
SCIENTIFIC OPINION

ADOPTED: 18 March 2020

doi: 10.2903/j.efsa.2020.6090

Update and review of control options for Campylobacter in
broilers at primary production

EFSA Panel on Biological Hazards (BIOHAZ),
Konstantinos Koutsoumanis, Ana Allende, Avelino Alvarez-Ord�o~nez, Declan Bolton,

Sara Bover-Cid, Robert Davies, Alessandra De Cesare, Lieve Herman, Friederike Hilbert,
Roland Lindqvist, Maarten Nauta, Luisa Peixe, Giuseppe Ru, Marion Simmons,

Panagiotis Skandamis, Elisabetta Suffredini, Thomas Alter, Matteo Crotta, Johanne Ellis-Iversen,
Michaela Hempen, Winy Messens and Marianne Chemaly

Abstract

The 2011 EFSA opinion on Campylobacter was updated using more recent scientific data. The relative risk
reduction in EU human campylobacteriosis attributable to broiler meat was estimated for on-farm control
options using Population Attributable Fractions (PAF) for interventions that reduce Campylobacter flock
prevalence, updating the modelling approach for interventions that reduce caecal concentrations and
reviewing scientific literature. According to the PAF analyses calculated for six control options, the mean
relative risk reductions that could be achieved by adoption of each of these six control options individually
are estimated to be substantial but the width of the confidence intervals of all control options indicates a
high degree of uncertainty in the specific risk reduction potentials. The updated model resulted in lower
estimates of impact than the model used in the previous opinion. A 3-log10 reduction in broiler caecal
concentrations was estimated to reduce the relative EU risk of human campylobacteriosis attributable to
broiler meat by 58% compared to an estimate larger than 90% in the previous opinion. Expert
Knowledge Elicitation was used to rank control options, for weighting and integrating different evidence
streams and assess uncertainties. Medians of the relative risk reductions of selected control options had
largely overlapping probability intervals, so the rank order was uncertain: vaccination 27%
(90% probability interval (PI) 4–74%); feed and water additives 24% (90% PI 4–60%); discontinued
thinning 18% (90% PI 5–65%); employing few and well-trained staff 16% (90% PI 5–45%); avoiding
drinkers that allow standing water 15% (90% PI 4–53%); addition of disinfectants to drinking water 14%
(90% PI 3–36%); hygienic anterooms 12% (90% PI 3–50%); designated tools per broiler house 7%
(90% PI 1–18%). It is not possible to quantify the effects of combined control activities because the
evidence-derived estimates are inter-dependent and there is a high level of uncertainty associated with
each.
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Summary

In 2011, EFSA published an opinion on ‘Campylobacter in broiler meat production: Control options
and performance objectives and/or targets at different stages of the food chain’. In 2018, the
European Commission requested the Panel on Biological Hazards to deliver a scientific opinion updating
and reviewing control options for Campylobacter in broilers, focussing on primary production. In
particular, the Panel was requested to review, identify and rank the possible control options at the
primary production level, considering and, if possible, quantifying the expected efficiency in reducing
human campylobacteriosis cases. Advantages and disadvantages of different options at primary
production should be assessed, as well as the possible synergic effect of combined control options.

The update of the previous opinion was carried out by reviewing the scientific literature published
since then and by estimating the relative risk reduction, expressed as the percentage reduction in
human campylobacteriosis in the EU associated with the consumption of broiler meat that could be
achieved by implementing control options at primary production of broilers. The relative risk was
estimated for on-farm control options using population attributable fractions (PAF) for interventions
that reduce Campylobacter flock prevalence, updating the modelling approach for interventions that
reduce caecal concentrations and reviewing the scientific literature. The effect of control options that
reduce the prevalence of Campylobacter spp. in broilers was estimated by calculating PAF, derived
from epidemiological risk factors studies, and assuming a proportionate relation between flock
prevalence prior to slaughter and the associated public health risk. The effect of control options that
reduce Campylobacter spp. concentration in broilers was estimated by using a regression model,
associating concentrations in the caeca and on skin samples, combined with a consumer phase and a
dose response model. For some control options, the relative risk reduction could not be calculated by
these methods and their effect was estimated using evidence from the scientific literature.

The PAF were calculated for six control options from several studies and included hygienic
anteroom; effective rodent control; having no animals in close proximity to the broiler house; addition
of disinfectant to drinking water; employing few and well-trained staff and avoiding drinkers that allow
standing water. The variation was greater between the different control options than for the same
control options in different studies, which increased the confidence in the extrapolation potential of the
results to the European Union (EU).

According to the PAF analyses, the mean relative risk reductions that could be achieved by adoption
of each of these six control options individually are estimated to be substantial but the width of the
confidence intervals of all control options indicates a high degree of uncertainty in the specific risk
reduction potentials. For example, the mean estimate of the relative risk reduction for the control
option ‘Addition of disinfectants to drinking water’ was between 5 (95% CI 0.6–8.2) and 32% (95% CI
6.0–54.9) based on three available studies.

The modelling approach for relative risk reductions achieved by a reduction of Campylobacter
concentrations in the caeca, previously used in the 2011 opinion, was updated. A wider variety of
consumer phase models and a newly published dose response model were also included. Furthermore,
newly and more extensive published data on the relationship between Campylobacter concentrations in
the caeca and corresponding broiler carcass skin samples were used. The updated model resulted in
lower estimates of the slope of the linear regression line describing the relation between
concentrations in caecal contents and on skin. As a result of the decrease of this slope, lower
estimates were obtained for the effectiveness of control options directed at a reduction in the caecal
concentrations. For example, for a 2-log10 reduction in caecal concentrations, the median estimate was
now a relative risk reduction of campylobacteriosis attributable to the consumption of broiler meat
produced in the EU of 42% (95% CI 11–75%), whereas in the previous opinion, this relative risk
reduction was 76–98% based on data from four Member States (MSs). Similarly, a 3-log10 reduction in
broiler caecal concentrations was estimated to reduce the relative EU risk of human campylobacteriosis
attributable to broiler meat by 58% (95% CI 16–89%), compared to a relative risk reduction estimate
of more than 90% in four MSs, which was found previously.

Overall, the ranking of control options was informed by three different evidence streams: effect of
control options to reduce flock prevalence (supported by PAF calculations based on literature data),
effect of control options to reduce the concentrations in broiler caeca (supported by estimates
obtained by a combination of models) and effect of control options directly obtained from literature
(not supported by either PAF or modelling). Also, the evidence from regional studies and laboratory
experiments had to be translated into EU wide effects in field conditions, and the current application of
control measures, as well as the modelling assumptions, had to be taken into account when assessing
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the effectiveness of the control options. Therefore, expert judgement was required for ranking the
control options considering the associated uncertainties. The Panel agreed on the use of a structured
approach, based on EFSA’s (2014) guidance on expert knowledge elicitation (EKE), to ensure that all
the identified evidence and uncertainties were considered in a balanced way and to improve the rigour
and reliability of the judgements involved.

The effectiveness of 20 control options if implemented by all broiler farms in the EU, taking into
account the current level of implementation, was estimated using a two-step EKE process informed by
the results from modelling of the updated scientific evidence, literature review (including the previous
EFSA opinion) and also the experts’ knowledge and experience. Within the time frame of this opinion,
experts made selections through the first step where all the options were considered and for the
second step where eight control options were prioritised for further assessment of the magnitude of
their effects.

In the first step of the EKE, for each of the control options, experts (i.e. working group members
and selected EFSA staff) individually estimated the probability that the relative risk reduction would be
larger than 10%. This 10% was chosen for its discriminative power in differentiating between the
effectiveness of control options. The relative risk reduction was judged to have a higher probability to
be larger than 10% for 12 control options: hygienic anterooms at broiler house entrance; no animals
in close proximity of the broiler houses; employing few and well-trained staff; addition of disinfectants
to drinking water; avoiding drinkers that allow standing water; effective cleaning and disinfection
between flocks; reduced slaughter age; discontinued thinning; designated tools for each broiler house;
feed and water additives; bacteriophages and vaccination. The remaining eight control options, which
were judged to have a lower probability to give more than 10% relative risk reduction included:
effective rodent control; adjusting downtime between flocks; fly screens and keeping insects out of the
broiler house; clean or amended litter; stocking density and flock size; the number of houses on site;
selective breeding and feed structure.

From the 12 selected control options, eight options were selected for risk prioritisation based on the
quality of evidence available and practical feasibility in the implementation of the control option.

The median values of the relative risk reduction of the eight prioritised control options were judged to
be as follows; vaccination 27% (90% probability interval (PI) 4–74%); feed and water additives 24%
(90% PI 4–60%); discontinued thinning 18% (90% PI 5–65%); employing few and well-trained staff
16% (90% PI 5–45%); avoiding drinkers that allow standing water 15% (90% PI 4–53%); addition of
disinfectants to drinking water 14% (90% PI 3–36%); hygienic anterooms at broiler house entrance 12%
(90% PI 3–50%); designated tools per broiler house 7% (90% PI 1–18%). It was not possible to rank
the selected control options according to effectiveness based on the EKE judgements because there is a
substantial overlap of the probability intervals, due to the large uncertainties involved.

There are advantages and disadvantages associated with each control option. The advantages
include ease of application (e.g. hygiene barrier, adding additives to feed), improved bird health (e.g.
biosecurity actions), better broiler welfare (e.g. discontinued thinning), cross-protection against other
pathogens (e.g. drinking water treatments, feed additives). The disadvantages for a given control
option may include a requirement for investment (e.g. if structural changes are required to install an
anteroom), lack of control (e.g. the farmer may not own the fields adjacent to the broiler house and
therefore cannot prevent other animals being close by), reduced broiler growth due to decreased
consumption of feed and/or water (e.g. if an additive affected the sensory (odour, taste or
appearance) properties making the feed or water less palatable).

Multiple control activities are expected to have a higher effect preventing Campylobacter spp. from
entering the broiler house and infecting the birds. To minimise the risk of Campylobacter colonisation,
all control activities relating to biosecurity would have to be implemented in full. It is not possible to
reliably assess the effect of combined control activities because they are inter-dependent and there is
a high level of uncertainty associated with each. Some control options enhance while others reduce
the effect of others. Combining two control measures targeting prevalence and concentration,
respectively, may result in an additive effect, if their specific targets are unrelated.
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1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

The 2012 EFSA opinion on the public health hazards to be covered by inspection of poultry meat1

identified the need to address Campylobacter spp. as a high priority. Since 2005, Campylobacter spp.
was the most frequently reported food-borne pathogen in the EU (more than 200,000 confirmed cases
per year). The reported number of confirmed cases of campylobacteriosis represented almost 70% of
the 13 reported confirmed human zoonoses in the EU in 2016. Most patients are young children and
elderly people. Its occurrence was high in broiler flocks (27.3%) and in fresh meat from broilers
(36.7%) in Europe. In 2010, EFSA published an opinion on ‘Quantification of the risk posed by broiler
meat to human campylobacteriosis in the EU’2 and estimated that broiler meat may account for
20–30% of campylobacteriosis cases in humans, while 50–80% of these may be attributed to the
chicken reservoir as a whole.

In April 2011, EFSA published an opinion on ‘Campylobacter in broiler meat production: control
options and performance objectives and/or targets at different stages of the food chain’.3 Taking into
account EFSA’s recommendations on poultry meat inspection, the Commission proposed the
introduction of a process hygiene criterion for Campylobacter spp. on poultry carcases to be respected
in slaughterhouses. If not respected, the criterion leads to corrective measures taken to improve both
slaughter hygiene and farm biosecurity.

Secondly, the revision of poultry meat inspection includes enhanced control of Campylobacter spp.
(and Salmonella spp.), in line with the high priority set by the EFSA opinion on poultry meat
inspection. Competent authorities must sample themselves for these pathogens or carefully verify the
implementation of the process hygiene criterion by the operator.

According to the 2011 EFSA opinion, the public health benefits of controlling Campylobacter spp. in
primary broiler production are expected to be greater than control later in the chain as the bacteria
may also spread from farms to humans by other pathways than broiler meat. Nevertheless, limited
information was available about such pathways, and quantification of the impact of interventions at
farm level was done only for broiler meat-related cases.

Since 2011, new scientific information is available on this matter (e.g. CAMCON, CAMPYBRO,
CAMPYSAFE, CAMPYLOW projects). Thus, the time is right to request an update of the assessment of
the impact of interventions at farm level and identify effective control options at primary production.

Examples of some relevant projects are provided below:

– CAMCON project (https://cordis.europa.eu/project/rcn/95053 en.html), looking at Campylobacter
control at primary production level (2010–2015), with participants from different countries.
Publications derived from this project are available at https://www.vetinst.no/camcon-eu;

– CAMPYBRO project (http://campybro.eu), looking at Campylobacter control at primary
production through nutrition and vaccination, with several partners including producers.

– CAMCHAIN project (http://gtr.rcuk.ac.uk/projects?ref=BB%2FK004514%2F1) looking at
transmission of Campylobacter at primary production level;

– CAMPYSAFE and CAMPYLOW projects looking at the use of probiotics to control
Campylobacter populations;

– Other scientific papers are also reported in the literature since 2011.

Terms of Reference (ToR)

To further support food business operators in the fight against Campylobacter at farm level, in
accordance with Article 29(1) (a) of Regulation (EC) No 178/2002, the Commission requests EFSA to
provide an update of the scientific opinion on ‘Campylobacter in broiler meat production: control
options and performance objectives and/or targets at different stages of the food chain’, more in
particular to review, identify and rank the possible control options at primary production level, taking
into account, and if possible quantifying, the expected efficiency in reducing human campylobacteriosis
cases. Advantages and disadvantages of different options at primary production should be assessed,
as well as the possible synergic effect of combined control options.

1 EFSA Journal 2012;10(6):2741.
2 EFSA Journal 2010; 8(1):1437.
3 EFSA Journal 2011;9(4):2105, 141 pp. https://doi.org/10.2903/j.efsa.2011.2105
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1.2. Interpretation of the Terms of Reference

In 2011, EFSA published a scientific opinion on ‘Campylobacter in broiler meat production: control
options and performance objectives and/or targets at different stages of the food chain’. The aim of
this mandate was interpreted to be to review and update the 2011 opinion but focussing on control
options at primary production of broiler chickens in the EU/EEA.

Moreover, it was considered that the mandate included a quantitative assessment of the
effectiveness of control options at primary production using risk assessment models and expressing
the relative risk reduction in terms of the number of cases of human campylobacteriosis attributable to
the consumption of broiler meat from the EU that could be avoided if a specific control option is
implemented in all farms across Member States in EU. While the cost of implementation or feasibility of
control options was outside of this remit, the advantages and disadvantages of each were discussed.
Throughout the opinion, control options were assessed in terms of effectiveness. The efficiency was
considered in the section discussing advantages and disadvantages of control options. ‘Biosecurity’ was
defined as in the previous opinion to be, ‘a set of preventative measures implemented to reduce the
risk of transmission of infectious disease from reservoirs of the infectious agent to the target host’.

To address the different parts of the ToR, assessment questions (AQ) have been formulated as:

1) AQ: What new scientific evidence about control options has become available since the
previous opinion of 2011 and what is their relative risk reduction on campylobacteriosis?

2) AQ: What is the ranking in terms of effectiveness of the selected control options in reducing
human campylobacteriosis cases at the primary production level?

3) AQ: What are the advantages and disadvantages of the selected control options?
4) AQ: What would be the effect of combining control options?

1.3. Additional information

1.3.1. Previous scientific opinions of the BIOHAZ Panel

In 2008, the European Commission requested EFSA to deliver a scientific opinion on the quantification
of the risk posed by broiler meat to human campylobacteriosis in the EU, which was expressed as a
percentage of the total number of human campylobacteriosis cases. It was concluded that handling,
preparation and consumption of broiler meat may account for 20% to 30% of human cases of
campylobacteriosis, while 50% to 80% may be attributed to the chicken reservoir as a whole. However,
the conclusions of this scientific opinion had to be interpreted with caution because, as stated in that
opinion, data for source attribution in the EU were limited and unavailable for the majority of Member
States (MS) and there were indications that the epidemiology of human campylobacteriosis differed
between regions. Among several recommendations, the BIOHAZ Panel recommended the establishment
of active surveillance of campylobacteriosis in all MS and also to quantify the level of under-ascertainment
and underreporting of the disease, in order to more precisely estimate the burden of the disease and
facilitate evaluation of the human health effects of any interventions (EFSA BIOHAZ Panel, 2010).

In 2011, EFSA delivered a scientific opinion on Campylobacter in broiler meat production: control
options and performance objectives and/or targets at different stages of the food chain. A quantitative
microbiological risk assessment (QMRA) model was used to estimate the impact on human
campylobacteriosis arising from the presence of Campylobacter spp. in the broiler meat chain. The
model also used available quantitative data to rank/categorise selected intervention strategies in the
farm to fork continuum. At the primary production level, the quantitative risk assessment concluded
that there was a proportionate relationship between the prevalence of Campylobacter spp. in broiler
flocks and public health risk from broiler meat. The opinion described how reducing either the level of
Campylobacter spp. in chicken caeca or the prevalence of positive flocks could reduce the risk to
humans. The risk reduction associated with interventions in primary production was expected to vary
considerably between MS. Reducing the numbers of Campylobacter spp. in the caeca at slaughter by
3 log10 units was estimated to result in a reduction of the public health risk by at least 90%. However,
no feasible intervention that would achieve a reduction in the level of Campylobacter spp. in chicken
caeca was identified. The models calculated that in one MS (among four MS used in the model), a
50–90% risk reduction could be achieved using fly screens in conjunction with other strict biosecurity
measures. Primary production interventions assessed included fly screens (in one MS), biosecurity (in
one MS), earlier slaughter and discontinued thinning. Their impact was estimated as a reduced
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incidence of campylobacteriosis in humans attributable to the consumption of broiler meat. However,
data were sparse, introducing uncertainty in the estimates and the applicability for all EU MS was also
uncertain. Thus, it was recommended that individual MS pilot any control measure before full
implementation to assess the efficiency in that specific environment (EFSA BIOHAZ Panel, 2011).

Following the previous opinions, a request from the European Commission in 2010 asked EFSA to
deliver a scientific opinion on the public health hazards (biological and chemical, respectively) to be
covered by inspection of poultry meat and to consider any implications for animal health and animal
welfare of any changes proposed to current meat inspection methods. For biological hazards, a decision
tree was developed and used for risk ranking poultry meat-borne hazards. The ranking was based on the
magnitude of the human health impact, the severity of the disease in humans, the proportion of human
cases that can be attributed to the handling, preparation and consumption of poultry meat and the
occurrence of the hazards in poultry flocks and carcasses. Campylobacter spp. and Salmonella spp. were
considered to have high public health relevance for poultry meat inspection. As none of the main
biological hazards of public health relevance and associated with poultry meat can be detected by
traditional visual meat inspection methods, the BIOHAZ Panel proposed the establishment of an
integrated food safety assurance system including improved food chain information (FCI) and risk-based
interventions (EFSA BIOHAZ Panel, 2012). A series of recommendations were made regarding biological
hazards in relation to data collection, interpretation of monitoring results, future evaluations of the meat
inspection system and hazard identification/ranking, training of all parties involved in the poultry carcass
safety assurance system and needs for research on optimal ways to use FCI and approaches for
assessing the public health benefits.

1.3.2. Legal background

A Process Hygiene Criterion (PHC) (Commission Regulation (EU) 2017/1495 of 23 August 2017
amending Regulation (EC) No 2073/2005) for Campylobacter spp. came into effect in January 2018.
The objective of the PHC is to control contamination of carcases during the slaughtering process
through monitoring and taking corrective actions when the mandated targets are breached. These
actions include, in the case of unsatisfactory results (from 1.1.2020, if 15 out of 50 samples of
carcasses after chilling have counts > 1,000 CFU/g) improvements in the slaughter hygiene, the review
of process controls and improvement in the biosecurity measures in the farms of origin.

1.3.3. Approach to answer the term of reference

A literature search focussing on the time period after the previous scientific opinion (i.e. between
2011 and 2019) was carried out to update the scientific opinion on ‘Campylobacter in broiler meat
production: control options and performance objectives and/or targets at different stages of the food
chain.’

The effectiveness of control options was estimated using two different modelling approaches for (a)
control options reducing the Campylobacter spp. prevalence in broiler flocks sent to slaughter and (b)
control options reducing the Campylobacter spp. concentration in their caecal content. The modelling
steps used to estimate the effect on public health by reducing Campylobacter spp. flock prevalence (1–2)
and concentrations in caecal content (3–5) are illustrated in Figure 1.
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The reduction of flock prevalence was estimated by using (1) population attributable fractions
(PAF)4 derived from epidemiological risk factors studies and (2) assuming a proportionate relationship
between flock prevalence and public health risk (see Section 2.2 for details).

