oyster 

1 
Oyster 

2 
Oyster 

3 
Mussel 

1 
Mussel 

2 
Mussel 

3 

mELISA 

(μg TTX 
equiv./kg 
shellfish) 

SPE clean-up / 
evaporated 

82 ± 2 36 ± 6 
67 ± 
21 

70 ± 11 
146 ± 

14 
16 ± 4 

no SPE clean-up 
/ not evaporated 

61 ± 7 
116 ± 

16 
86 ± 
13 

55 ± 1 227 ± 7 24 ± 5 

LC-MS/MS* 

(μg TTX/kg 
shellfish) 

- 113 51 79 93 172 41 

*Samples were analyzed singular; during the intra laboratory validation of this method the 

repeatability error at 20 µg/kg was 15.7%. 
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