The effect of reduced Campylobacter spp. concentrations was modelled by (3) a regression model
relating the concentration in the caeca with the concentration on the broiler meat, (4) a consumer
phase model describing the effect of food preparation and (5) a dose response (DR) model (see
Section 2.3 for details). In both approaches, the effectiveness of the control options is expressed as
the relative risk reduction, that is the relative reduction in the incidence of human campylobacteriosis
caused by the consumption of broiler meat, if the control option is implemented at all farms in the EU:

RRR ¼ 1� Incint=Inccurr

where

– RRR is the relative risk reduction,
– Inccurr is the current incidence of human campylobacteriosis attributable to broiler meat in

the EU,
– Incint is the new estimated incidence of human campylobacteriosis attributable to the

consumption of broiler meat after implementation of the control option at all farms in the EU.

The ranking of control options is based on the assessment of their potential effectiveness, using
Expert Knowledge Elicitation (EKE) to combine the different streams of evidence and consider their
associated uncertainties.

Figure 1: Modelling steps used to estimate the effect on public health by reducing Campylobacter
spp. flock prevalence (blue arrow) and concentrations in caecal content (red arrows) in
broilers. The numbers show the steps used in the two models, respectively

4 https://www.who.int/healthinfo/global_burden_disease/metrics_paf/en/
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Advantages and disadvantages of selected control options were assessed using literature search
and expert judgement.

The impact of combinations of two or more selected control options, including the potential for
synergism, was assessed based on the literature search and expert judgement.

2. Data and methodologies

2.1. Literature search

A literature search was undertaken, focusing on papers published between 2011 and 2019 (inclusive)
on Campylobacter, risk factors and control options on broiler farms. In addition, manual searching of the
reference list of these documents was performed to identify additional relevant information. This was
supplemented by relevant published studies identified by the members of the Working Group (WG) and
EFSA Biological Hazards (BIOHAZ) Panel throughout the term of the mandate until the WG members
were satisfied that a thorough coverage of the subject had been achieved.

2.2. Modelling the effect of control options to reduce the prevalence of
Campylobacter spp. in broilers

2.2.1. Literature search to inform calculation of population-attributable fractions
(PAF)

For the analysis of the PAF, the timeframe searched was expanded to 2004–2019 (inclusive)
because epidemiological risk factor studies are limited and PAF analyses had not been carried out in
the previous opinion. Only those studies that contained all of the following were included: [1]
presentation of multi-variable model outputs including estimates to calculate adjusted odds ratio (OR)
and confidence intervals; [2] descriptive data showing the proportion of farms/flocks in the different
categories, [3] data on biosecurity/on-farm practices and [4] the sample size was ≥ 35 study units.

The search string used was: ((campylobacter AND (risk AND factor*) AND (farm* OR husbandry*
OR (primary AND production*)) AND (chicken* OR broiler* OR poultry OR Gallus gallus)) and yielded
245 studies.

Abstracts of these papers were screened and, if no multivariable analysis was reported, the studies
were excluded because, if the model does not adjust for confounding effects, where farming practices
interact and are associated with each other (Stafford et al., 2008), the risk factor specific estimates are
likely to be highly distorted. Overall, 31 studies were retained.

Full papers of these 31 studies were assessed and excluded if they did not contain all of the following:
[1] presentation of multi-variable model outputs including estimates to calculate adjusted OR and
confidence intervals; [2] descriptive data showing the proportion of farms/flocks in the different
categories and [3] data on biosecurity/on-farm practices. Studies were also excluded if the sample size
was less than 35 study units. This resulted in 17 studies in 15 articles for inclusion in the PAF analysis (see
Table 6 in chapter 3.3.1).

2.2.2. Calculation of population attributable fractions (PAF)

Control measures to reduce the prevalence in broilers are aimed at preventing the introduction of
Campylobacter spp. into the broiler house and the subsequent colonisation of the birds. A wide variety
of measures and practices improve hygiene and biosecurity and are described in the literature review
(Section 3.3). To assess the magnitude of control obtained by an intervention, studies that measure
the prevalence with and without a control option are required. Intervention studies on the effect of
improving biosecurity and changing farmer behaviour are limited. Assessing the effect of changes to
multiple practices, with large variability in behaviours before and after interventions, varying
compliance levels and interaction between practices, requires a very large sample size and repeated
sampling to identify even large effects of interventions (Ellis-Iversen et al., 2008). Therefore, most
studies on biosecurity practises and their association with Campylobacter status are designed as risk
factor studies providing a cross-sectional picture of what happens more often during rearing of positive
flocks than during rearing of negative flocks. Such epidemiological risk factor studies allow for
multivariate modelling and the possibility to adjust for confounding factors and thereby provide an
estimate of risk of a specific behaviour or practice.

Update and review of Campylobacter control options in broilers

www.efsa.europa.eu/efsajournal 11 EFSA Journal 2020;18(4):6090



Epidemiological risk factor studies are by their nature field studies. The data include the
heterogeneity, diversity and variability in human and animal populations, e.g. different genetics or
behavioural differences, differences in biosecurity practices, etc., reflecting real life. This contrasts with
the standardisation used for experimental studies, where the study design usually removes diversity and
minimises variability.

The strength of association derived from epidemiological risk factor studies is often much smaller
than the measure of the effect of the same control option in an experimental study, due to the
variability and heterogeneity of the population in the epidemiological study. Epidemiological risk factor
studies are not able to detect small associations, which fully controlled experimental studies may be
able to identify with statistical significance. On the other hand, the effects measured in the
epidemiological risk factor studies include the heterogeneity of the farm environment, human factors
and variety in practices and the results can be extrapolated to ‘real life’ situations with higher certainty
than experimental studies in a small designed setting.

To interpret the effect of changing farm management practices on the risk of colonisation of broiler
flocks with Campylobacter spp., the ORs can be transformed into PAF. This provides a measure of the
proportion of cases (positive flocks) estimated to be linked to a specific risk factor. The World Health
Organisation defines PAF as ‘the proportional reduction in population disease or mortality that would
occur if exposure to a risk factor were reduced to an alternative ideal exposure’. It is assumed that the
interventions are applied on the new farms to a similar degree as on farms that already applied the
intervention at the time of the risk factor study. PAF is also applied to food-borne zoonotic diseases in
public health and has been calculated in at least two published studies on Campylobacter spp. in
chicken (Georgiev et al., 2017; Rosner et al., 2017). For the scope of this opinion, population disease
or mortality is interpreted as colonised broiler flocks, and only modifiable risk factors, for which control
options within the farmer’s control exist, were considered for the PAF analysis. Non-modifiable risk
factors such as the season or factors related to the geographical location of the farm were excluded.
Only control options identified in at least two MS were included.

In epidemiological studies exploring associations with risk factors, there is a marked heterogeneity
not only in the risk factors included in the analysis but also in the definition or wording of the risk
factors related to the explanatory variables. As an example, a French study (Allain et al., 2014) found
‘No rodent control outside the house’ to be significantly associated with the occurrence of
Campylobacter spp. in the broiler flocks while ‘presence of rodents in the poultry house’ was identified
as a risk factor in a Spanish study (Torralbo et al., 2014).

Although these definitions relate to two different aspects, they are assessing the presence of the
same underlying risk (i.e. presence of rodents); hence, ‘Having an effective rodent control program in
place’ is the control practice reducing the risk recommended in both studies. Widening the wording of
the control option to address several narrowly defined risk factors may also help account for variability
in farming systems within and between MS.

PAF estimates need to be as precise as possible for the control option, despite farming practices
which often interact or are associated with each other (confounding) (Stafford et al., 2008). In
epidemiological risk factor studies, confounding is adjusted for by statistical modelling, usually by
regression analysis, providing adjusted ORs to reduce this bias. In this opinion, we have only used
adjusted OR.

From the selected studies, we extracted the following variables: (1) country, (2) number of units in
study, (3) year of data collection. We also extracted the following parameters for each modifiable risk
factor:

• Wording of risk practice
• Baseline practice (comparison)
• Adjusted OR + confidence intervals
• % positive in exposed group
• % positive in non-exposed group
• % in study carrying out risk practice

If any of the above estimates were not directly available in the publication, they were calculated by
inversing ‘protective ORs’ into ‘risk ORs’ including their confidence intervals or estimated from other
model outputs, e.g. the standard error (SE).

After the extraction, adjusted OR and their confidence intervals were transformed to adjusted
Relative Risk with confidence intervals using the formula (Equation 1) from Zhang and Kai (1998).
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RRadj ¼ ORadj=ð1� P0 þ P0ORadjÞ (1)

with P0 the Campylobacter spp. prevalence in the group without implementation of the control option
and ORadj the adjusted OR.

If a risk factor was identified as significant and data needed in the equation were available from the
literature, the PAF was estimated using Levin’s formula (Equation 2, Levin, 1953):

PAF ¼ pexpðRRadj � 1Þ=½1þ pexpðRRadj � 1Þ� (2)

where pexp is the proportion of the population exposed to the risk factor and RRadj is the calculated
adjusted relative risk between colonised and non-colonised flocks as described above (Equation 1).

Risk factors from all studies were then grouped by the practice or action needed to control the risk.
For each control measure the representativeness was considered and factors were only included in the
final modelling if PAF estimates were available from at least two MS.

2.2.3. The proportionate relationship between flock prevalence and public health
risk

The model assumes that the relative reduction in flock prevalence caused by an intervention at
primary production translates directly into a relative reduction in risk from the broiler meat to humans.
Hence, with Inccurr and Incint as defined in Section 1.3.3; and FPcurr being the current flock prevalence
and FPint being the flock prevalence after implementation of a control option, it is assumed that Incint/
Inccurr = FPint/FPcurr.

This assumption is also made in several previous published risk assessment models and in the
previous EFSA opinion (Nauta et al., 2009; EFSA BIOHAZ Panel, 2011). The underlying argument is
that analyses performed by these risk assessment models suggest that meat from flocks that are not
colonised does not add significantly to the public health risk. Even though cross-contamination
between carcases of birds from flocks is known to occur during slaughter, it is assumed to only have a
small effect on the public health risk, because Campylobacter spp. concentrations on meat from cross-
contaminated flocks will be several orders of magnitude lower than those from flocks colonised at
primary production (Havelaar et al., 2007; Nauta et al., 2009; EFSA BIOHAZ Panel, 2011).

In this opinion, the PAF values were interpreted as the proportional reduction in flock prevalence
that would occur if exposure to a risk factor was eliminated (i.e. the associated control option was
applied throughout the EU). This means that the PAF is equivalent to: 1�FPint/FPcurr and also to the
estimated RRR defined in Section 1.3.3.

2.3. Modelling the effect of control options to reduce the concentration
of Campylobacter spp. in broilers

The modelling approach applied for the effect of control options to reduce the concentration of
Campylobacter spp. is explained below; details are given in Appendix A.

2.3.1. Literature search

A generic literature search has been carried out to identify studies that analysed the association
between concentrations in the caeca of broilers and broiler meat products after industrial processing
(see Appendix B).

2.3.2. Linear regression for concentration in caecal content and on skin of
broiler meat

A model for the effect of control options that reduce the caecal concentration of Campylobacter
spp. in broilers at primary production should describe how the caecal concentrations relate to
concentrations on the meat. Two approaches have been used to describe this relationship: (i) the use
of QMRA models that describe the dynamics of transfer and survival of Campylobacter spp. through
the broiler meat production chain after primary production (Nauta et al., 2009; Chapman et al., 2016);
(ii) the study of the association between concentrations of Campylobacter spp. found in the caecal
content (usually called ‘caecal samples’) and on the end products (whole carcass, skin or meat
samples) after the industrial processing, by means of linear regression. When the two approaches
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(QMRA and regression models) were compared, the results were similar, even though the QMRA
models predicted the relation between the two concentrations as not linear, but J-shaped (Nauta et al.,
2016).

As in the previous opinion (EFSA BIOHAZ Panel, 2011), a linear regression approach was applied
using a regression model to translate a change in bacterial concentration in the chicken caeca into a
change in concentration on broiler skin, which assumes to represent a change in concentration on the
meat. The approach allows the use of observational data from different European studies and does not
require assumptions and data interpretation on the complex dynamics of transfer and survival of
Campylobacter spp. during industrial processing. As explained in Appendix A, the slope of the
regression line is needed to estimate the change in concentrations on broiler skin after industrial
processing, given that the mean effect of an intervention (in terms of log reduction) and its standard
deviation (expressing the variability in effect) are known. Data on Campylobacter spp. concentration
on broiler skin were obtained from the EU baseline survey from 2008 (EFSA, 2010). Although these
data are more than 10 years old and do not take into account the improvements in Campylobacter
control arising from the measures implemented in MSs since then, they are, none-the-less, the only
data available for all MSs, obtained using a harmonised sampling strategy.

The results of the literature review for the association between concentrations in the caeca and on
skin samples or broiler meat after industrial processing are summarised in Appendix B and Table 1. In
total, 15 studies were retrieved, that used different analytical methods for enumeration. Six of those
studies reported no significant correlation and nine found values of the slope of the regression line
between 0.21 and 1.15. In one of the six largest studies, with more than 50 batches analysed, Reich
et al., 2018, found no positive correlation; the four studies publishing a regression line found slopes
varying between 0.21 and 0.32. In this assessment, the uncertainty of the slope was expressed as a
BetaPert distribution with minimum of 0, maximum of 0.7 and a most likely value of 0.27. This last
value corresponds to the slope value obtained by linear regression on the largest data set, from the
APHA/FSA monitoring programme for Campylobacter spp. in broiler flocks and broiler carcases in the
UK (2012–2017) (FS241051, FS101126). The data set included paired caeca–skin microbiological data
(enumeration according to ISO 10272-2) for 1752 batches slaughtered in different abattoirs in UK.

Table 1: Summary table of regression lines found in the literature

Reference
Significant

correlation?(a)
Slope r or r2(a)

Number of
batches

Number of
slaughter
plants

Allen et al. (2007) No – – 26 4

Boysen et al. (2016) Yes 0.70 r2 = 0.72 15 3
Brena et al. (2013) Yes 0.21 r2 = 0.23 76 3

Duffy et al. (2014) No – – 4 2
Elvers et al. (2011) No – – 5 –

Hue et al. (2011) Yes 0.32 r = 0.33 425 (297 pos.) 58
Laureano et al. (2013) Yes 0.28 r2 = 0.26 80 10

Malher et al. (2011) Yes ND r = 0.28 140 (91 pos.) 3
Nauta et al. (2009) No – – 22 –

Reich et al. (2008) Yes ND r = 0.64 40 1
Reich et al. (2018) No – – 365 3

Rodgers (2020) Yes 0.27 r2 = 0.48 1,146 19
Rosenquist et al. (2006) Yes 1.15 – 6 2

Stern and Robach (2003) No – – 20 1

Vinueza-Burgos et al. (2018) Yes 0.50 r2 = 0.57 15 3

An extended version of this table is given in Appendix B.
(a): As reported in the given reference.
r = linear correlation coefficient; r2 = coefficient of determination.
– = not determined or no value given.
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2.3.3. Consumer Phase model (CPM)

The consumer phase is the last part in the food chain, where exposure to Campylobacter spp.
occurs. As explained in more detail in Appendix A, it describes how the concentration on the skin or on
the meat is linked to the dose ingested by the consumer. Food preparation and associated cross-
contamination of other foods have an important effect on the exposure. Modelling the consumer phase
is challenging because data are scarce and difficult to obtain, the variability in food handling practices
between (groups of) consumers is large and the effect on transfer and survival of Campylobacter spp.
is not easily described.

As reviewed by Chapman et al. (2016), a large variety of CPMs are available that may include
different routes of Campylobacter spp. transfer (cross-contamination) and undercooking. Recently,
another model estimating the effects of consumer habits during preparation of chicken meat has been
proposed (Poisson et al., 2015; ANSES, 2018). From an initial level of contamination of 1.4 log10 CFU/
g, the authors estimated a risk reduction of 50% if 100% of consumers adopted best practice during
preparation or the initial load is reduced to 0.4 log10 CFU/g. A comparative analysis, Nauta and
Christensen (2011) studied eight different CPMs and compared their performance in terms of the
predicted effect of intervention measures before the consumer phase on the risk estimates. It was
found that the difference between the relative risk estimates of the different models is often small. A
CPM that performs intermediately (i.e. providing results falling in the range of the others) is based on
the observational data described by Nauta et al. (2008) and has been applied in the previous EFSA
opinion as the ‘classic +’ DR model (EFSA BIOHAZ Panel, 2011; Nauta et al., 2012).

In this opinion, the eight available CPMs (Christensen et al., 2001; Mylius et al., 2007; van Asselt
et al., 2008; Brynestad et al., 2008; Calistri and Giovannini, 2008; Lindqvist and Lindblad, 2008; Nauta
et al., 2008; WHO, 2009) that were compared by Nauta and Christensen (2011) were used to evaluate
the uncertainty due to the choice of the CPMs. These CPMs apply a broad range of different cross-
contamination scenarios and use different data on food handling practices, routes of cross-
contamination, transfer rates and meat product and/or cross contaminated food product. None of the
models specifically addresses undercooking, although it is implicitly included in the Nauta et al. (2008)
model, which is solely based on observational data. No additional CPMs were included as the selected
eight already represent a large variety of models and it appeared that the choice of the CPM had only
limited impact on the uncertainty of the results (Nauta and Christensen (2011); see also the tornado
plots for correlation coefficients in Appendix C).

2.3.4. Dose response model

A dose response model describes how an ingested dose relates to the probability of infection and/
or the probability of illness in humans. Until now, the majority of Campylobacter QMRA studies,
including the previous EFSA opinion (EFSA BIOHAZ Panel, 2011), have applied the ‘classic’ dose
response model published by Teunis and Havelaar (2000), based on a human challenge study (Black
et al., 1988) in which the strain A3249 was used. After an analysis of several additional data sets from
both human and primate challenge studies, as well as a set of outbreak studies, the choice of this
model was recently criticised by Teunis et al. (2018) as ‘an unfortunate choice’ as the default model
for many risk assessments for Campylobacter spp., because A3249 seems to be of low virulence and is
therefore a non-representative strain. Therefore, next to the classic dose response model, two
additional dose response models were used that were considered representative for the challenge
studies and the outbreak studies reported by Teunis et al. (2018), as explained in Appendix A.

2.3.5. Selection of control options

A set of control options affecting the concentrations in the caecal content was selected, based on
the literature study as described in Section 2.1.

Control options to reduce Campylobacter spp. concentration in the caeca were primarily selected
based on new information that became available since the EFSA 2011 Opinion was published. From
these, several control interventions (vaccines, prebiotic/other feed additives and bacteriophages) were
selected for inclusion in model analysis based on: [1] evidence that the control activity had a reductive
effect on the Campylobacter spp. concentrations in the caeca and/or faeces; [2] type of study
(experimental and field trials using broilers); [3] inclusion of control (untreated) birds in the study; [4]
sufficient data including mean log reduction and standard error (or equivalent); [5] number of birds
included in the trial and frequency of sampling (statistically- based experimental design), [6] samples
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tested (at least caecal content samples); and [7] the length of the trial including the period of
sampling (close to field practices, 35–42 days).

From the selected studies, the most and least effective values of different control options found
(i.e. for vaccines and feed additives) were selected for modelling. The values were used to indicate the
range of potential beneficial effects found in the literature, but references to specific vaccines or feed
additives are not made, as the reproducibility of the quantitative results obtained by simulations in the
present opinion, if applied in field conditions, remains unknown.

2.3.6. Model description and implementation

Appendix A provides a more detailed description of the modelling approach for the effect of control
options to reduce the concentration of Campylobacter spp. in broilers. The linear regression model,
consumer phase model and DR model are combined and implemented in an Excel spreadsheet (Nauta,
2020), using the model implementation approach described by Nauta and Christensen (2011).

The model allows an estimation of the RRR to be made based on a mean and standard deviation of
the effect of the intervention in terms of log reduction in caecal concentration (d and sd); the
regression line slope (a); the choice of an EU MS or the EU average (for current concentrations of
broiler skin after processing (mskin and sskin)); a value of the log difference between skin samples and
meat (s); the choice of a CPM; the choice of a DR model. A version of the model implemented in
@Risk version 7.6 allows analysis of the uncertainty by providing the uncertainty of the input
parameters a, d, and s, as well as the uncertainty in the choice of the MS (mskin and sskin), the choice
of the CPM and the choice of the DR. Variability is included into the model analytically, uncertainty is
modelled by Monte Carlo simulation, using 250.000 iterations per simulation.

Table 2 shows the options included in this model. For the uncertainty analysis of the model that
informed the EKE, the difference between skin concentrations found in different MSs was not included,
as the effect of control options is expressed at EU level.

A sensitivity analysis was performed to evaluate the effect of different modelling choices on the
estimated effects of the selected control options.

2.4. Ranking and Uncertainty assessment

The ToR required a ranking of the possible control options at primary production level, and, if
possible, quantifying the expected effectiveness of control actions on the broiler farm in terms of
reducing human campylobacteriosis cases. Uncertainties affecting both the effectiveness estimates and

Table 2: Overview of the default model values chosen, if uncertainty is not included, and the way
the uncertainty about the choice of the model or model parameter is described, if
uncertainty is included. The options given in bold are used for the uncertainty analysis that
informed the Expert Knowledge Elicitation (the reference model)

Default values Reference Uncertainty Reference

Slope of regression
line caeca – skin
samples

a = 0.27 Rodgers (2020) BetaPert
(0, 0.27, 0.7)

This opinion

Log difference
between
concentration on
skin and meat

s = 1 EFSA BIOHAZ
Panel (2011)

Uniform (0,3) Nauta et al. (2012)

Member States (skin
concentrations
measured in EU
baseline 2008)

EU-weighted
mean

Nauta et al. (2012)
(derived from EU
baseline study 2008)

Randomly select 1
Member State

Nauta et al. (2012)
(derived from EU
baseline study 2008)

Consumer phase
model

Nauta et al.
(2008)

EFSA BIOHAZ
Panel (2011)

Randomly select
one of eight models

Nauta and Christensen
(2011)

Dose response
model

Classic model EFSA BIOHAZ
Panel (2011)

Randomly select
‘classic’ or ‘median
challenge’ model

This opinion
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the ranking of the different control options were considered by application of the framework provided
by EFSA’s uncertainty guidance (EFSA Scientific Committee, 2018).

For some control options, the expected reduction in campylobacteriosis cases could be estimated in
one of two ways: calculate the PAF for control options that reduce the prevalence of Campylobacter
spp. in broilers (Section 2.2); or by means of quantitative probabilistic modelling for control options
aimed at reducing the level of intestinal Campylobacter spp. concentrations in broilers (Section 2.3).
Statistical uncertainty affecting these estimates was described and quantified by confidence intervals
for the PAF and sensitivity analysis for the stochastic model (See Appendix C). Other uncertainties are
addressed as described below.

The expected effect of the control options in reducing the incidence of human campylobacteriosis in
EU by all MS was made by means of expert judgement; thus taking into account sources of systematic
uncertainty arising when trying to infer the analytical evidence from the PAF analysis and simulation
model at EU level. Expert judgement was also used to take additional evidence on these control
options from the 2011 Opinion and subsequent publications (for which PAF could not be calculated or
quantitative effects could not be simulated) into account.

Ranking of control options was therefore informed by three different evidence streams: effect of
control options to reduce prevalence (supported by PAF and literature), effect of control options to
reduce the level of contamination in broilers (supported by probabilistic modelling) and the effect of
control options from the scientific literature (not supported by either PAF or probabilistic modelling).
Expert judgement was therefore essential for ranking the control options, both for weighing and
integrating the different streams of evidence and for considering their associated uncertainties. The
BIOHAZ Panel agreed on the use of a structured approach, based on EFSA’s (2014) guidance on
expert knowledge elicitation (EKE), to ensure that all the identified evidence and uncertainties were
considered in a balanced way and to improve the rigour and reliability of the judgements involved.

Due to the large number of control options to be considered within the time available, the EKE was
conducted in two steps to allow for greater focus on the control options that were more likely to be
effective. In the first step, experts assessed the probability that each control option would, if
implemented by all EU broiler producers, reduce the incidence of campylobacteriosis in the EU by at
least 10%. This step provided an initial ranking that was used to identify a subset of control options
for more detailed assessment in the second step.

In the second step, experts assessed the magnitude of reduction in campylobacteriosis in the EU
that each of the prioritised control options would achieve, if implemented by all EU broiler producers.
In both steps, each control option was assessed separately, assuming all other control options
remained at their present level of implementation. The detailed process is described in Section 3.5,
together with the results and in Appendix D.

In both steps, the expert judgements were made by members of the EFSA Working Group and EFSA
staff that were involved in the drafting of this Opinion. When assessing the effects of control options, all
the relevant evidence available to the Working Group was considered. This included evidence from the
2011 Opinion, evidence from scientific literature published since 2011 and results from both the
modelling approaches. The sources of systemic uncertainty identified by the Working Group as relevant
to the assessment of the control options were also considered. To help experts take all the relevant
evidence and uncertainties into account in a balanced way, the Working Group prepared two tables
summarising key aspects of the evidence on control options affecting concentrations and prevalence, and
a third table summarising the identified sources of uncertainty (Appendix D).

2.4.1. Step 1. Screening of all control options

A list of 21 control options was agreed to be considered for ranking. This list resulted from the
review of the 2011 opinion and updating the information provided (Section 2.1), the PAF analysis
(Section 2.2) and modelling (Section 2.3):

• Reduced slaughter age
• Discontinued thinning
• Employing few and well-trained staff
• Vaccination
• No animals in close proximity to the broiler houses
• Feed and water additives
• Avoiding drinkers that allow standing water
• Bacteriophage
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• Addition of disinfectants to drinking water
• Designated tools per broiler house
• Effective cleaning and disinfection
• Hygienic anterooms at broiler house entrance
• Selective breeding
• Effective rodent control
• Fly screens and keeping insects out of the broiler house
• Stocking density and flock size
• Downtime between flocks
• Feed structure
• The number of houses on site
• Clean litter
• Litter amendments

In the first step of EKE, for each control option, each expert assessed the probability that it would
reduce the campylobacteriosis incidence in humans in the EU associated with the preparation and
consumption of broiler meat by 10% or more, if implemented by all broiler farmers in the EU. The
threshold was set at 10% to obtain sufficient discriminatory power in the EKE. If a lower threshold was
used (i.e. 5%), most of the control options would have been considered as potentially effective,
undermining the identification of the most promising control options that would be subject to detailed
assessment in step 2. Note that the 10% was not meant to indicate a threshold level in terms of
effectiveness and does not imply that 10% would be a sufficient reduction or not. To ensure that
questions for eliciting probability judgements were well defined (EFSA, 2014), it was agreed to define
the question for step 1 in more detail as follows:

What is the probability that, if the specified control option was implemented by all broiler producers in
the EU that are not currently using it, the average annual incidence of campylobacteriosis cases in the
whole EU population caused by Campylobacter spp. in broiler meat produced from chickens raised in the
EU would reduce by more than 10% (compared to the current level), all other things being equal?

The following subsidiary definitions were used:

• The meaning of ‘campylobacteriosis cases’ was clear for the experts and does not require
further definition.

• ‘Other things being equal’ includes other control options remaining at the current level of
implementation, production and processing practices remain unaltered and no change in the
consumption in the EU of meat from broilers raised in the EU.

• If a control option acts on both prevalence and concentration, both should be considered when
answering the question.

• For each control option, the experts answered the question assuming that, of the specific
practices for this control option which are referred to in this Opinion (e.g. different vaccines, or
different methods of rodent control), the practice that would, on its own, achieve the largest
reduction in campylobacteriosis would be implemented by all EU broiler producers.

Experts expressing their judgement as precise or ranges of probabilities (see Table 3) (EFSA
Scientific Committee, 2018).

Table 3: Approximate probability scale adopted for harmonised use in EFSA (EFSA Scientific
Committee, 2018)

Probability term
Subjective
probability range

Additional options

Almost certain 99–100% More likely than not: > 50% Unable to give any probability:
range is 0–100%

Report as ‘inconclusive’, ‘cannot
conclude’ or ‘unknown’

Extremely likely 95–99%
Very likely 90–95%

Likely 66–90%
About as likely as not 33–66%

Unlikely 10–33%
Extremely unlikely 1–5%

Almost impossible 0–1%
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2.4.2. Step 2. Detailed assessment of selected control options

The subset of the control options to be prioritised for detailed assessment in step 2 was informed
by experts’ discussion upon results of step 1, the quality of evidence available, practical feasibility in
the implementation of the control option and unequivocal definition of the control measure.

Selection resulted in eight control options (i.e. discontinued thinning, employing few and well-
trained staff, vaccination, feed and water additives, avoiding drinkers that allow standing water,
addition of disinfectants to drinking water, designated tools per broiler house, hygienic anterooms at
broiler house entrance) for which it was considered that the second step of EKE process could be done
within the time frame of this opinion.

The question for the experts to consider in the second step was:

If the specified control option is implemented by all broiler producers in the EU that are not
currently using it, what will be the resulting percentage reduction (compared to the current level of
implementation) in average annual incidence of campylobacteriosis cases in the whole EU population
caused by Campylobacter spp. in broiler meat produced from chickens raised in the EU, other things
being equal?

The individual experts were asked to quantify their uncertainty about the percentage reduction in
the form of a probability distribution, elicited by a version of the Sheffield or SHELF protocol (EFSA,
2014; Oakley and O’Hagan, 2019) adapted to the needs of the current assessment. Each probability
distribution was assessed by estimating by a median, lower bound and upper bound, and the two
remaining quartiles.

Thereafter, the judgements of the different experts were aggregated for each control option by
calculating the equal-weighted linear pool of the distributions providing the best fits to the individual
judgements, using the SHELF software app for multiple experts.5 The linear pool distributions were
plotted together with the individual expert distributions (See Appendix D) and discussed in the expert
group. Following the discussions, the group of experts decided on a consensus distribution for the
effect of each of the eight control options considered.

Finally, the resulting consensus distributions reflecting the uncertainty of the estimated
effectiveness of each of the prioritised control options were presented in figures and tables that
included uncertainty around each estimate (See Section 3.5).

3. Assessment

3.1. Update on broiler production

The EFSA BIOHAZ Panel (2011) describes the broiler meat production chain in the EU in detail.
Production of poultry meat in the EU increased from ~ 12 million tons in 2008 to ~ 15 million

tonnes in 2018, comprising largely broilers (75% in 2008 and 83% in 2018), followed by turkeys (16%
in 2008 and 13% in 2018) and ducks (~ 3%). Based on FAO and OECD data from 2017, the EU is the
third largest poultry meat producer in the world (US 21.3 million tonnes, followed by China 17.0 million
tonnes and EU 15.9 million tonnes, at an estimated world production of 118.1 million tonnes) (Damme
et al., 2017).

Export of poultry meat increased from 1.3 million tonnes in 2014 to 1.5 million tonnes in 2017
(Table 4). The level of imported poultry meat remained the same during this time period (0.82 million
tonnes in 2014 and 0.83 million tonnes in 2017). The rate of self-sufficiency was estimated at 104.7%
(2017) (AVEC, 2018).6

Poultry meat consumption per capita in the EU was 24.1 kg in 2017 (22.1 kg in 2014) with large
differences between Member States (e.g. 36.2 kg in Portugal vs. 20.8 kg in Italy). Broiler meat
consumption dominated (19.4 kg per head), followed by turkey meat (4.0 kg per head) (Damme et al.,
2017).

5 https://jeremy-oakley.shinyapps.io/SHELF-multiple/
6 http://www.avec-poultry.eu/wp-content/uploads/2018/10/8.-WF-28-09-2018-AVEC-annual-report-2018.pdf
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Six Member States account for 71% of the total EU poultry meat production (PL-16%, UK 13%, FR
11%, ES 11%, DE 10%, IT 9%) (Figure 2) (Eurostat, 2018).8

The EU statistics showed a 14% yearly increase in the overall organic poultry production between
2005 and 2015 (European Commission, 2016).9 An EU-wide baseline survey on Campylobacter spp. in
broiler batches and on broiler carcasses was carried out in 2008 (results are given and analysed in
EFSA BIOHAZ Panel, 2010). Although these data are out of date and pre-date major Campylobacter
control initiatives in many MSs, it is nonetheless the most recent EU-wide study. The prevalence of
Campylobacter spp. colonisation in broiler batches was 71% (determined from caecal contents) and
the prevalence of Campylobacter-contaminated broiler carcasses was 75.8% (based on neck and
breast skin samples).

In general, large differences were seen among MSs, with prevalence in broiler batches ranging
from 2.0% to 100.0%, and prevalence on broiler carcasses ranging from a 4.9% to 100.0%.

Table 4: EU data on poultry meat (1,000 tonnes carcass weight) (AVEC, 2018; Eurostat, 2020)7

2012 2013 2014 2015 2016 2017 2018 2019

Gross production
in the EU

12,716 12,805 13,263 13,788 14,495 14,570 15,248 15,557f

Export 1,324 1,311 1,361 1,508 1,679 1,671 1,780 n.a.
Import 841 791 821 875 902 807 813 n.a.

Consumption 12,233 12,285 12,719 13,254 13,831 13,827 14,457 14,761(b)

Consumption
per head, kg

21.3 21.3 22.1 22.9 23.9 24.1 25.0(a) 25.5(a)

n.a.: data not available.
(a): Estimated.
(b): Forecast.

Figure 2: Poultry meat production in 2018 (source: Eurostat)5 (Estimated: Croatia; Provisional: Spain,
France; Confidential: Estonia, The Netherlands, Austria, Slovakia; Not available:
Liechtenstein, Norway)

7 Eurostat database: http://ec.europa.eu/eurostat/data/database (last accessed 22 January 2020).
8 Eurostat database: http://ec.europa.eu/eurostat/data/database (last accessed 17 January 2019).
9 https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/organic-agriculture-2015_en.pdf
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Table 5 shows the prevalence of Campylobacter spp. in broiler meat and broilers based on data
reported in the annual European Union summary reports on trends and sources of zoonoses, zoonotic
agents and food-borne outbreaks. It appears that the Campylobacter spp. prevalence in broilers and
on broiler meat has remained quite constant over the years. However, since the number of countries
reporting prevalence data changed over the years, the data are not directly comparable.

3.2. Update on risk factors for Campylobacter spp. in broiler production

There are multiple sources and dissemination routes for Campylobacter spp. on broiler farms. The
EFSA ‘Campylobacter in broiler meat’ Opinion (EFSA BIOHAZ Panel, 2011) identified several risk factors
for Campylobacter spp. in primary production. All those risk factors were reviewed and, when there
was new information (since 2011), updated. Factors for which there was more recent information
included vertical transmission, slaughter age, season, thinning, Campylobacter-contaminated drinking
water, a previous Campylobacter-positive flock in the house (carry-over) and the use of therapeutic
antimicrobials for treatment. The remaining risk factors either did not have new information or were
discussed in terms of control options (Section 3.3).

3.2.1. Vertical transmission

Vertical transmission is the internal contamination of the egg within the genital tract and before
intact shell deposition. As stated in the last EFSA opinion (EFSA BIOHAZ Panel, 2011), vertical
transmission does not appear to be an important risk factor for broiler colonisation with Campylobacter
spp. Recent articles reported no evidence of vertical transmission of Campylobacter spp. from hatching
eggs to commercial flocks (Battersby et al., 2016b; Tangkham et al., 2016; Colles et al., 2019).

3.2.2. Slaughter age

Most conventionally housed broilers test Campylobacter-negative for the first 21 days of rearing
(EFSA BIOHAZ Panel, 2011). This may be due to maternal antibodies and/or the inability of current
testing methods to detect low concentrations of the organism in a small subset of the flock population.
Slaughter age is still found among the risk factors identified in epidemiological investigations with
conventionally produced birds almost always having higher prevalence and caecal concentration
towards the end of the production cycle (Sommer et al., 2013; Legaudaite-Lydekaitiene et al., 2017;
Higham et al., 2018). Higham et al. (2018) showed that age was significantly positively associated with
Campylobacter spp.

3.2.3. Season

It is still generally agreed that season is a risk factor with increased prevalence in broilers in the
summer months. This was reflected in the EU baseline survey which suggested an increased risk in the
period of July–September as compared to January–March (EFSA BIOHAZ Panel, 2011). Based on data
collected in six EU MSs, the CAMCON project (Sommer et al., 2016a) found that seasonality affected

Table 5: Campylobacter spp. prevalence (% positive (total tested)) in the EU, 2010–2018

Year

Campylobacter spp. prevalence % (n)

Fresh broiler meat
at retail

Fresh broiler meat at
processing plant

Broilers (flock
based)

Reference

2018 37.5 (7,441)* 26.0 (13,636) EFSA and ECDC (2019)

2017 37.4 (13,445)* 12.3 (10,077) EFSA and ECDC (2018)
2016 36.7 (11,495)* 27.3 (13,558) EFSA and ECDC (2017)

2015 59 (3,652) 37.7 (297) 15.3 (7,033) EFSA and ECDC (2016)
2014 36.4 (1,570) 9.9 (1,248) 27.2 (9,907) EFSA and ECDC (2015a)

2013 25.2 (3,102) 12.0 (1,904) 15.1 (n. n.) EFSA and ECDC (2015b)
2012 24.9 (3,495) 15.8 (2,049) 13.2 (6,001) EFSA and ECDC (2014)

2011 34 (5,059) 29.3 (1,260) 17.8 (6,656) EFSA and ECDC (2013)

2010 22.9 (3,508) 44.65 (1,010) 18.2 (9,212) EFSA and ECDC (2012)

*: Not specified in the corresponding report.
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prevalence values and so did the monthly mean temperatures reported in the study. Although the
reason for this observation is not clear, and different studies report conflicting findings, enhanced
survival of Campylobacter spp. in the farm environment during the warmer months, more water
consumption by the birds, heat stress of the birds and/or increased numbers of insects and dust from
the neighbouring environment entering the broiler house (facilitated by increased additional
ventilation), may be some of the factors contributing to the increased prevalence of Campylobacter
spp. in broilers during the warmer months.

3.2.4. Thinning

Thinning or partial depopulation is a practice where a subset of the birds is removed for slaughter
and processing, leaving the remaining birds to grow to the required size (Allen et al., 2008).
Sometimes several rounds of thinning are performed in a flock (Millman et al., 2017). The 2011 EFSA
Opinion highlighted thinning as a major risk factor and this is supported by research since then. Lawes
et al. (2012) and Millman et al. (2017) reported thinning as a risk factor for Campylobacter spp.
infection as it breaches the biosecurity barrier and catching crews, cages, modules and trucks visit
multiple farms. Catching crews bring Campylobacter spp. into the house on their boots, forklift trucks
or broiler harvester machines, trolley wheels, crates etc. (Ellis-Iversen et al., 2012; Smith et al., 2016;
Georgiev et al., 2017). In addition to breaching biosecurity, thinning also stresses the birds and the
presence of stress hormones in the gastrointestinal tract may promote the growth, proliferation and
virulence of Campylobacter spp. (Aroori et al., 2014). Thus, Campylobacter spp. introduced at
thinning, spread rapidly throughout the flock reaching levels in the birds of up to 108 cells per gram of
caecal matter within 4–5 days after thinning (Koolman et al., 2014). In a recent investigation, Higham
et al. (2018) confirmed previous findings and showed that thinned houses had a 309% increase in the
odds of being highly contaminated and concluded that further investigations are required to elucidate
farm and individual factors related to thinning (Higham et al., 2018).

3.2.5. Campylobacter spp. contaminated drinking water

Contaminated water was previously considered an important source of Campylobacter spp. on
farms (EFSA BIOHAZ Panel, 2011). Campylobacter spp. are commonly found in surface water on farms
(Mughini-Gras et al., 2016) and, if used without proper treatment, water may serve as a vehicle of
transmission (Jonsson et al., 2012; Agunos et al., 2014; Allain et al., 2014; Torralbo et al., 2014; Borck
Høg et al., 2016).

3.2.6. A previous Campylobacter-positive flock in the house (carry-over)

When a flock is Campylobacter-positive the broiler house and surrounding environment is often
heavily contaminated and, if not cleaned and disinfected properly between flocks, a previous positive
flock will become an important source of Campylobacter spp. for the new flock (EFSA BIOHAZ Panel,
2011). More recent studies also support this conclusion. Damjanova et al. (2011) and Battersby et al.
(2017) both demonstrated that inadequate cleaning and disinfection was a risk factor in the spread of
Campylobacter spp. from one flock to the next. Other studies detected the same genotypes of
Campylobacter spp. in broiler house samples before or during flock placement (Allen et al., 2011;
Damjanova et al., 2011). Broiler house surroundings such as the tarmac apron, anteroom, house door,
feeders, drinkers, walls, columns, barriers and bird scales may act as a source of direct or indirect
infection resulting in carryover of persistent genotypes through several rearing cycles (Battersby et al.,
2016b). The failure to eliminate Campylobacter spp. at these sites between flocks has been attributed
to a range of factors including the design of feeders and drinkers, insufficient down time, a lack of
knowledge or utilisation of proper cleaning methods and bacterial resistance to the disinfectants used
(Agunos et al., 2014).

3.2.7. The use of therapeutic antimicrobials

The EFSA 2011 Opinion reported conflicting results on the effect of antibiotics on Campylobacter
spp. carriage and shedding, with Herman et al. (2003) observing no effect while Refregier-Petton et al.
(2001) concluded that administering antibiotics to the birds decreased the risk of colonisation with this
organism. Similar results were reported by Allain et al. (2014). These conflicting results may be due to
the resistance of Campylobacter spp. to the antimicrobial administered or that Campylobacter spp. was
introduced after the treatment. More recent research examining the effect of antibiotic treatments on
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the microbiome of the broiler gastrointestinal tract is similarly inconclusive (Allen and Stanton, 2014;
Mancabelli et al., 2016). The use of antimicrobials to reduce Campylobacter spp. carriage and shedding
may induce resistance in bacteria colonising the birds and is contrary to current EU policy to reduce
antibiotic usage in animal husbandry. Therefore, it is not be considered further in this opinion.

3.2.8. Concluding remarks

New information was published since the EFSA 2011 Opinion that provides additional evidence
indicating slaughter age, season, thinning, contaminated drinking water and carry-over from a previous
flock are still important risk factors for Campylobacter spp. colonisation of a broiler flock. Vertical
transmission does not seem to be a relevant risk factor and the results on the use of antimicrobials are
still inconclusive.

3.3. Control options to reduce the prevalence of Campylobacter spp. in
broilers

In the following section, the updated knowledge on the expected effect of the individual biosecurity
options that can be implemented at primary production level to control for the identified risk factor is
summarised. In Section 3.3.1, the results of the control options associated with the risk factors for
which PAF could be calculated are presented. In Section 3.3.2, the observed effects of the control
options associated with the risk factors for which PAF could not be calculated are provided.

3.3.1. Calculation of population attributable fraction for control options

The systematic literature search resulted in 17 eligible studies published in 15 articles, as one of the
articles (Borck Høg et al., 2016) presented two studies: one carried out in Norway and one in Denmark
and another article presented both a summer and a winter study in Germany (N€ather et al., 2009).
Two studies were further excluded, because they investigated fewer than 10 farming practices
resulting in difficulties excluding confounding or interaction with other known risk practices on the
farms (Lawes et al., 2012; Sandberg et al., 2015). The remaining studies had examined multiple risk
factors on more than 2,400 farms, calculated adjusted ORs and presented descriptive results to
provide estimates for the PAF analyses. The 15 studies are described in Table 6.

Of the six main poultry producing MS, four were represented in the study data (FR, UK, ES, DE).
Half of the studies were conducted in the Nordic countries, over-representing this region of the EU

Table 6: Overview of the selected studies for calculation of the population attributable fraction for
control options to reduce the prevalence of Campylobacter spp. in the primary production
of broilers

Reference Country
Year of
study

Number of
flocks/farms

Campylobacter
spp. prevalence

Allain et al. (2014) France 2008 121/121* 71.9

Barrios et al. (2006) Iceland 2001–2003 1091/36 15.4
Borck Høg et al. (2016) Denmark 2010–2012 3328/104 9.5

Borck Høg et al. (2016) Norway 2010–2012 1381/173 3.5
Bouwknegt et al. (2004) Netherlands 1997–2000 495/461* 26.3

Chowdhury et al. (2012) Denmark 2009–2010 2835/187 14
Ellis-Iversen et al. (2009) United Kingdom 2003–2006 603/137 34.2

Hansson et al. (2010) Sweden 2005 37/37 56.8
Jonsson et al. (2012) Norway 2002–2007 18488/623 4.7

Lyngstad et al. (2008) Norway 2005 131/131 n.a.
McDowell et al. (2008) Northern Ireland 2001–2002 388/88 42

N€ather et al. (2009) Summer Germany 2004–2005 146/146 53
N€ather et al. (2009) Winter Germany 2004–2005 146/146 34

Refregier-Petton et al. (2001) France 2001 75/75 42.7

Torralbo et al. (2014) Spain 2010–2012 291/134 62.5

*: Estimated from information provided in the articles.
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that had a lower prevalence of Campylobacter spp. than the rest of the MS in the 2008 baseline
survey (Table 5).

Modifiable risk factors from all studies were grouped by the practice or action needed to control the
risk and for which PAF was calculated. Control options were only included in the final modelling if the
risk factor had been identified in at least two MS.

The PAF analysis identified six control practices with sufficient evidence including [1] Hygienic
anteroom at broiler house entrance; [2] effective rodent control; [3] no animals in close proximity of
the poultry houses; [4] having few and well-trained staff; [5] adding disinfectants to drinking water
and [6] avoiding drinkers that allow standing water.

The PAF was calculated for each risk factor for each study and interpreted as the reduction factor,
i.e. the level of reduction in prevalence, if all broiler farms in the EU implemented the control practice
effectively. The results are presented in Figure 3 and discussed below.

3.3.1.1. Addition of disinfectants to drinking water

Contaminated water was previously considered an important source of Campylobacter spp. on
farms in contrast, to feed, where the lack of moisture creates a hostile environment for Campylobacter
spp. (EFSA BIOHAZ Panel, 2011). Campylobacter spp. are commonly found in surface water on farms
(Mughini-Gras et al., 2016) and, if used without proper treatment, water may serve as a vehicle of
transmission (Jonsson et al., 2012; Agunos et al., 2014; Allain et al., 2014; Torralbo et al., 2014; Borck
Høg et al., 2016).

The PAF analysis suggested that adding organic acids, chlorine-based biocides or hydrogen
peroxide to the drinking water could reduce the risk of Campylobacter-positive flocks up to 55%
(Table 7). Mainly chlorination (UK, ES) and acidification (FR) were found to reduce the risk, but in
Spain, hydrogen peroxide added to drinking water was also reported as common and effective. Other
studies did not identify a significant effect and, again, this is probably due to the variation in practices
such as concentration and type of additive, baseline cleanliness of water, temperature and many other

Figure 3: Population Attributable Fractions (PAF) point estimate values and 95% confidence intervals
for six control measures with evidence for PAF calculation from the risk factor studies
carried out in EU MSs
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factors. In addition, one French study (Refregier-Petton et al., 2001) found that acidification of
drinking water was a risk factor for the presence of Campylobacter spp., but this was most likely due
to poor hygiene.

3.3.1.2. Avoiding drinkers that allow standing water

Drinker types have been associated with a risk of positive poultry flocks, and studies suggest that
removing cups, trays and other parts that allow standing water that may enhance the transmission,
could reduce the risk up to 79% in Denmark and Germany (Table 8). PAFs could not be calculated for
the recent multicountry (ES/UK/DK/NL/PL/NO) study (Sommer et al., 2016b); however, the authors
identified drinkers with cups as significantly associated with increased risk. This finding is supported by
Borck Høg et al. (2016) who also found that drinker nipples with cups were a risk factor, when
compared to nipples without cups. Sommer et al. (2016a,b) estimated a reduction of up to 24% in
human campylobacteriosis, if the broiler industry used drinking nipples without cups.

3.3.1.3. Effective rodent control

If effective rodent control was achieved on all broiler farms in the EU, the overall prevalence of
Campylobacter spp. in EU flocks could decrease by up to 19% according to the studies in Table 9. The
risk factors that were identified in Spain and Northern Ireland were farmers reporting the presence of
rodents during the production cycle and/or rodent droppings were observed at a sampling visit. The
French study measured whether rodent control was applied outside the house and found that lack of
control was a risk factor.

In a French study of outdoor reared birds (Huneau-Salaun et al., 2007), rodent control carried out
by contractors instead of farmers was found to be a risk factor, possibly due to the infrequent bait
changes by the contractor. Since the study was for outdoor flocks, it was not included in the PAF
analysis. In the CAMCON study, rodent control was not included in the final analyses due to too many
missing values (Sommer et al., 2016a).

Table 7: The effect of implementing the control option ‘Addition of disinfectants to drinking water’
on the Campylobacter spp. prevalence of broilers

Estimated
reduction in
prevalence (PAF)

95% confidence
interval of PAF

Risk factors identified
in studies in the EU

Study
location

References

32.4% 6.0–54.9 Non-chlorinated water United Kingdom Ellis-Iversen et al. (2009)

5.3% 0.6; 8.2 Untreated water Spain Torralbo et al. (2014)

17.1% 3.3; 23.0 No acid in drinking water France Allain et al. (2014)

PAF: population attributable fraction.

Table 8: The effect of implementing the control option ‘Avoid drinkers that allow standing water’ on
the Campylobacter spp. prevalence of broilers

Estimated
reduction in
prevalence (PAF)

95% confidence
interval of PAF

Risk factors identified
in studies in the EU

Study
location

References

37.2% 0; 53.9 Nipple drinker with tray Germany N€ather et al. (2009) Summer

62.4% 1.2; 78.5 Nipple drinker with tray Germany N€ather et al. (2009) Winter

25.4% 0.8; 44.0 Drinker with cups Denmark Borck Høg et al. (2016)

PAF: population attributable fraction.
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3.3.1.4. Employing few and well-trained staff

Farm workers, maintenance personnel and catching crews who move between and within farms are
a source of Campylobacter spp. dissemination via contaminated boots and poor hygiene practices.
Thus, farm staff are often the vehicle of Campylobacter spp. carriage into the broiler house (Battersby
et al., 2016a). In the study by Van Limbergen et al. (2018), the parameter ‘visitors and staff’ scored
the lowest, suggesting that better education of the staff may help to improve the overall biosecurity on
broiler farms in Europe. Similar research by Ansari-Lari et al. (2011) using 100 flocks on 100
commercial broiler farms reported that the odds of flock infection decreased when the level of
education of the farmers increased.

The PAF analysis suggested that restricting the number of employees and only using permanently
or long-term employed staff may reduce the prevalence by up to 40% (Table 10). Researchers in both
France and Denmark found that having more than one person managing a flock increased the risk of
Campylobacter spp. infection in the broilers. In Norway, the risk increased if the farmer hired staff
and/or allowed external staff in the shed at bird delivery.

3.3.1.5. Hygienic anterooms at broiler house entrance

Pre-2011 research demonstrated the importance of anterooms. This describes a room between the
outside door and the entry to the production area where the birds are housed. The anteroom may be
separated into a ‘dirty’ zone (area closest to the outside door) and a clean zone (area closest to the
door to the broiler production area) where the farmer changes footwear and puts on clean house-
specific overalls and washes hands before accessing the production area. Ensuring that anterooms are
clean and function as an effective division, may result in between 5% and 13% reduction in the
Campylobacter spp. flock prevalence.

The PAF analysis highlighted differences in the use and effectiveness of anterooms in different MS
(Table 11). In Spain, for example, the absence of an anteroom in some broiler houses was identified
as a risk factor. The studies from Denmark and Northern Ireland rated the anterooms and divided
them into categories and in both countries; untidy and low-quality anterooms were risk factors. In
France, litter beetles in the changing room were associated with a higher risk of Campylobacter-
positive flocks. This observation was probably primarily a proxy for insect infestation within the broiler
houses, but also a sign of unclean changing/anterooms. PAFs could not be calculated for all countries

Table 9: The effect of implementing the control option ‘Effective Rodent Control’ on the
Campylobacter spp. prevalence of broilers

Estimated
reduction in
prevalence (PAF)

95%
confidence
interval of
PAF

Risk factors identified in
studies in the EU

Study location References

7.5% 0.4; 9.3 No Rodent control outside house France Allain et al. (2014)

11.8% 3.4; 17.1 Rodents seen by sampler Northern Ireland McDowell et al. (2008)
6.7% 0.0; 12.1 Farmer reported rodents Northern Ireland McDowell et al. (2008)

11.7% 0.0; 18.9 Presence of rodents in shed Spain Torralbo et al. (2014)

PAF: population attributable fraction.

Table 10: The effect of implementing the control option ‘Employing few and well-trained staff’ on
the Campylobacter spp. prevalence of broilers

Estimated
reduction in
prevalence
(PAF)

95%
confidence
interval of
PAF

Risk factors identified in
studies in the EU

Study location References

14.2% 2.9; 17.7 Personnel in house at delivery Norway Lyngstad et al. (2008)

13.9% 2.7; 18.6 Hired caretaker staff Norway Lyngstad et al. (2008)
25.3% 2.7; 37.1 ≥ 2 persons taking care of

broilers
France Refregier-Petton et al. (2001)

20.5% 5.0; 38.8 ≥ 2 persons entering houses Denmark Chowdury et al. (2012)

PAF: population attributable fraction.
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in the recent multi-country (ES/UK/DK/NL/PL/NO) study (Sommer et al., 2016b), but the absence of an
anteroom plus barrier (no effective biosecurity at the entrance of the houses) was identified as
significantly associated with increased risk.

3.3.1.6. No animals in close proximity of the broiler houses

Animals in adjacent fields may be a source of Campylobacter spp. in broilers. Several studies have
applied typing methods to test for the presence of the same clones, sequence types, etc. in broilers
and other animals in the immediate vicinity of the poultry farm (Ellis-Iversen et al., 2012; Mughini Gras
et al., 2012; Sheppard and Maiden, 2015; Weis et al., 2016). In general, relatively small numbers of
isolates are tested and even when the same strain is detected, the results are inconclusive as the
direction of spread is unknown. Some Campylobacter strains are capable of colonising several different
farm animal species (Ellis-Iversen et al., 2012; Mughini Gras et al., 2012; Sheppard and Maiden, 2015;
Weis et al., 2016) although not all studies find direct matches (Agunos et al., 2014).

While this might suggest that other livestock on the farm rarely act as a source of Campylobacter
spp. in broilers, the inability to match strains between farm animal species could also be due to one
flock, herd or even one animal carrying several genotypes of Campylobacter spp. at once and most
studies normally look at only one isolate (Grove-White et al., 2011; Sheppard and Maiden, 2015). In
contrast, Ridley et al. (2011) used molecular typing to demonstrate similar Campylobacter strains in
the broilers and in the cattle around the farm and, as these were first detected in the dairy herd,
concluded that horizontal transmission from the cattle to the birds was a risk factor for colonisation of
the broilers.

Nonetheless, epidemiological studies repeatedly identify other animals on or next to the farm as
significant risk factors. It is likely that they play a role in maintaining the Campylobacter spp. between
flocks. If other animals are kept away from broiler houses or surrounding areas, the risk of
Campylobacter-positive flocks can be reduced by up to 88%, but most likely up to 45%. This is a
broad category as it includes both pets (Spain), pigs (NL), cattle (UK) or just a broad category of other
livestock (NL; SE) on same or adjacent premises (Table 12). The PAF could not be calculated for the
Norwegian study (Jonsson et al., 2012) investigating the presence of livestock farms within 2 km from
poultry farms, but the variable was identified as a risk factor in the multivariate model.

Table 12: The effect of implementing the control option ‘No animals in close proximity of broiler
houses’ on the Campylobacter spp. prevalence of broilers

Estimated
reduction in
prevalence
(PAF)

95%
confidence
interval of
PAF

Risk factors identified
in studies in the EU

Study location References

25.5% 1.8; 42.1 Other animal species on
farm

Netherlands Bouwknegt et al. (2004)

79.3% 32.3; 87.5 Other animals within 1 km
radius

Netherlands Bouwknegt et al. (2004)

Table 11: The effect of implementing the control option ‘Hygienic anterooms at shed entrance’ on
the Campylobacter spp. prevalence of broilers

Estimated
reduction in
prevalence
(PAF)

95%
confidence
interval of
PAF

Risk factors identified in
studies in the EU

Study
location

References

17.0% 0.0; 28.4 No anteroom in poultry house Spain Torralbo et al. (2014)

3.3% 0.4; 4.2 Tidiness and cleanliness could
be improved

Northern
Ireland

McDowell et al. (2008)

13.6% 0.9; 18.8 Presence of litter-beetles in
anterooms

France Refregier-Petton et al. (2001)

15.6% 5.9; 24.4 Low quality anteroom Denmark Borck Høg et al. (2016)

18% 5.9;31.9 General tidiness score
reflecting a combination of a
number of hygiene parameters

Sweden Hansson et al. (2010)
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3.3.2. Control options for which the population attributable fraction cannot be
calculated

The PAF can only be estimated from studies that provide an adjusted risk estimate from a properly
designed epidemiological risk factor. However, some other types of studies also identify 10 other risk
factors that are summarised below.

3.3.2.1. Effective cleaning and disinfection

As described in Section 3.2.6, cleaning a broiler house after the flock has been harvested requires
the removal of the waste materials, which are often heavily contaminated with Campylobacter spp.
from the bird faeces. During this operation, the external area immediately adjacent to the main doors
is often heavily contaminated. Effective cleaning and disinfection therefore require that the inside of
the broiler house (including feeders and drinkers which are not designed to facilitate cleaning) and the
concrete apron outside the main door to be effectively disinfected. This is often not done properly,
resulting in a risk of carry-over between flocks (EFSA BIOHAZ Panel, 2011; Damjanova et al., 2011;
Battersby et al., 2016b).

There is a wide range of different cleaning agents and biocides commercially available for
eliminating Campylobacter spp. in the broiler house between flocks. However, these vary in their
effectiveness. Battersby et al. (2017) examined six different treatment combinations, applied as per
manufacturer’s instructions, and found that thermal fogging with the combination of potassium
peroxymonosulfate, sulfamic acid and sodium chloride (5% v/v) or a glutaraldehyde and quaternary
ammonium complex (0.3%, v/v) were effective treatments.

3.3.2.2. Downtime between flocks

The downtime between flocks is an important consideration linked to biosecurity. Pre-2011,
research data were contradictory on whether longer or shorter periods of time between cleaning and
disinfection of the house and restocking reduced the risk of Campylobacter spp. infection in the
subsequent flock (Hald et al., 2000; Lyngstad et al., 2008). In theory, longer periods should result in
greater reduction of any Campylobacter spp. present as this organism is a poor competitor in the
environment and sensitive to desiccation. However, longer periods also increase the chances of
Campylobacter spp. ingress into the house, if strict biosecurity is not maintained. Based on the data
reported by Borck Høg et al. (2016) and Georgiev et al. (2017), a downtime of more than 2 weeks
would increase the risk of the next flock becoming infected with Campylobacter spp. Similarly, Sommer
et al. (2016b) suggested a downtime of less than 10 days was best and would translate into a 2–8%
reduction in the human incidence of campylobacteriosis if this was applied across the whole of the
poultry industry.

3.3.2.3. Fly screens and keeping insects out of the broiler house

In previous studies, insects, especially flies, were considered as potential carriers of Campylobacter
spp. into the broiler house (EFSA BIOHAZ Panel, 2011). Since then, there have been few, if any, new
studies to either confirm or contradict this conclusion. The long-term effect of fly screens in Denmark
was studied by Bahrndorff et al. (2013) in a 4-year intervention study with 10 fly-screened and 10
control farms. They found that there was no effect of applying fly screens in winter but that, in fly
screen houses, Campylobacter spp. prevalence did not peak during the summer. Royden et al. (2016)
investigated the role of flies in the transmission of Campylobacter spp. to broilers and found that
despite the low prevalence of Campylobacter spp. cultured from flies, the risk of transmission could be
high, especially during summer when fly populations are greatest.

Estimated
reduction in
prevalence
(PAF)

95%
confidence
interval of
PAF

Risk factors identified
in studies in the EU

Study location References

21.5% 4.4; 35.0 Cattle adjacent United Kingdom Ellis-Iversen et al. (2009)

39.5% 19.8; 47.8 Pigs closer than 2 km Norway Lyngstad et al. (2008)
33.4% 2.6; 44.1 Presence of dogs/cats at

farm
Spain Torralbo et al. (2014)

20.9% 5.0;37.0 Other livestock on farm Sweden Hansson et al. (2010)
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3.3.2.4. Clean litter and litter amendments

Dry clean litter was not considered to be a source of Campylobacter spp. although these organisms
could survive in contaminated litter especially if it became wet (EFSA BIOHAZ Panel, 2011). Recent
research supports this finding and fresh or dry litter is still not considered to be a source of
Campylobacter spp. introduction into the broiler house, but wet litter may play a role in the survival
and spread of these bacteria (Robyn et al., 2015).

Zhang et al. (2016) added sodium bisulfate to litter in order to reduce ammonia concentration and
emissions. While multiple litter amendment applications significantly reduced ammonia emissions, there
was no effect on Campylobacter spp. concentration. Similarly, applying a mixture of microorganisms
(EM), Nuengjamnong and Luangtongkum (2014)reported that a product containing lactic acid bacteria,
yeasts, Bacillus spp. and Actinomycetes was beneficial in terms of reducing ammonia in poultry
houses, but there was no reduction in Campylobacter spp.

3.3.2.5. Stocking density and flock size

There is little new research on the association between flock Campylobacter positivity and stocking
density or flock size that would contradict evidence previously reported (EFSA BIOHAZ Panel, 2011).
Stocking density can influence the levels of stress experienced by the birds. Borck Høg et al. (2016)
reported a reduced risk associated with a high stocking density in Denmark, but not in Norway,
probably due to farms applying stricter management routines and a higher level of biosecurity.

3.3.2.6. The number of broiler houses on site

The 2011 EFSA Opinion reported that the risk of Campylobacter spp. colonisation increased with
the number of broiler houses on site but the association between the degree of risk and the number of
houses was unclear. Interestingly, adjacent flocks are still considered to be a risk for Campylobacter
spp. transmission to new flocks (Newell et al., 2011; Agunos et al., 2014) and the range of influence
was reported to range from 9 to 14 km between positive farms in Denmark (Chowdhury et al., 2013).

3.3.2.7. Reduced slaughter age

The prevalence of flock positivity is directly related to slaughter age and reducing the slaughter age
could be an effective action to reduce Campylobacter spp. prevalence in flocks (EFSA BIOHAZ Panel,
2011). This conclusion was based on the analysis of the EU baseline data (EFSA, 2010) and suggested
that the overall incidence of campylobacteriosis in the human population would be reduced by 21% to
43% if the slaughter age was reduced to 28 days. Berndtson et al. (1996) reported a twofold increase
in flock positivity after 42–44 days and a fourfold increase after 48–61 days. Kalupahana et al. (2013)
demonstrated that it is at least 14 to 21 days before Campylobacter spp. are detected even on broiler
farms with poor biosecurity. The EFSA BIOHAZ Panel (2011) found that reducing the slaughter age to
35 days would not have any effect in one MS, where the current average slaughter age was 32 days,
but in three other MSs, this was estimated to result in a relative risk reduction of 9–18%. Using a
similar approach, in the CAMCON project, van Wagenberg et al. (2016) estimated that if all flocks were
slaughtered by 35 days or less, there would be a reduction in human campylobacteriosis of 10–18%.

3.3.2.8. Discontinued thinning

Thinning presents a high risk of introducing Campylobacter spp. into the broiler house and stopping
thinning would reduce this risk (EFSA BIOHAZ Panel, 2011). This is supported by Georgiev et al.
(2017), who demonstrated that discontinuing thinning would reduce the number of contaminated
broiler flocks by at least one-third.

The EFSA BIOHAZ Panel (2011) estimated the effect of a ban on thinning in four MSs and found
relative risk reductions between 2% and 25%. The effect of thinning could not be analysed using the
data collected in the CAMCON project due to there being too many missing values (Sommer et al.,
2016b), but using the approach applied by the EFSA BIOHAZ Panel (2011), the estimated relative risk
reduction in the six countries involved varied between 3% and 13% (van Wagenberg et al., 2016).

3.3.2.9. Selective breeding

Selective breeding of Campylobacter-resistant chickens was suggested by Kaiser et al. (2009) but
given the prioritisation of high meat or egg production, it is considered a long-term goal (EFSA
BIOHAZ Panel, 2011). However, findings from a recent paper concluded that Campylobacter spp. load
in broilers could have a low but significant heritability estimate (0.095 +/� 0.037), which indicated a
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limited genetic basis and that non-genetic factors have a greater influence on the level of
Campylobacter spp. found in the broiler chicken (Bailey et al., 2018). In another paper comparing
Campylobacter spp. colonisation between four breeds (two broilers and two layers), it has been found
lower prevalence and count of Campylobacter spp. and a quicker decrease in the shedding by the
layer breeds than in broiler lines (Hankel et al., 2018).

3.3.2.10. Designated tools per broiler house

The presence and use of designated tools per broiler house, meaning that tools commonly used in
broiler houses are applied in one broiler house only, were found to be an efficient control option in the
CAMCON project (Sommer et al., 2016b). The estimated relative risk reduction of the application of
designated tools in the six countries involved in this project varied between 1% and 16% (van
Wagenberg et al., 2016). It was the most cost-effective control option analysed in their study.

3.3.3. Concluding remarks

• Compared to the 2011 opinion, the PAF approach was applied to convert results of
epidemiological studies into quantitative control option effect estimates. European
epidemiological risk factor studies on Campylobacter spp. in broilers were identified and when
data were available, PAF was calculated for risk factors that could be associated with specific
control options. This improved the interpretation of the available evidence basis and added new
and more precise estimates of the effect of individual biosecurity practices to control
Campylobacter spp.

• PAF were calculated for six control options from several studies: hygienic anteroom, effective
rodent control, having no animals in close proximity to the broiler houses, addition of
disinfectant to drinking water, employing few and well-trained staff and avoiding drinkers that
allow standing water. The variation was greater between the different control options than for
the same control options in different studies, which increased the confidence in the
extrapolation potential of the results to the EU.

• When PAF was calculated for independent studies across several locations in Europe, the
majority of the point estimate values were of similar magnitude for control options such as
rodent control, hygienic anterooms, employing few and trained staff and no animals in close
proximity to the broiler houses in all broiler farms in the EU. This adds confidence to the validity
of the associations and the potential of the control options to reduce Campylobacter spp.
prevalence in the EU.

• According to the PAF analyses, the mean relative risk reductions that could be achieved by
adoption of each of these six control options individually are estimated to be substantial but the
width of the confidence intervals of all control options indicates a high degree of uncertainty in
the specific risk reduction potentials. For example, the mean estimate of the relative risk
reduction for the control option ‘Addition of disinfectants to drinking water’ was between 5
(95% CI 0.6–8.2) and 32% (95% CI 6.0–54.9) based on three available studies.

3.4. Control options to reduce the concentration of Campylobacter spp.
in broiler caeca

3.4.1. Literature update and selection of control options for model analysis

There are several papers reviewing potential Campylobacter control interventions on broiler farms
to reduce the concentration of Campylobacter spp. in the birds. Several of these were described in the
EFSA 2011 Opinion and new information when available is provided in this section including feed and
water additives, bacteriophages, vaccination and feed structure. Information from relevant papers
(Appendix E) was used for a final selection of studies to be included in the quantitative analyses.

3.4.1.1. Feed and water additives

A range of different feed and water additives, including biological cultures (probiotics/competitive
exclusion), short chain fatty acids, organic acids, potassium sorbate, monocaprin (for water only) and
chlorination (also water only) individually and in various combinations, were previously reviewed. They
were not included in the quantitative models in the EFSA 2011 Opinion as the evidence behind the
reductions achieved in Campylobacter spp. was too inconsistent to warrant consideration. Since then,
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several papers have been published on feed and water additives. Aguiar et al. (2013) concluded that
probiotics may reduce the levels of Campylobacter spp. in broilers but only when administered early in
the production period before exposure to Campylobacter spp. Other in vivo challenge studies have also
observed reduced Campylobacter spp. caecal counts using probiotic cultures, including Bacillus spp.
and Lactobacillus spp. although it was difficult to obtain consistent results (Ghareeb et al., 2013;
Guyard-Nicod�eme et al., 2016; Schneitz and Hakkinen, 2016; Manes-Lazaro et al., 2017; Saint-Cyr
et al., 2017; Shrestha et al., 2017). Similar research has been undertaken using bacterial cultures that
produce bacteriocins, a heterogenous group of mainly cationic, hydrophobic or amphiphilic peptides
produced by a range of bacteria. These molecules cause pore formation in the bacterial cell membrane
which usually results in cell lysis (Jozefiak and Sip, 2013). Umaraw et al. (2017) used bacteriocins in
drinking water to combat Campylobacter spp. colonisation in broilers, while Messaoudi et al. (2011)
reported that bacteriocin production by 3 different strains of Lactobacillus salivarius isolated from
chicken caeca were active against both C. jejuni and C. coli. Other researchers had previously used
L. salivarius strains in feed or drinking water to reduce the gut concentration of C. jejuni (Stern et al.,
2006). Enterococcus durans and Enterococcus hirae also produce bacteriocins that may have potential
application in broilers, but to date, no commercial bacteriocin products are available for controlling
Campylobacter spp. in poultry (Svetoch et al., 2011) and it is difficult to extrapolate the results of
small-scale laboratory-based studies to field conditions.

More recent research has also been reported on the potential application of organic and medium
chain fatty acids. Haughton et al. (2013) reported reduced Campylobacter spp. concentrations in water
treated with a commercial acidification product, but caecal counts were unchanged. In contrast,
Jansen et al. (2014) achieved reduced caecal counts when organic acids were added to the drinking
water but the Campylobacter spp. concentrations on the broiler carcasses obtained from these birds
were unchanged. Other studies have also failed to observe a consistent positive effect (van Bunnik
et al., 2012a,b). Hermans et al. (2012) added a mixture of medium chain fatty acids (caproic, caprylic,
capric and lauric acid) to the drinking water in pilot studies. After 24 h, none of the 10 test birds that
received a dose of 2 9 103 CFU C. jejuni were positive while 60% of the control birds were colonised.
After 5 days, Campylobacter spp. colonisation or transmission was not reduced as all the birds were
colonised with similar concentrations of Campylobacter spp. in the caeca. Thibodeau et al. (2015)
developed and tested a feed additive based on a mixture of essential oils and organic acids which
achieved a 0.7 log reduction in the caecal concentration of Campylobacter spp. without impacting on
the gut microbiome. Robyn et al. (2013) reported that allicin (a compound produced when garlic is
crushed or chopped) in drinking water eliminated Campylobacter spp. in vitro (laboratory studies), but
did not have a similar impact in vivo (experimental trials) and attributed this to the presence of mucin-
containing mucus in the caecum. Within the ‘Campybro’ project, 24 different additives belonging to
either organic acids, plant extracts or pre- and probiotics have been tested in experimental
husbandries (Gracia et al., 2016a; Guyard-Nicod�eme et al., 2016). Whilst no additive was able to
prevent broiler colonisation by Campylobacter spp., some of them showed significant reductions
reaching 3 log10 in one experimental trial. However, the main drawbacks found were the non-
reproducibility between trials and the high level of within-batch variability (Gracia et al., 2016a,b;
Guyard-Nicod�eme et al., 2016). The same conclusions were reached after field trials using organic
acids and a cation exchange clay-based product in feed (Guyard-Nicod�eme et al., 2016; Huneau-
Salaun et al., 2018). Other additives including ferric tyrosine (Skoufos et al., 2019) and a
phytophenolic compound b-resorcylic acid (Wagle et al., 2017) were found to reduce C. jejuni
concentrations in the caeca. In the study of Wagle et al., 2017, 2.5 log10 and 1.7 log10 reductions in
birds were observed, 14 days after treatment, when the feed additive was applied at 0.5% and 1%,
respectively (Wagle et al., 2017). In the study reported by Skoufos et al. (2019), the authors showed a
significant 2 log10 reduction in the treated group of broilers.

Considering the criteria reported in Section 2.3.5 on selection of control options, two studies were
included in the model analysis. The one from ‘Campybro project’ (Guyard-Nicod�eme et al., 2016) from
which the least effective (referred to here as FA1, an organic acid) and most effective feed additive (FA2,
a prebiotic) were selected, and the study reported by Skoufos et al. (2019) (FA3, an amino acid with
iron) (Table 13). Raw data from Guyard-Nicod�eme et al. (2016) were reanalysed by a maximum
likelihood estimation method that allows distribution fitting in the presence of censored data (Lorimer
and Kiermeier, 2007), to obtain estimates for the mean log reduction (d) and the variability therein
between applications, as well as the uncertainty of the mean estimate. The result d = 2 found by Skoufos
et al. (2019) can be used to compare the results obtained by the model applied here with the results that
were obtained by the model that was applied in the previous opinion (EFSA BIOHAZ Panel, 2011).
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3.4.1.2. Bacteriophages

Bacteriophages, also referred to as phages, are viruses that infect bacteria. Several pre-2011
studies indicated that bacteriophages have potential use as a therapeutic rather than a preventive
treatment to reduce the concentration of Campylobacter spp. carriage in caecal contents and faeces
immediately before slaughter (Loc Carrillo et al., 2005; Wagenaar et al., 2005; Carvalho et al., 2010;
Hermans et al., 2011). Robyn et al. (2015) describe the minimum requirements for a phage treatment
to be effective including [1] having a broad spectrum host capable of killing multiple strains of C. jejuni
and C. coli; [2] having an obligate lytic cycle; [3] being safe and cost-effective and [4] being able to
overcome host resistance. However, most phages are highly specific in the strains they can infect and
as broiler flocks are infected with multiple strains of C. jejuni the results achieved are inconsistent.
Kittler et al. (2013) applied a phage cocktail via drinking water. While a 3.2 log10 CFU of caecal
contents reduction was achieved in one treatment group, the results were inconsistent and significant
reductions were not obtained in other trials. More recent work by Richards et al. (2019) developed a
phage cocktail that could achieve a Campylobacter spp. reduction of up to 2.4 log10 CFU of caecal
material as compared to the untreated control birds. However, this reduction, achieved 2 days post
treatment, was not maintained and the difference between the treated and control birds was reduced
to 1.3 log10 CFU/g by 5 days post treatment (no data is provided beyond that time point). Although
the authors reported a stable phage titre over time, approximately 10% of the C. jejuni population
showed resistance. Sorensen et al. (2015) highlighted the fact that many phages rely on the highly
diverse capsular polysaccharide (CPS) for infection that may be different in different Campylobacter
spp. species and strains thus limiting the effectiveness of any phage-based intervention if not
developed using multiple phage isolation strains known to carry different CPS variants. In addition to
the requirement for multiple phage populations, there are other limitations in phage application
including safety (from the human and veterinary health perspective) and practical (effective
administration) aspects, logistic problems associated with treatment immediately before harvest and
the development of resistant strains. It was therefore concluded that this technology is in the early
stages of development and requires more research, including field trials, before it can be considered a
viable option for Campylobacter control in broilers. This control option was not included in the model
analysis due to the non-compliance with the selection criteria defined in Section 2.3.4.

3.4.1.3. Vaccination

Pre-2011, the proof of principle that Campylobacter antibodies (induced by vaccination in chickens),
has protective properties, had been demonstrated (Stern et al., 1990) and several vaccination regimes
and strategies have previously been tested but without success (EFSA BIOHAZ Panel, 2011). More
recently, a range of candidate vaccines have been developed and tested. using as antigens; whole
cells, live-attenuated strains, flagellin, an ATP-binding cassette (ABC) transporter protein, an outer
membrane protein, an aspartate/glutamate-binding ABC transporter protein, a glutamine-binding ABC
transporter protein, a hemin-uptake outer membrane protein, an outer membrane component of the
CmeABC multidrug efflux pump and a periplasmic protein (Robyn et al., 2015). Although the majority
of these achieved partial protection at best, there is no vaccine commercially available yet. However,
work is ongoing, and several candidate molecules have shown promise. Okamura et al. (2012)
immunised two groups of Jidori chicks subcutaneously with a formalin-killed C. jejuni with two different
adjuvants. Both vaccines induced high levels of anti-Campylobacter IgG, but in challenge studies, the
concentration of the organism in the caeca and faeces remained the same. Annamalai et al. (2013)
used poly (lactide-co-glycolide) nanoparticle (NP) encapsulated outer membrane proteins (OMP) of
C. jejuni that was administered subcutaneously. Seven days after vaccination, Campylobacter were not

Table 13: Effect of three selected feed additives in terms of mean log10 reduction (d) of caecal
concentration of Campylobacter spp. and the variability (standard deviation) in the log10
reduction (sd). The standard error of the mean (S.E.M) is used to express the uncertainty
about the mean and is used in the uncertainty analysis. NA = Not Available

Feed additive d sd S.E.M. Number of birds tested Reference

FA1 1.23 0 0.84 15 Guyard-Nicod�eme et al. (2016)

FA2 3.25 2.2 0.61 15 Guyard-Nicod�eme et al. (2016)

FA3 2 NA NA 36 (3 replicates of 12) Skoufos et al. (2019)

NA: Not Available.
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detected in any of the test groups of broilers. Neal-McKinney et al. (2014) achieved a 2 log10 reduction
in C. jejuni colonisation in specific pathogen-free (SPF) chickens, using a vaccine based on
recombinant surface-exposed proteins involved in broiler gut colonisation, but field trial validation has
yet to be undertaken. Riazi et al. (2013) found that orally administered C. jejuni specific single domain
antibodies were effective in preventing C. jejuni colonisation of day-old SPF broilers but future studies
are required over the entirety of the growth cycle. Recently, Meunier et al. (2016) using reverse
vaccinology identified 14 new antigens based on their subcellular localization, immunogenicity, B-cell
epitopes density and their sequence conservation among C. jejuni and C. coli strains. Six of them were
tested on broilers in experimental husbandries and four candidates showed Campylobacter load
decreases in caeca by 2–4 logs CFU/g correlated with the induction of specific humoral responses
(Meunier et al., 2017). Liu et al. (2019) used a native protein microarray approach and identified 30
new immunogenic C. jejuni proteins but no information was provided about in vivo testing. Vandeputte
et al. (2019) reported that in ovo-vaccinated birds using vaccines based on maternal antibodies were
not protected with the treated birds showing similar caecal C. Jejuni concentrations to the control
birds. Adams et al. (2019) developed and tested live-attenuated Salmonella-vectored vaccines but
found that oral vaccination of the broilers failed to trigger significant systemic and intestinal mucosal
immune responses and hence did not confer protection against C. jejuni.

Considering the criteria reported in Section 2.3.4, only one study was included in the model
analysis. From the ‘Campybro’ project (Meunier et al., 2017), the most effective (referred to here as
VA2, YP9817 protein) and least effective vaccine (VA1, YP562 protein) in terms of caecal log reduction
when birds were 42 days of age were selected (Table 14). Raw data from Meunier et al. (2017) were
reanalysed by a maximum likelihood estimation method that allows distribution fitting in the presence
of censored data (Lorimer and Kiermeier, 2007), to obtain estimates for the mean log reduction (d)
and the variability therein between applications, as well as the uncertainty of the mean estimate.

3.4.1.4. Feed structure

Coarse feed materials are retained in the gizzard where they are ground down and exposed to
hydrochloric acid. Thus, any feeds that delay the passage of materials through the gizzard may reduce
the passage of Campylobacter spp. further along the gastrointestinal tract. This was demonstrated by
Moen et al. (2012) who reported that a diet supplemented with 15% oat/barley hulls increased gizzard
weight and delayed the spread of Campylobacter spp. within the birds. They concluded that
stimulating the bird’s natural barriers was an effective means of reducing the spread of Campylobacter
spp. in broiler flocks. However, within the Campybro EU project, it was concluded that, feed structure
had no significant effect on Campylobacter colonisation (Gracia et al., 2016a,b) and most commercial
broiler flocks are already fed a proportion of whole grain within the ration.

This control option was not included in the model analysis due to the lack of evidence on the effect
and/or missing quantitative data.

3.4.2. Results of model analysis

The selected control options (feed additives and vaccination) affecting the concentration in the
caecal content were analysed and results are shown in Figure 4.

Table 14: Effect of two selected vaccines in terms of mean log reduction (d) of caecal
concentration of Campylobacter spp. and the variability in the log reduction (sd). The
standard error of the mean (S.E.M) is used to express the uncertainty about the mean,
and is used in the uncertainty analysis

Vaccination d sd S.E.M. Number of birds tested Reference

VA1 2.03 0.86 0.49 15 birds for each vaccine test Meunier et al. (2017)

VA2 4.15 0.20 0.45 15 birds for each vaccine test Meunier et al. (2017)
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According to the model, the most effective feed additive analysed (FA2) gave a median 51% risk
reduction (95% CI 15–79%; mean 50%), FA3 gave a median 42% risk reduction (CI 11%–75%; mean
42%) and the low effective feed additive (FA1) gave median 25% risk reduction (CI 0%–73%; mean
28%). For the two vaccines studied, the most effective one studied (VA2) gave median 71% risk
reduction (CI 21%–96%; mean 67%), whereas the less effective one (VA1) gave a median 40% risk
reduction (CI 9%–76%; mean 41%).

Note that the effects of these interventions are less than estimated in the previous opinion (EFSA
BIOHAZ Panel, 2011), where a 3 log10 reduction of the concentration of Campylobacter spp. in the caecal
content was found to reduce the public health risk of campylobacteriosis associated with the
consumption of broiler meat by at least 90%. With the model used in this opinion, the same hypothetical
intervention would give a median 58% risk reduction at EU level (PI 16–89%; mean 56%). A 2 log10
reduction reduced the risk by 76–98% in four MSs in the 2011 opinion, which contrasts with the relative
risk reduction estimated for FA3 that gave 2 log reductions. This decreased effect is mainly due to the
update of the value of the slope of the regression line, based on an update of the literature (Table 2 and
Appendix B), and a large unpublished data set (Rodgers, 2020).

3.4.3. Concluding remarks

• The modelling approach used in the 2011 opinion was updated using newly published data on
the relationship between Campylobacter spp. concentrations in caecal contents and on broiler
carcass skin samples, a larger variety of consumer phase models and a newly published dose
response model.

• In a review of information available since 2011, new experimental in vivo studies were identified
that reported estimates of the log reduction (and variation therein) that may be obtained by
providing feed or water additives or through application of vaccination. However, no new
information was available from field studies, which adds uncertainty to the actual log reductions
that can be achieved in practice.

• The updated model resulted in lower estimates of the slope of the linear regression line
describing the relation between concentrations in caecal contents and on skin samples.
Consequential to the decrease of this slope, lower estimates of the relative risk reduction were
obtained for the effectiveness of control options directed at a reduction in the caecal
concentrations. For example, for a 2-log10 reduction in caecal concentrations, the median
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Figure 4: Estimated relative risk reductions achieved by Campylobacter control options ‘feed
additives’ and ‘vaccination’, for the selected feed additives (FA) and vaccines (VA) (see
Tables 13 and 14). Blue circle: median effect (numeric result given); orange line: mean
effect; error bar: 95% confidence interval
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estimate of the relative risk reduction of campylobacteriosis attributable to the consumption of
broiler meat produced in the EU is now 42% (95% CI 11–75%), whereas in the previous
opinion, this relative risk reduction was 76–98% based on data from four MSs; similarly, a
3-log10 reduction is now estimated to reduce this risk in the EU by 58% (95% CI 16–89%),
compared to a relative risk reduction larger than 90% in four MSs, as found previously.

3.5. Ranking of control options

Within the time frame of this opinion, experts had to conduct a first-stage selection (step 1), where
all the 21 control options were considered, leading to the second step where eight selected control
options were prioritised for further assessment of the magnitude of their effect. The 21 control options
included in the screening step 1 of the EKE were collated and plotted in descending order of
probability of controlling Campylobacter spp. with more than 10% in the EU from top to bottom,
sorted by the mean of the midpoints of the experts’ ranges (Figure 5).

Results of step 1, as shown in Figure 5, were collectively discussed until consensus was reached on
which control options to take forward to Step 2.

Update and review of Campylobacter control options in broilers

www.efsa.europa.eu/efsajournal 35 EFSA Journal 2020;18(4):6090



Figure 5: Results of step 1 of the ranking and uncertainty analysis. The horizontal axis is the
probability, that, if the specified control option was implemented by all broiler producers in
the EU, the average annual incidence of campylobacteriosis cases in the whole EU
population caused by Campylobacter spp. in broiler meat produced from chickens raised in
the EU would reduce by more than 10% (compared to the current level), assessed by
expert judgement. For each control option, the set of horizontal bars shows the probability
ranges given by the participating experts. Where a precise probability was given, the bar
appears as a black dot. Dotted lines separate the control options. Black and grey bars are
alternated to distinguish the different control options
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The control options ‘clean litter’ and ‘litter amendments’ were combined into one ‘clean litter and
litter amendments’ resulting in a final list of 20 possible control options.

After the first screening, the experts (i.e. the working group members and selected EFSA staff)
agreed to exclude the eight control options in the lower part of Figure 5, up to and including ‘selective
breeding’. Based on visual inspection of Figure 5, and further discussion of the rationales behind
individual experts’ estimates, these eight control options were overall judged to have a rather low
probability (less than about 30–40% as shown in Figure 5) to result in a relative risk reduction higher
than 10%. In the remainder of this opinion, these eight options are identified as having a ‘lower
probability to have more than 10% effect’. The other 12 control options are identified as having a
‘higher probability to have more than 10% effect’.

Of these 12 top ranked control options based on the probability of causing more than 10% risk
reduction, four (4) were excluded from EKE step 2 for the following reasons:

• No other farm animals in close proximity to the broiler houses: lack of feasibility of
implementation of this control option (the adjacent fields may belong to a different farmer) and
doubts about the evidence of direction of transfer of Campylobacter spp.

• Effective cleaning and disinfection: The definition of ‘cleaning and disinfection’ was not precise
enough for the experts to enable judgements, i.e. it combines a group of activities and evidence
of effectiveness is based on a variety of different activities;

• Reduced slaughter age: current practices vary largely between EU countries and welfare issues
relating to fast-growing birds might prevent application;

• Bacteriophages: lack of convincing evidence of effectiveness in the field due to shortage of field
studies.

Hence, the following eight control options were selected for further consideration:

• Discontinued thinning
• Employing few and well-trained staff
• Vaccination
• Feed and water additives
• Avoiding drinkers that allow standing water
• Addition of disinfectants to drinking water
• Designated tools per broiler house
• Hygienic anterooms at broiler house entrance

The outcomes of step 2 of the EKE for the eight prioritised control options are sorted by the
medians and presented in a boxplot (Figure 6). As the uncertainty around the effectiveness of each
control option largely overlapped with the effectiveness of all other control options, a meaningful
ranking of these eight control options was not considered possible. More detailed results are available
in Appendix D.
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The consensus distributions obtained were based on discussions between the experts and the
available evidence from the three evidence streams (effect of control options to reduce flock
prevalence (supported by PAF calculations based on literature data), effect of control options to reduce
the concentrations in broiler caeca (supported by estimates obtained by a combination of models) and
effect of control options directly obtained from literature (not supported by either PAF or modelling).
Table 15 summarises the main arguments.

Designated tools per broiler house

Hygienic ante−room at broiler house entrance

Addition of disinfectants to drinking water

Avoiding drinkers that allow standing water

Employing few and well−trained staff

Discontinued thinning

Feed and water additives

Vaccination
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Relative risk reduction (%)

O
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Figure 6: Results of step 2 of the ranking and uncertainty analysis. The horizontal axis is the relative
risk reduction for each control option, assessed by expert judgement and expressed as %
relative risk reduction in EU campylobacteriosis cases if the control option was implemented
by all EU broiler producers. For each control option, the horizontal line shows the 95%
probability interval for the estimated risk reduction (P2.5 and P97.5), the box shows the
interquartile range (P25 and P75) and the vertical line shows the median (P50). The control
options are ordered by the medians, but this should not be interpreted as a ranking due to
the large degree of overlap between options
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Table 15: Overview of arguments leading to the consensus distributions for the eight selected control options. Next to the arguments for low and high
effectiveness and some general comments, the table shows the largest range of quantitative estimates as given in this opinion, the source of
these estimates (i.e. the PAF analysis, the concentration model or literature data), and the relative risk reduction estimates obtained by EKE

Control option
Arguments for low
effectiveness

Arguments for high
effectiveness

General comment

Largest
range of

quantitative
estimates

(%)*

Source of
quantitative
estimates

Median consensus
(90% Probability
interval) (%)

Vaccination Doubts about inconsistencies
in field conditions after
upscaling
Despite many efforts, there
is no vaccine (proven to be
effective in practice)
currently available

Model results confirm large
potential of vaccination
The results are more
consistent than for feed or
water additives

It is generally agreed that
the wide distribution reflects
existing uncertainty and
differences in judgement
between experts

9–96 Concentration model 27 (4–74)

Feed and water
additives

Doubts about inconsistencies
under field conditions; very
little evidence of
reproducibility
Publication bias: negative
results are not published

Some additives show a large
effect
When effective, the risk
reduction achieved is large

Unclear which specific
additive is chosen
Large variability between
additives and studies

0–79 Concentration model 24 (4–60)

Discontinued
thinning

Discontinued thinning will
not reduce prevalence under
poor biosecurity conditions

Data suggest that flocks are
rarely Campylobacter
negative after thinning
(Koolman et al., 2014)
It is very difficult to maintain
high biosecurity during
thinning; undermines the
motivation to, and effect of,
carrying out good biosecurity

Different experiences in
different countries
Differences between
countries will be large
Unclear how often thinning
is currently applied in EU
MSs; CAMCON project found
that majority of flocks
(> 80%) were thinned in
large producer countries: ES,
UK and PL

2–25 EFSA Opinion 2011;
van Wagenberg et al.
(2016)

18 (5–65)

Employing few and
well-trained staff

Training and/or certification
alone does not mean that
good biosecurity is
consistently implemented

Key for good overall
biosecurity
Good biosecurity and
husbandry are reliant on
people knowing what they
are doing and why

Main peak reflects PAF
results

2.7–38.8 PAF analysis 16 (5–45)
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Control option
Arguments for low
effectiveness

Arguments for high
effectiveness

General comment

Largest
range of

quantitative
estimates

(%)*

Source of
quantitative
estimates

Median consensus
(90% Probability
interval) (%)

Avoiding drinkers
that allow standing
water

Not clear why nipple drinkers
are associated with lower
prevalence of Campylobacter
in the flock

Standing water may facilitate
cross-infection between birds
using the same drinker.
Drinker cups are quickly
contaminated with bedding
materials and possibly feed
providing a niche in which
Campylobacter may survive
and cross-infect other birds
Cups on drinkers may allow
spillage onto the bedding
resulting in a higher
moisture content that
supports Campylobacter
survival

Experts agreed on average
(linear pool) of distributions
based on individual
judgements, without detailed
discussion

0–78.5 PAF analysis 15 (4–53)

Addition of
disinfectants to
drinking water

The birds may dislike the
odour or taste of the water
resulting in lower
effectiveness

Prevents water acting as a
source of Campylobacter
Effective way of
administering anti-
Campylobacter agents
ensuring all birds are treated

Experts agreed on average
(linear pool) of distributions
based on individual
judgements, without detailed
discussion

0.6–54.9 PAF analysis 14 (3–36)

Hygienic anterooms
at broiler house
entrance

Requires motivation on the
part of the farmers

A key part of any biosecurity
system ensuring
Campylobacter are not
transmitted form a
contaminated farmyard into
the broiler house
Easy to implement

Experts agreed on average
(linear pool) of distributions
based on individual
judgements, without detailed
discussion

0–31.9 PAF analysis 12 (3–50)

Designated tools
per broiler house

Will not be effective as
stand-alone measure
Sharing tools indicates poor
overall biosecurity

There is evidence that it is
effective, although the effect
is small

1–16 CAMCON project 7 (1–18)

*: As presented in the opinion.

Update and review of Campylobacter control options in broilers

www.efsa.europa.eu/efsajournal 40 EFSA Journal 2020;18(4):6090



Apart from information on mean and percentiles of the consensus distribution, the probability
distribution obtained in step 2 of the EKE also contains an estimate of the probability that the relative
risk reduction is more than 10% (i.e. the percentile where the relative risk reduction as illustrated in
Figure 6 is 10%). This estimate, which was implicitly agreed on after the discussions between the
experts, can be compared with the estimates obtained in step 1 of the EKE, where individual experts
were asked to assess the likelihood that the relative risk reduction would be more than 10%
(Figure 5). Table 16 compares these estimates, where the ranges shown in Figure 5 are summarised
by the mean of the midpoint estimates for each of the individual experts.

The comparison shows that the estimated probability of more than 10% relative risk reduction is
considerably higher for all control options after step 2 of the EKE, except the designated tools per
broiler house. It should be stressed that step 1 was an approximate screening step, while step 2 was
more refined. It is therefore expected that the results differ to some degree, and more weight should
be given to the step 2 results, as they followed more detailed consideration and thorough discussions
between the experts. Other reasons for the differences between the estimated likelihoods might be the
difference in the EKE questions at step 1 and step 2, where experts were asked to estimate the
probability that the relative risk reduction is more than 10% (step 1) or to assess the relative risk
reduction itself (step 2), and the choice of the mean of the midpoints (i.e. ignoring the uncertainty
which was an explicit part of the question and may give a bias towards values for the midpoint closer
to 50%).

3.5.1. Concluding remarks

• The effectiveness of 20 control options if implemented by all broiler farms in the EU, taking into
account the current level of implementation, was estimated by means of a two-step expert
knowledge elicitation (EKE) process that was informed by results from modelling of the updated
scientific evidence and literature review (including previous opinion).

• Eight control options, when considered separately, were judged to have a lower probability of
achieving a reduction of at least 10% in the incidence of campylobacteriosis, as follows;
effective rodent control, extended downtime between flocks, fly screens and keeping insects out
of the broiler house, clean or amended litter, stocking density and flock size, the number of
houses on site, selective breeding and feed structure.

• The 12 other control options were judged as having a higher probability of achieving a
reduction of at least 10% in the incidence of campylobacteriosis in humans: hygienic anteroom
at broiler house entrance, no animals in close proximity to the broiler houses, employing few
and well-trained staff, addition of disinfectants to drinking water, avoiding drinkers that allow
standing water, effective cleaning and disinfection, reduced slaughter age, discontinued
thinning, designated tools per broiler house, feed and water additives, bacteriophages and
vaccination.

Table 16: The estimated probability that the relative risk reduction is more than 10%, as obtained
from the mean of the midpoints of the individual experts in step 1 of the EKE (Figure 5);
and as derived from the probability distributions obtained in step 2 of the EKE, after
discussion between the experts (Figure 6)

Control options
Mean of midpoints of

EKE step 1
Estimate derived from probability

distribution of EKE step 2

Vaccination 67% 83%

Feed and water additives 64% 86%
Discontinued thinning 70% 81%

Employing few and well-trained staff 67% 81%
Avoiding drinkers that allow standing water 49% 71%

Addition of disinfectants to drinking water 45% 70%
Hygienic anterooms at broiler house
entrance

38% 62%

Designated tools per broiler house 42% 31%

EKE: expert knowledge elicitation.
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• From the 12 selected control options, eight options were selected for ranking their risk reduction
efficiency, based on the quality of evidence available, practical feasibility in the implementation
of the control option.

• The median values of the relative risk reduction of eight control options were judged using EKE to
be as follows: for vaccination 27% (90% Probability interval (PI) 4–74%); for feed and water
additives 24% (90% PI 4–60%); for discontinued thinning 18% (90% PI 5–65%); for employing
few and well-trained staff 16% (90% PI 5–45%); for avoiding drinkers that allow standing water
15% (90% PI 4–53%); for addition of disinfectants to drinking water 14% (90% PI 3–36%); for
hygienic anterooms at broiler house entrance 12% (90% PI 3–50%); for designated tools per
broiler house 7% (90% PI 1–18%).

• It was not possible to rank the selected control options according to effectiveness based on the
EKE judgements because there is a large overlap between the probability intervals, due to the
large uncertainties involved.

3.6. Advantages, disadvantages and availability of control options

After the first EKE step, the first 12 control options judged as having a higher probability of
achieving a reduction of at least 10% in the incidence of campylobacteriosis are listed in Table 17 to
consider further their advantages and disadvantages (apart from the effect on campylobacteriosis), if
they are to be applied.
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Table 17: Advantages and disadvantages of the first 12 control options judged as having a higher probability of achieving a reduction of at least 10% in
the incidence of campylobacteriosis

Control option Advantages Disadvantages

Vaccination Systems of multiple vaccines applied at the same time and
mass vaccinations are available to which an anti-
Campylobacter vaccine could be added

The effective vaccine does not yet exist and testing is still at experimental level
No vaccines available that work consistently in field trials
Unavailability of vaccines at commercial scale
Consumers may prefer meat from birds that have not been vaccinated
If there are side effects, there could be broiler welfare issues

Feed and water additives Feed and water additives are relatively easy to administer to
the birds
These could improve the birds gut microbiota resulting in
healthier broilers and better welfare
Relatively easy application

At experimental level, there is still a lack of reproducibility among tests and large
variability in effect between treated birds
The effects observed at experimental level are lower or non-existent at field level
and there are not yet results reproducing the effect at the field level
If the additive changes the odour or taste of the water, the birds may not drink

Discontinued thinning Avoiding stress at thinning is likely to increase flock welfare This may cause problems with birds in different sizes at slaughter increasing the
risk of broken intestines and faecal contamination during evisceration in the
processing plant

Employing few and
well-trained staff

Permanency and higher skill levels will benefit the industry
generally and may have positive impacts on broiler welfare,
health, etc
Well-trained staff are more likely to dedicate sufficient time to
hygiene and biosecurity in general and may improve the
effectiveness of other control measures
The lower the number and the higher the competency of staff
the more likely biosecurity measures will be understood and
consistently implemented

Initially, there may be a lack of trained staff and the workload may be an issue
During specific times (e.g. when bringing a new batch of birds into the broiler
house), relatively high numbers of staff are required (which are not needed
thereafter). At those times, a few well trained staff may not be sufficient

Avoiding drinkers that
allow standing water

Easy application and a relatively limited resource- demanding
intervention
Easier to clean and disinfect between flocks

Requires modifications in broiler houses
May result in a higher moisture content in the litter and therefore an increased
occurrence and severity of contact dermatitis

Addition of disinfectants
to drinking water

Easy application
May have protective effect against other pathogens and
increase health and welfare and reduce the need for
antimicrobials

Low pH of water and palatability for birds could lead to issues for animal growth
and welfare
Varying effect depending on organic material and solubility in water
Some treatments may dislodge biofilm within water lines which can block nipple
drinkers
The Campylobacter spp. may develop resistance
May adversely affect the gut microbiota resulting in poorer broiler performance
May be used to cover up poor operator performance in terms of biosecurity and
hygiene
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Control option Advantages Disadvantages

Hygienic anterooms at
broiler house entrance

Easy to use and serves as a reminder to practice biosecurity
Facilitates other activities as the anteroom accommodates the
temperature monitoring equipment, bird weight recording,
feed and water supply monitoring equipment, etc
May include a glass panel that allows inspection of the flock
without always entering the production area

May require structural changes to broiler houses and staff training
Double barrier systems installed in small anterooms can lead to cramped
conditions and increased risk of poor usage
May promote a false sense of biosecurity resulting in other essential hygienic
activities, such as disinfectant boot dips, being ignored
Many are poorly designed and are ineffective

Designated tools per
broiler house

Easy and rapid implementation
Relatively cheap to implement
Does not require any specific training

The farmer will have to purchase multiple sets of tools

Reduced slaughter age Reduced probability of biosecurity breaches resulting in less
opportunity to contract avian diseases

The large heterogeneity in the industry complicates implementation. Some
companies use slower growing breeds and consumer demands drive specific bird
sizes. By slaughtering earlier, the industry may have to introduce faster growing
birds and breeds, which may introduce welfare problems
Smaller birds may lead to more carcass contamination due to gut rupture at
slaughter if automated evisceration equipment is designed for larger birds

No animals in close
proximity of the broiler
houses

Efforts and resources are focused on broiler houses
Reducing the Campylobacter spp. load in the environment

Farmers can restrict access of some animals (dogs and cats) to the broiler
houses and choose not to have other animals close by but may have little control
over animals on neighbouring farms or fields
Even within a given farm, it may not be possible to place a ‘buffer biosecurity
zone’ around the broiler houses unless the farmer has other land not currently in
use

Bacteriophage Relatively easy to administer to the birds Bacteriophages are specific of strains of Campylobacter spp., their use would not
cover the diversity of strains prevalent in birds unless a comprehensive cocktail of
phage is used
Their effects are transient and do not last until the end of rearing Campylobacter
spp. can develop a resistance to bacteriophages

Effective cleaning and
disinfection

Allows the elimination of contamination between successive
flocks

Some disinfectants may need to be changed to avoid appearance of resistance to
those used for a certain time
Nearly impossible to clean everywhere for example feeders and drinkers are not
designed to facilitate cleaning as there are parts that cannot be reached
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3.6.1. Concluding remarks

• There are advantages and disadvantages associated with each control option.
• The advantages include ease of application (e.g. hygiene barrier, adding additives to feed),

improved bird health (e.g. biosecurity actions), better broiler welfare (e.g. discontinued
thinning), cross-protection against other pathogens (e.g. drinking water treatments, feed
additives).

• The disadvantages for a given control option may include a requirement for investment (e.g. if
structural changes are required to install an anteroom), lack of control (e.g. the farmer may not
own the fields adjacent to the broiler house and therefore cannot prevent other animals being
close by), reduced broiler growth due to decreased consumption of feed and/or water (e.g. if an
additive affects the sensory (odour, taste or appearance) properties making the feed or water
unpalatable).

3.7. Combinations of control options

It is difficult to assess the effects of combined control options, as studies that systematically assess
such effects (experimentally or by observation) are not available; the number of possible combinations
is large and the dependence on effective performance of control options could not be included in the
modelling approaches used, and poor application of one control measure may undermine the
effectiveness of another. Inclusion of interaction in the epidemiological models would provide an
estimate of the combined effects, but interaction is rarely examined, probably due to lack of statistical
power in studies due to inadequate numbers of flocks being included. However, the epidemiological
risk factor studies do attempt to adjust for confounding factors, or the risk posed by the other risk
factors included in the same multi-variable model (Pourhoseingholi et al., 2012). These models and
studies provide relatively specific risk estimates and can be converted to specific risk reduction
estimates. Nonetheless, applying control to one farming practice is likely to affect other practices and
the relative reduction potential of each factor will change. In general, every control option applied
correctly on a farm will further decrease the probability of colonisation of the broiler flock. For
biosecurity control options, interaction is evident, as explained in the previous opinion (EFSA BIOHAZ
Panel, 2011), because biosecurity depends on many interrelated local factors. In some cases, the
interaction may be synergistic increasing the effects beyond the added effect of the individual
measures. As an example, training staff in the importance of biosecurity is very likely to increase the
effect of all other biosecurity measures, as the level of implementation of these in their daily routines
should also improve. Using an anteroom correctly with good division between sections and
corresponding biosecurity actions such as putting on house-dedicated overalls, boots, using a boot dip,
washing hands etc., reduces the risk more than just having, but not properly operating, an anteroom.

Another case illustrating synergistic effect is where control options prevent colonisation of the birds
before thinning. If thinning is then also abolished, the opportunity for introduction of infection of the
broilers is removed allowing continuation of the benefits of disease control activities.

In other situations, applying multiple control measures may result in less than the additive effect.
For example, it is expected that if disinfectant was added to drinking water, the risk of standing water
in drinkers would decrease thus and there would be no additional benefit to using nipple only drinkers.

Combining two control measures targeting prevalence and concentration, respectively, may result in
a cumulative effect. Combining biosecurity measures with a future effective vaccine would for example
provide a cumulative effect. Furthermore, a transient effect (e.g. a few days after treatment only)
from a feed additive administered just before slaughter, combined with discontinued thinning, may also
have a cumulative effect.

3.7.1. Concluding remarks

• Multiple control activities are expected to have a higher effect preventing Campylobacter spp.
from entering the broiler house and infecting the birds. To minimise the risk of Campylobacter
colonisation, all control activities relating to biosecurity would have to be implemented in full.

• It is not possible to estimate the effect of combined control options because the current
estimates are inter-dependent and there is a high level of uncertainty of their effect in the EU as
a whole.

• Combining two control options targeting prevalence and concentration, respectively, may result
in a cumulative effect.
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3.8. Comparison to the 2011 Opinion

As explained above, the 2011 EFSA opinion on ‘Campylobacter in broiler meat production: control
options and performance objectives and/or targets at different stages of the food chain’ was updated
for control options at primary production, by a review of new evidence and, when possible,
incorporating this evidence in a novel modelling approach applying the PAF or a new version of the
model to assess the effectiveness of control options reducing the concentrations in caecal contents.

As in the 2011 opinion, biosecurity measures are considered essential to prevent flock colonisation
with Campylobacter spp. However, the previous opinion did not assess the effectiveness of individual
control options related to biosecurity, as it was argued that they depend on many interrelated local
factors. Although interrelating factors are still complicated, the current opinion includes such an
assessment. This was possible by consideration of the PAF as reported in various European studies,
and by the application of the EKE where all available evidence was evaluated. By means of the EKE,
the effect of application of the control options could be assessed for the whole EU, instead of only four
MSs as in the previous opinion, and the uncertainty attending the effect estimates was quantified.
Table 18 provides a comparative overview of the effects of individual interventions as described in the
previous and the current opinion. It includes the control options with higher probability of producing
more than 10% effect (First step of EKE; including all those for which the concentration model was
applied), those for which a PAF analysis was performed (Section 3.3.1) and those specifically referred
to in the 2011 opinion. When possible, quantitative estimates from the 2011 opinion are presented,
otherwise quotes are given from the conclusions or descriptions of the control measures. Overall, the
descriptive conclusions from the 2011 opinion are still considered appropriate.

Table 18: Control options with higher probability to have more than 10% effect (1st step EKE),
those for which a PAF analysis was performed (Section 3.3.1) and those specifically
referred to in the 2011 opinion. Quotes from the 2011 opinion are given in italics

Control option
Conclusion EFSA BIOHAZ
Panel (2011)

Conclusions in this opinion

Analysed by
Judged risk
reduction effect(a)

Vaccination Vaccination could reduce flock
prevalence as well as numbers of
Campylobacter spp. in the
intestines. However, vaccination is
still being developed and no
evidence of effective vaccines was
found

Concentration model;
2nd step EKE

27 (4–74)

Feed and water additives Inclusion of additives to feed or
drinking water could reduce flock
prevalence as well as numbers of
Campylobacter spp. in the
intestines. However, there is
conflicting evidence regarding the
effectiveness of additives.

Concentration model;
2nd step EKE

24 (4–60)

Discontinued thinning Thinning (partial depopulation) is a
risk factor for flock colonisation. The
public health impact of stopping this
practice as estimated in four
countries is expected to reduce the
risk by up to 25%

EFSA Opinion 2011;
2nd step EKE

18 (5–65)

Employing few and well-
trained staff

Not considered (part of biosecurity) PAF analysis; 2nd step
EKE

16 (5–45)

Avoiding drinkers that allow
standing water

Not considered PAF analysis; 2nd step
EKE

15 (4–53)

Addition of disinfectants to
drinking water

The effectiveness of drinking water
decontamination as an individual
biosecurity measure is unclear

PAF analysis; 2nd step
EKE

14 (3–36)
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3.8.1. Concluding remarks

In comparison with the previous opinion, new data and novel analyses allowed for a more
informative estimate of the effectiveness of individual control options.

The effect estimates of vaccination and application of feed and/or water additives still rank high,
but are less pronounced, due to the use of newly published data on the relationship between

Control option
Conclusion EFSA BIOHAZ
Panel (2011)

Conclusions in this opinion

Analysed by
Judged risk
reduction effect(a)

Hygienic anterooms at
broiler house entrance

The strict use of a hygiene barrier
about 50% and seems especially
important when there are other
livestock on the farm
Not considered as a separate
control option (part of biosecurity)

PAF analysis; 2nd step
EKE

12 (3–50)

Designated tools per broiler
house

Not considered (part of biosecurity) CAMCON Project; 2nd
step EKE

7 (1–18)

Reduced slaughter age Restricting the broiler slaughter age
of indoor flocks to 35 or 28 days, as
estimated from four countries,
would reduce the public health risk
by 10–20% or up to 50%,
respectively

EFSA Opinion 2011;
1st step EKE

Higher probability
(mm = 83%) to have
more than 10%
effect

No animals in close
proximity of the broiler
houses

Recognised as a risk factor but not
considered as a control option

PAF analysis; 1st step
EKE

Higher probability
(mm = 64%) to have
more than 10%
effect

Bacteriophages The use of bacteriophages as
currently envisaged has limited
practicality

1st step EKE Higher probability
(mm = 47%) to have
more than 10%
effect

Effective cleaning and
disinfection

Not considered (part of biosecurity) 1st step EKE Higher probability
(mm = 40%) to have
more than 10%
effect

Selective breeding Selective breeding programmes,
especially in poultry previously
selected for high meat or egg
production, must be considered as a
very long term goal. Therefore, this
potential intervention was not
modelled

1st step EKE Lower probability
(mm = 33%) to have
more than 10%
effect

Rodent control Not considered (part of biosecurity) PAF analysis; 1st step
EKE

Lower probability
(mm = 30%) to have
more than 10%
effect

Fly nets and keeping insects
out

Where strict biosecurity measures
are applied in indoor production, the
use of fly screens effectively
reduces flock colonisation in
summer and thereby reduces public
health risk by 50–90% as estimated
in one MS

1st step EKE Lower probability
(mm = 28%) to have
more than 10%
effect

EKE: expert knowledge elicitation; PAF: population attributable fractions.
(a): Numeric results indicate the median relative risk reductions (and 90% probability interval) as obtained in the 2nd step EKE;

otherwise the result of the 1st step EKE is given, in terms of the probability to have achieve more than 10% relative risk
reduction (‘lower’ and ‘higher’ probability are explained in Section 3.5; mm refers to the mean of the midpoint estimates for
the probability to have more than 10% relative risk reduction, obtained from the individual experts).
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Campylobacter spp. concentrations in caecal contents and on skin samples, a larger variety of
consumer phase models and a newly published dose response model, as well as inclusion of
uncertainty when extrapolating from experimental data to field conditions.

The updated model resulted in lower effect estimates than the model used in the 2011 opinion. For
a 2-log10 reduction in caecal concentrations, the median estimate of relative risk reduction is 42%
(95% CI 11–75%), compared to the previous opinion, where this relative risk reduction was 76–98%
in four MSs. A 3-log10 reduction is estimated to reduce the risk in the EU by 58% (95% CI 16–89%),
compared to a relative risk reduction larger than 90% in four MS in the previous opinion.

For several control options related to biosecurity (i.e. employing few and well-trained staff, hygienic
anterooms at broiler house entrance, designated tools per broiler house), numerical estimates of the
effectiveness were obtained after consideration of evidence obtained after the 2011 opinion was
published.

4. Conclusions

To address the different parts of the ToR, the conclusions have been reformulated as answers to
the following assessment questions:

Assessment question 1: What new scientific evidence about control options has become available
since the previous opinion of 2011 and what is their relative risk reduction on campylobacteriosis?

• New information was published since the EFSA 2011 Opinion that provides additional evidence
that slaughter age, season, thinning, contaminated drinking water and carry-over from a
previous flock are important risk factors for Campylobacter spp. colonisation of a broiler flock.

• New epidemiological evidence was analysed by the use of PAFs to obtain estimates of the
effectiveness of several control options at primary production that reduce the flock prevalence.

• PAFs were calculated for six control options from available studies including; hygienic anteroom,
effective rodent control, having no animals in close proximity to the broiler house, addition of
disinfectant to drinking water, employing few and well-trained staff and avoiding drinkers that
allow standing water.

• According to the PAF analyses, the mean relative risk reductions that could be achieved by
adoption of each of these six control options individually are estimated to be substantial but the
width of the confidence intervals of all control options indicates a high degree of uncertainty in
the specific risk reduction potentials. For example, the mean estimate of the relative risk
reduction for the control option ‘Addition of disinfectants to drinking water’ was between 5
(95% CI 0.6–8.2) and 32% (95% CI 6.0–54.9) based on three available studies.

• In a review of information available since 2011, new experimental studies were identified that
reported estimates of the log reduction in caeca (and variation therein) that may be obtained by
providing feed or water additives or through application of vaccination. However, no new
information was available from field studies.

• Newly published data on the relationship between Campylobacter spp. concentrations in caecal
contents and on skin samples, a larger variety of consumer phase models and a newly published
dose response model allowed an update of the modelling approach for interventions that reduce
the Campylobacter spp. concentrations in broiler caeca. This led to lower effect estimates than
with the model used in the 2011 opinion. For a 2-log10 reduction in caecal concentrations, the
median estimate of relative risk reduction is 42% (95% CI 11–75%), compared to the previous
opinion, where this relative risk reduction was 76–98% in four MSs. A 3-log10 reduction is
estimated to reduce the risk in the EU by 58% (95% CI 16–89%), compared to a relative risk
reduction larger than 90% in four MS in the previous opinion.

Assessment question 2: What is the ranking in terms of effectiveness of the selected control
options in reducing human campylobacteriosis cases at the primary production level?

• The effectiveness of 20 control options if implemented by all broiler farms in EU, taking into
account the current level of implementation, was estimated by means of a two-step expert
knowledge elicitation (EKE) process informed by results from modelling of the updated scientific
evidence, literature review (including the 2011 EFSA opinion) and experts’ experience.

• The following eight control options were judged to have lower probability of achieving a
reduction of at least 10% in the incidence of campylobacteriosis: effective rodent control,
downtime between flocks, fly screens and keeping insects out of the broiler house, clean or
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amended litter, stocking density and flock size, the number of houses on site, selective breeding
and feed structure.

• The other 12 control options were judged as having a higher probability of achieving a
reduction of at least 10% in the incidence of campylobacteriosis: hygienic anterooms at broiler
house entrance, no animals in close proximity of the broiler houses, employing few and well-
trained staff, addition of disinfectants to drinking water, avoiding drinkers that allow standing
water, effective cleaning and disinfection, reduced slaughter age, discontinued thinning,
designated tools per broiler house, feed and water additives, bacteriophages and vaccination.

• From the 12 selected control options, eight options were selected for further evaluation based
on the quality of evidence available and practical feasibility in the implementation of the control
option.

• The median relative risk reduction for those eight control options was judged in the EKE process
to be as follows; vaccination 27% (90% Probability interval (PI) 4–74%); feed and water
additives 24% (90% PI 4–60%); discontinued thinning 18% (90% PI 5–65%); employing few
and well-trained staff 16% (90% PI 5–45%); avoiding drinkers that allow standing water 15%
(90% PI 4–53%); addition of disinfectants to drinking water 14% (90% PI 3–36%); hygienic
anterooms at broiler house entrance 12% (90% PI 3–50%); designated tools per broiler house
7% (90% PI 1–18%).

• It was not possible to rank the selected control options according to their effectiveness based
on the EKE judgements because there was a large overlap between the probability intervals,
due to the large uncertainties involved.

Assessment question 3: What are the advantages and disadvantages of the selected control options?

• The advantages include ease of application for some measures (e.g. hygiene barrier, adding
additives to feed), improved bird health (e.g. biosecurity actions), better broiler welfare (e.g.
discontinued thinning) or cross-protection against other pathogens (e.g. drinking water
treatments, feed additives).

• The disadvantages for a given control option may include a requirement for investment (e.g. if
structural changes are required to install an anteroom), lack of control (e.g. the farmer may not
own the fields adjacent to the broiler house and therefore cannot prevent other animals being
close by) or reduced broiler growth due to decreased consumption of feed and/or water (e.g. if
an additive affected the sensory (odour, taste or appearance) properties making the feed or
water unpalatable).

Assessment question 4: What would be the effect of combining control options?

• Multiple control activities are expected to have a higher effect preventing Campylobacter spp.
from entering the broiler house and infecting the birds. To minimise the risk of Campylobacter
colonisation, all control activities relating to biosecurity would have to be implemented in full.

• It is not possible to quantify the effects of combined control activities because the evidence-
derived estimates are inter-dependent and there is a high level of uncertainty associated with
each. Some control options enhance the effect of others and some could reduce the effect of
other control options.

• Combining two control options targeting prevalence and concentration, respectively, may result
in a cumulative effect, if their targets are unrelated.

5. Recommendations

• It is recommended to collect new data (new baseline study) for an update of the current
Campylobacter spp. prevalence in the EU, including the quantification of Campylobacter spp. in
caeca and on carcass skin samples of the same flocks, for a better estimation of the correlation
between Campylobacter concentrations at caeca and carcases.

• More field studies of sufficient scale and consistency to provide definitive findings at EU level
should be encouraged, especially on the effect of vaccination, probiotics, water and feed
additives and pre-slaughter phage treatment on Campylobacter spp. in broilers because of the
large uncertainty related to the extrapolation from experimental studies. Moreover, field studies
should also be undertaken on different combinations of control options.

• It is recommended to extend this update of the 2011 opinion to include control options
throughout the whole broiler chain.
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Appendix A – Modelling approach for control options affecting the
concentration in the caecal content of broilers

Control options affecting the concentration in the caecal content are assessed by in three steps
using following models:

• A regression model to describe the relation between a change in the Campylobacter
concentration in the caecal content of broilers and a change in the Campylobacter concentration
on the meat at the end of the slaughterhouse (i.e. the concentration on neck or breast skin,
whole carcass rinses or otherwise, for carcasses after the industrial chilling process or chicken
meat products);

• A consumer phase model describing the effect of storage and food preparation (inactivation
and cross contamination);

• A dose response model.

First, an explanation is given of the regression model approach (See also Nauta et al. (2016)). The
approaches for the consumer phase model and dose response model are explained next.

A.1. Regression model for the relation between caecal samples and
skin samples

The regression model translates a change in Campylobacter concentration in the chicken caeca in
batches of broiler chicken into a change in Campylobacter concentration in batches of broiler meat, in
terms of change in distributions on skins of carcasses after chilling or whatever is measured as
‘contamination of the meat’ in the regression model.

Based on published data, different regression models were explored describing a linear relation
between the log concentration on broiler skin (or meat) samples taken at the end of processing (log
Cskin) and the log concentration found in the caeca (log Ccec).

Log10 Cskin ¼ a log10 Ccec þ b: (A1)

In this equation, a indicates the slope of the regression line and b is the intercept. It is assumed
that caecal samples and skin samples are taken from the same slaughter batch. The possible pooling
of samples is not considered in this analysis.

The regression model is applied to estimate the effect of reducing the concentration Ccec (by D log
Ccec) on the concentration Cskin.

If the concentration on the skin after reduction of Ccec (due to intervention) is represented by Cskin’
and Equation (A1) is rewritten to D log10 Cskin = � a D log10 Ccec, then

Log10 Cskin
0 ¼ log10 Cskin � a Dlog10 Ccec: (A2)

The EU baseline data from 2008 are used to describe initial concentration on broiler skin (log10
Cskin), being described by a normal distribution with mean mskin and standard deviation sskin. Nauta
et al. (2012) describe the values for mskin and sskin in positive batches for each Member State (MS),
along with the mean batch prevalence and the contribution to the EU production of the MS at the time
of the baseline survey. These data are used in the analysis. From the data, it is derived that, for the
EU including Norway and Switzerland, the weighted mean mskin = 2.44 log CFU/g skin; sskin = 1.24; the
weighted flock prevalence for the whole EU is 67%.

The effect of the intervention, D log Ccec is implemented by a Normal distribution with mean d and
standard deviation sd. Distributions for log Cskin’ can then be obtained analytically. The mean and sd
after intervention are:

mskin after ¼ mskin � a� d (A3)

sskin after ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2skin þ a2s2dÞ

q
:

With this model, the distribution of concentrations after implementation of an intervention is
characterised by a mean log reduction d with standard deviation sd can be derived based on the slope
of the regression line a.

Update and review of Campylobacter control options in broilers

www.efsa.europa.eu/efsajournal 58 EFSA Journal 2020;18(4):6090



The default value for a is set at a = 0.27, based on the largest data set, Rodgers (2020). In the
uncertainty analysis, a BetaPert distribution with minimum 0, most likely 0.27 and maximum 0.7 is
used, based on the results of the literature search (Section 2.3.1). This distribution is illustrated in
Figure A.1.

A.2. Consumer phase models (CPM)

The eight CPMs described and analysed by Nauta and Christensen (2011) (Nauta and Christensen,
2011) are used (see Section 2.3.2). As in the previous opinion (EFSA BIOHAZ Panel, 2011), the model
presented by Nauta et al. (2008), who collected observational data from Dutch consumers preparing a
chicken salad, is used as the default CPM in simulations where the uncertainty about the choice of the
CPM is not included (see Table 3; results not shown). Also an assumption made by all CPMs is the
following relation between the concentration per gram of skin and the concentration per gram of meat

logCmeat ¼ logCskin � s:

Based on expert opinion in EFSA Biohaz Panel (2011) (EFSA 2011), the default assumption is s = 1.
In the uncertainty analysis, a Uniform distribution of s between 0 and 3 is used, as in Nauta et al.
(2012).

All CPMs translate the distribution of concentrations of Campylobacter on the meat (Cmeat) in a
distribution of ingested dose, by models that describe the transfer and survival of Campylobacter, and
the variation therein, during the preparation of a meal including chicken meat, based on observational
and/or experimental data obtained in different countries. Details of the models (as also implemented in
this opinion) are presented in Nauta and Christensen (2011). All models apply the same serving sizes,
based on observational data from Christensen et al. (2001) (a lognormal distribution with mean 189 g
and standard deviation 127, with a maximum portion size of 1 kg).

A.3. Dose response models

Teunis et al. (2018) presented new dose response models for Campylobacter, which differ
substantially from the one used in the previous opinion (the ‘classic’ DR model). Their paper presents
an elaborated quantitative analysis of the uncertainty associated with the data and provides a variety
of outbreaks and challenge studies. The outbreaks are four raw milk outbreak studies. The challenge
studies include human and primate challenge studies for specific Campylobacter jejuni strains, and
include the challenge study (Black et al., 1988) that is used for the classic model.

In this opinion, two alternative DR models derived from the Teunis et al. (2018) paper are
compared to the classic DR model, by a comparative analysis of relative risk reduction estimates of
interventions affecting the concentrations on the meat (similar to what Nauta and Christensen (2011)
(Nauta and Christensen, 2011) did for CPMs).

The alternative DR models are those defined by the median estimates of the model parameters
provided by Teunis et al. (2018) for the challenge studies and the outbreak studies. These median
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Figure A.1: The BetaPert (0, 0.27, 0.7) distribution used to describe the uncertainty about a, the
slope of the regression line
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parameter values do not necessarily give a median DR relation, but some unreported trials suggested
that they get close.

A comparison of the dose response curves for illness, using the median estimates of the model
parameters, is given in the graph below.

For this opinion, the default choice for the DR model remains the ‘classic model’, for best
comparison with the 2011 opinion. In the uncertainty analysis, a random choice is made between the
‘classic model’ and the ‘median challenge model’. The ‘median outbreak model’ is based on (potentially
non representative) raw milk outbreaks and gives very high estimates of the probability of illness. It is
therefore not included.

Table A.1: The model parameter values for the models used are given below. For details, see
Teunis et al. (2018)

Pinf Pill|inf

a ß r g Constant

Classic model 0.145 7.59 0.33

Median Challenge model 0.44 0.51 0.06 0.88

Median Outbreak model 0.38 0.51 0.76 0.0092
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Appendix B – Studies on the association between caecal content samples and skin or meat samples

No Reference Study content
Tested matrices
(caecal content)

Tested matrices (skin
or meat)

Samples Results

01 Allen et al. (2007) Relation: contamination
of carcasses during
processing – degree of
flock colonisation

Caeca after
evisceration (caecal
content)

Neck skin 26 slaughter groups,
originating from 22
single-house flocks

No correlation was found
overall between the numbers of
campylobacters detected in caeca
and on carcasses

All carcasses from high
prevalence flocks were
contaminated with
campylobacters

After chilling, they carried
significantly (p < 0.001) higher
numbers than carcasses
originating from low prevalence
flocks

02 Boysen et al. (2016) Campylobacter spp. and
Escherichia coli
contamination of broiler
carcasses across the
slaughter line

24 individual caeca
per flock

24 thigh skins per flock 15 broiler flocks (from 3
slaughterhouses)

A significant positive
correlation was found,
r2 = 0.72, p < 0.0001,
regression line
y = 0.692 9 � 2.45. This
relationship was not dependent
on slaughterhouse

03 Brena (2013) (PhD
thesis Liverpool)

PhD thesis on
Campylobacter in broiler
slaughter plants

10 caeca per flock 10 neck skins per flock 76 batches of broiler
chickens (from 46
different farms);
3 slaughterhouses

Significant correlation
r2 = 0.23. y = 0.21 9 + 1.13
p < 0.005

04 Duffy et al. (2014) Effect of processing
practices on prevalence/
concentration of
Campylobacter correlation
concentration of E. coli
and Campylobacter

Caeca after
evisceration (caecal
content)

whole bird rinse
technique

n = 240 Prevalence in caeca has
influence on prevalence on
carcasses (3/4 flocks)

‘Control of processing parameters
may play more important role in
reducing concentration on whole
chickens than the initial
concentration in caeca
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No Reference Study content
Tested matrices
(caecal content)

Tested matrices (skin
or meat)

Samples Results

05 Elvers et al. (2011) Molecular tracking
through processing

Caeca Neck and breast skin 5 Campylobacter-positive
flocks

‘no obvious correlation
. . .between the number of
campylobacters in the ceca and
those on the carcasses. . .

’ There was also a significant
association between flock
bacterial load and sampling point
(p =0.033). This suggests that
Campylobacter numbers on the
flock and at the point at which
they were sampled combine to
influence the overall numbers on
the carcass

06 Hue et al. (2011) Campylobacter and
Salmonella contamination

Caeca from 10 birds
per batch

1 carcass per batch 425 batches A positive correlation
(r = 0.59) between average
number of Campylobacter in
caeca and on carcasses
(p < 0.001) (n = 425).
Considering only positive batches
(n = 297), correlation was
significant (p < 0.001) and
Spearman coefficient was lower
(r = 0.33). Slope of the regression
line shown in figure is 0.3243

07 Laureano, Corujo and
Van Gerwe (2013)

Correlation of different
matrices with
Campylobacter counts in
neck skin of broiler
carcasses

Two pooled samples
of 5 caeca per flock

Two pooled samples of
5 neck skins

80 flocks (from 10
slaughter plants)

A significant positive
correlation. r2 = 0.26;
y = 0.276 9 + 1.276
The introduction of the variable
slaughterhouse as a random
effect had no effect in the model
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No Reference Study content
Tested matrices
(caecal content)

Tested matrices (skin
or meat)

Samples Results

08 Malher et al. (2011) Factors associated with
carcass contamination

Pooled caeca
(1 pooled sample per
batch)

Pooled neck skin samples
(1 pooled sample per
batch)

140 batches When a carcass was
contaminated . . ., the level of skin
contamination appeared to be
poorly correlated (r = 0.28) to
the level of caecal contamination
in the batches where the skin test
was positive. No slope of
regression line published

09 Nauta et al. (2009) ‘testing and scheduling’
strategy

10 caecal samples
per flock

5 (skinned) breast fillet
samples

62 flocks Numbers of Campylobacter on
breast fillets do not correlate
with those of caecal contents

10 Reich et al. (2008) Correlation caeca-
carcasses

10 caeca per flock 5 carcasses per flock
(breast caps)

40 flocks caeca/18 flocks
carcasses

Positive correlations between
numbers in caeca and on
carcasses and breast caps
Positive correlation between
mean numbers of Campylobacter
in caecal contents and mean
count on carcasses at various
processing steps (correlation
coefficients and corresponding
p-values were: 0.56 p = 0.058 for
carcasses after scalding/
defeathering, 0.81 p = 0.0013 for
carcasses after evisceration and
0.64 p = 0.0196 for carcasses
after chilling, 0.72 p = 0.0057 for
breast caps). No slope of
regression line for carcass after
chilling of breast caps published

11 Reich et al. (2018) Contamination in broilers
and microbiological
criteria

10 caecal samples
per batch (pooled)

50 neck skin samples per
batch (pooled into 5 neck
skin samples)

365 batches Counts on neck skin were not
predictable (from counts in
caecal content) by linear
regression due to the low r2-
values found (slaughterhouse A:
0.083; slaughterhouse B: 0.274;
slaughterhouse C: 0.134,
respectively)
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No Reference Study content
Tested matrices
(caecal content)

Tested matrices (skin
or meat)

Samples Results

12 Rodgers (2020) Carcass-caeca 10 caecal samples
per batch

Neck skin from 1 carcass
per batch

1,146 slaughter batches Contamination of carcasses
correlated to caecal
colonisation

13 Rosenquist et al.
(2006)

Influence of slaughter
operation on
contamination level

Caecal content
(30 per flock) after
evisceration

Neck skin samples
(30 per flock)

900 samples from
6 broiler flocks

Regression analysis of
concentrations in caecal material
and on neck skin of carcasses
after defeathering showed a
correlation (a = 1.15;
b = �5.29) between these two
variables
Mean concentrations in neck skin
samples after defeathering can be
explained by the mean
concentration in the caecal
samples

14 Stern and Robach.
2003

Enumeration in faeces
and corresponding
carcasses

Faecal droppings
(day before
slaughter)

Carcass rinses 20 broiler flocks No significant correlation
between Campylobacter spp.
levels recorded for the faecal
samples and those recorded for
the prechill carcasses

No correlation (p > 0.05) between
levels of Campylobacter spp. in
faeces and those on fully
processed carcasses was
observed

15 Vinueza-Burgos et al.
(2018)

Contamination of broilers
along the slaughter line

One pooled sample
of 25 caeca per flock

5 breast skin samples per
flock

15 batches (from
3 slaughterhouses)

Data published in supplementary
material, no correlation study
performed
Analysis of the published data
gives a slope 0.498, r2 = 0.57,
p = 0.001
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Appendix C – Sensitivity analyses of the model for the effect of control
options affecting the concentration in the caecal content of broilers

The performance of the model to estimate the effect of control options to reduce the
Campylobacter concentration in the caecal content of broilers was analysed by a sensitivity analysis to
investigate the sources of the uncertainty in the estimated relative risk reduction.

The model was run for the reference model (as detailed in Table 3), and results obtained for the
effects of five selected control options (three feed additives and two vaccines). Additionally, the model
was run with additional uncertainty by including (1) a random choice of MSs instead of using the EU
mean and (2) randomly selecting the median outbreak DR model, the classic DR model or the median
challenge DR model, instead of only the last two, for the least effect vaccine (VA1).

The uncertainty distributions for the relative risk reductions obtained are presented in Figure C.1. It
shows that the uncertainty is large in all cases, the added uncertainty for VA1 does not add much to it.
The distributions are obtained from Monte Carlo simulations with 250.000 iterations.

Figure C.2 presents the correlation of the uncertainty in the input distributions and the uncertainty
in the relative risk reductions. It shows that in most cases the uncertainty in the slope is the main
source of uncertainty, except in one case where the uncertainty of the effect of the control option
(D log Ccec) dominates (FA1). An obvious explanation is that the impact of the uncertainty in the effect
of the control option varies between the scenarios, and not only depends on this uncertainty itself, but
also on the mean size and the variability of this effect. The results also show that the uncertainty
about the choice of the CPM, the DR and the MS (i.e. the concentrations on the skin after processing)
has a smaller impact on the total final.

After these several alternative scenarios were run where some of the uncertainties or variabilities in
the model were modified, to explore their effect on the relative risk reduction estimates. Results are
shown graphically in Figure C.3. for (1) the reference scenario, and scenarios where (2) the
uncertainty about the choice of the MS was added; (3) the slope was not uncertain, fixed at 0.27; (4))
the slope was not uncertain, fixed at 1 (as in EFSA Biohaz Panel, 2011) (EFSA 2011); (5) only the
median outbreak DR model was used; (6) only the classic DR model was used; (7) only the median
challenge DR model was used; (8) one of the three DR model was randomly selected; (9) all
uncertainties (S.E.M.) in the effects of control options were set at zero; (10) all variabilities (sd) in the
effects of control options were set at zero. These analyses confirm the importance of the lower values
for the slope as obtained and applied in this opinion, compared to the previous one. They also show
that the impact of other sources of uncertainty is less pronounced.

This information was made available to inform the EKE and taken into account by the experts in
their judgements.
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Figure C.1: Uncertainty distributions for the relative risk reductions for the three feed additives (FA1, FA2 and FA3) and the two vaccines (VA1 and VA2) as
well as VA1 with additional uncertainty, respectively
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in Figure A
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Figure C.3: Relative risk reductions found in the reference scenario (as in Figure 4) and nine other
scenarios. Blue circle: median effect (numeric result given); orange line: mean effect;
error bar: 95% credible interval
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Appendix D – Uncertainty analysis

D.1. Evidence table for control options affecting prevalence

Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

Hygienic anterooms at entrance of broiler houses – Five different epidemiological studies
from different countries identified this
as a risk. – repeatability is evidenced,
‘control’ always included, field studies,
– includes two newer study incl.
CAMCON
– magnitude of PAF fairly similar
– Two of the large producer countries
are included
– Effects are fairly similar across
populations

69–94%*
CAMCON REPORT

51–73%
Van Wagenberg
et al.

no anteroom in
poultry house

PAF % 17.1 (0*–
28.4)

ES 2010–2012 Torralbo 2014 only carried out in
Andalusia

Could be
improved

PAF % 3.3 (0.4–
4.2)

NI 2001–2002 McDowell 2008

Litter-beetles in
anterooms

PAF % 13.6 (0.9–
18.8)

FR 2001 Refregier-
petton

2001 Only representative of
60% of French
broilers

Low quality
anteroom

PAF % 15.6 (5.9–
24.4)

DK/NO? 2010–2012 Borck høg 2016

General tidiness
score reflecting a
combination of a
number of
hygiene
parameters

PAF % 18 (5.9�
31.9)

SW 2005 Hansson 2010
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Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

Non-significant
(i.e. explored in
univariate
analysis but not
retained for the
multivariate
model) studies

PAF % – – 2004–2005
1997–2000
2001–2004
2003–2004
2003–2006
2008
1999–2000
2005

N€ather
Bouwknegt
Guerin
Huneau-
salun
Ellis-Iversen
Allain
Sommer
Lyngstad

2008
2004
2007
2007
2009
2014
2013
2008

(Mention here if any of these studies
are strong negatives)

* = Non-
significant in
multivariate
model
No ‘anteroom
and hygiene
barrier in houses
< 15 years old’

RRR 3
4
6
13
9
12

PL
ES
UK
NL
DK
NO

2012 CAMCON
Sommer
Van
Wagenberg

2016
2016

EU study No PAF calculated, as
another type of data
analysis was
performed
Based on only few
(20) farms in ES, NL,
PL and EK, 100 and
160 farms in DK and
NO
Data are imputed
based on assumptions
to provide significance
and allow modelling
Two risk factors in
one

ADD ROWS FOR
LIT STUDIES
Effective rodent control – Three epidemiological studies finds

similar results = repeatability
– Similar PAFS
– includes a newer study
Includes large producer countries

> 95%
(professional
8–74%)
CAMCON report
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Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

No Rodent
control outside
house

PAF % 7.5 (0.4–
9.3)

FR 2008 Allain 2014 Only carried out in
Brittany

Rodents seen by
sampler

PAF % 11.8 (3.3,
17.1)

NI 2001–2002 McDowell_
rf1

2008

Farmer reported
rodents

PAF % 6.7(0*–12) NI 2001–2002 McDowell_
rf2

2008

presence of
rodents in shed

PAF % 11.7 (0*–
18.9)

ES 2010–2012 Torralbo 2014 Only carried out in
Andalusia

Non-significant
(i.e. explored in
univariate
analysis but not
retained for the
multivariate
model)

PAF % – – 2005
1997–2000
2001
2001–2004
2004–2005

Lyngstad
Bouwknegt
Refregier-
petton
Guerin
N€ather

2008
2004
2001
2007
2008

Huneau-Salun (2007) reported the
presence of control measures against
rodents as significantly associated with
risk increase

* = Non-
significant in
multivariate
model

ADD ROWS FOR
LIT STUDIES
No animals in close proximity of broiler houses – Repeatability from five countries

– PAFs (but one) fairly similar
magnitude
– Includes newer study
– Supported by Jonsson et al. (2012),
PAF for this study not calculated due to
lack of information

– Large variation in
the risk factor
measurements in
individual studies

Low (< 10%?)
CAMCON
REPORT

Other animal
species on farm

PAF % 25.5 (1.8–
42.1)

NL 1997–2000 Bouwknegt
rf_1

2004

Other animals
within 1 km
radius

PAF % 79.3
(32.3–
87.5)

NL 1997–2000 Bouwknegt
rf_2

2004 Only 27 flocks (out of
457) did not have a
farm within 1 km, lack
of statistical power
cannot be ruled out
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Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

Other livestock on
farm

PAF % 20.9
(5–37)

SE 2005 Hansson 2010

Cattle adjacent PAF % 21.5
(4.4–35)

UK 2003–2006 Ellis-Iversen 2009

Pigs closer than 2
km

PAF % 39.5
(19.8–
47.8)

NO 2005 Lyngstad 2008

Presence of dogs/
cats at farm

PAF % 33.4
(2.6–44.1)

ES 2010–2012 Torralbo 2014 Only carried out in
Andalusia

Non-significant
(i.e. explored in
univariate
analysis but not
retained for the
multivariate
model)

PAF % – – 1999–2000
2004–2005
2001
2008
2009–2010
2001–2002

Sommer
N€ather
Refregier-
petton
Allain
Chowdhury
McDowell

2013
2008
2001
2014
2012
2008

ADD ROWS FOR
LIT STUDIES

Employing few and well-trained staff – repeatability from four countries
– fairly similar PAFs
– supported by other study types

– Nordic countries are
over-represented
– newest data from
2009–2010

Personnel in
house at delivery

PAF % 14.2
(2.9–17.7)

NO 2005 Lyngstad
rf_1

2008

Hired caretaker
staff

PAF % 13.9
(2.7–18.6)

NO 2005 Lyngstad
rf_2

2008

≥ 2 persons
taking care of
birds

PAF % 25.3
(2.7–37.1)

FR 2001 Refregier-
petton

2001

≥ 2 persons
entering houses

PAF % 20.5
(5–38.85)

DK 2009–2010 Chowdhury 2012
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Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

Non-significant
(i.e. explored in
univariate
analysis but not
retained for the
multivariate
model)

PAF % – – 2004–2005
1999–2000

N€ather
Sommer

2008

ADD ROWS FOR
LIT STUDIES
Addition of disinfectants to drinking water Repeatability in three countries

Newer data included
50–90%
(CAMCON
report)

Non-chlorinated
water

PAF % 32.5
(6–54.9)

UK 2003–2006 Ellis-Iversen 2009

Water not treated PAF % 5.3
(0.6–8.2)

ES 2010–2012 Torralbo 2014 Only carried out in
Andalusia

No Acid in
drinking water

PAF % 17.1
(3.3–23)

FR 2008 Allain 2014 Only carried out in
Brittany

Non-significant
(i.e. explored in
univariate
analysis but not
retained for the
multivariate
model) studies

PAF % – – 2003–2004 Huneau-
salun

2007 Refregier-Petton et al. (2001) found
treating drinking water as significantly
associated with risk increase

ADD ROWS FOR
LIT STUDIES
Avoid drinkers that allow standing water Supported by Sommer et al. (CAMCON)

Newer data included
– Only from DK and
DE
Two studies – same
study

15–49% (Van
Wagenberg)
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Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

Nipple drinker
with tray

PAF % 37.2
(0*–53.9)

DE 2004–2005 N€ather s 2008 These studies were
convenience samples
of farms: may not
represent all of
Germany and may be
less variable than a
representative sample

Nipple drinker
with tray

PAF % 62.4
(1.2–78.5)

DE 2004–2005 N€ather w 2008

Drinker with cups PAF % 25.4
(0.8-44)

DK/NO? 2010–2012 Borck høg 2016

Non-significant
studies (i.e.
explored in
univariate
analysis but not
retained for the
multivariate
model)

PAF % – – 2001–2004
2001
2003–2006
1999–2000
2010–2012

Guerin
Refregier-
petton
Ellis-Iversen
Sommer
Torralbo

2007
2001
2009
2013
2014

* = Non-
significant in
multivariate
model
No’ drinkers with
drink nipples
without cups in
farmhouses < 15
years old’

RRR 5
8
12
14
24
24

PL
ES
UK
NL
DK
NO

2012 CAMCON
Sommer
Van
Wagenberg

2016
2016

EU study
RR reduction DK estimate is similar to
PAF for DK study (same data)

No PAF calculated, as
another type of data
analysis is performed
Based on only few
(20) farms in ES, NL,
PL and EK, 100 and
160 farms in DK and
NO
Data are imputed
based on assumptions
to provide significance
and allow modelling
No CI given

ADD ROWS FOR
LIT STUDIES
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Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

EXTRA OPTIONS FROM LIT REVIEW

No ‘designated
tools for each
house in
farmhouses < 15
years old’

RRR 1
6
11
16
2
6

PL
ES
UK
NL
DK
NO

2012 CAMCON
Sommer
Van
Wagenberg

2016
2016

EU study No PAF calculated, as
another type of data
analysis is performed
Based on only few
(20) farms in ES, NL,
PL and EK, 100 and
160 farms in DK and
NO
Data are imputed
based on assumptions
to provide significance
and allow modelling
No CI given
Not found in other
studies

23–93% (report)

63–98 (Van
Wagenb.)

No ‘establishing a
maximum
downtime of 10
days between
flocks including
rodent control
more than 6
times per year
and clean- ing
and disinfection
between flocks’

RRR 8
10
2
7
7
42

PL
ES
UK
NL
DK
NO

2012 CAMCON
Sommer
Van
Wagenberg

2016
2016

EU study No PAF calculated, as
another type of data
analysis is performed
Based on only few
(20) farms in ES, NL,
PL and EK, 100 and
160 farms in DK and
NO
Data are imputed
based on assumptions
to provide significance
and allow modelling
No CI given
Not reported in other
RF studies included
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Specific factor
studied

Estimated
measure

Result
(CI)

MS
Year
(data)

Stud
Year
(pub)

Specific strengths
Specific
uncertainties

Uptake 2016
%

Farmhouses > 15
years old

RRR 4
57
27
26
22
27

PL
ES
UK
NL
DK
NO

2012 CAMCON
Sommer
Van
Wagenberg

2016
2016

EU study No PAF calculated, as
another type of data
analysis is performed
Based on only few
(20) farms in ES, NL,
PL and EK, 100 and
160 farms in DK and
NO
Data are imputed
based on assumptions
to provide significance
and allow modelling
No CI given
Not reported in other
RF studies

Stop thinning RRR 2
13
25
23

2011 EFSA Previous opinion 37–97% (Van
Wagenberg ea)

Reduced
slaughter age
35 days
28 days

RRR 0–18
22–43

2011 EFSA Previous opinion
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Table column Explanation

Control options General name for class of control practices

Specific factor
studied

The specific practice or risk factor studied

Measure The measure of effect on risk we use from that study, plus units (if multiple measures available from same study, take the most relevant or add
multiple measures as separate rows in table). Key: RRR = Relative risk reduction

Result (CI) The result from the study (and 95% confidence interval (CI) where available). If the result cannot be given as a number, describe it verbally but as
concisely as possible. (To make more space for this, you could merge this cell with the ‘measure’ cell just for this study, if that helps)

MS Member State(s) study was conducted in

Year Year(s) study was conducted in (not year of publication)
Study First author name (only include year if more than one study for same first author)

Strengths Brief summary of notable strengths of this study. Exclude strengths that affect all studies using the same measure (e.g. PAF)
Specific uncertainties Brief summary of notable uncertainties affecting this study. Exclude uncertainties that affect control options, as these will be listed in the general

uncertainty table

Uptake 2016 % Uptake of the control practice (i.e. the % of farms that do already apply the control option) in 2016; data from the CAMCON project (van Wagenberg
et al., 2016)

D.2. Evidence table for control options affecting concentration

Control practice
Specific
factor
studied

Measure Result (CI) MS Year Study/model Specific strengths
Specific
uncertainties

Vaccination 4 antigens log reduction 1.96 – 3.54 –
4.2 – 2.01
(ND)

France 2015–2016 Meunier et al.
(2017)

New antigens found by
the reverse
vaccinology and tested
on animals with a
promising result of log
reduction

Lack of reproducibility
between trials
Experimental level,
not tested on field

Feed additive Probiotic log reduction 1.79 (1.18) France 2014–2015 Guyard-
Nicod�eme et. al

Reduction measured at
the end of the rearing
of standard broilers
(42 day), close to the
field conditions

Lack of reproducibility
between trials

Feed additive Probiotic Log reduction 1.67 (1.2) France 2014–2015 Guyard-
Nicod�eme et. al

Lack of reproducibility
between trials

Feed additive* Prebiotic Log reduction 3.25 (2.2) France 2014–2015 Guyard-
Nicod�eme et. al

Lack of reproducibility
between trials
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Control practice
Specific
factor
studied

Measure Result (CI) MS Year Study/model Specific strengths
Specific
uncertainties

Feed additive* Organic acid log reduction 1.23 (0) France 2014–2015 Guyard-
Nicod�eme et. al

Lack of reproducibility
between trials

Feed additive Organic acid log reduction 0.9 Spain 2014–2015 Lack of reproducibility
between trials

Feed additive Mixture of
ion-
exchanged
clay in feed
and organic
acid in water

log reduction 0.82 France 2014–2015 Reduction measured at
the end of the rearing
of free range broilers
(78 day), close to the
field conditions

Feed additive* Amino acid
with iron

log reduction 2 Greece Skoufos et al. Reduction measured at
the end of the rearing
of standard broilers
(42 day) based on 3
replicates

Table column Explanation

Control practices General name for class of control practices

Specific factor
studied

The specific practice or risk factor studied or modelled

Measure The measure of effect on risk we use from that study/model, plus units (if multiple measures available from same study/model, take the most
relevant or add multiple measures as separate rows in table)

Result (CI) The result from the study/model (and 95% confidence interval where available). If the result cannot be given as a number, describe it verbally but as
concisely as possible. (To make more space for this, you could merge this cell with the ‘measure’ cell just for this study, if that helps)

MS Member State(s) study was conducted in, or model refers to. If EU model, enter ‘EU’
Year Year(s) study was conducted in (not year of publication). For models, enter year of publication
Study/model First author name (only include year if more than one study/model for same first author)

Strengths Brief summary of notable strengths of this study/model. Exclude strengths that affect all studies using the same measure or model
Specific uncertainties Brief summary of notable uncertainties affecting this study/model result. Exclude uncertainties that affect all control options, or all results from same

model, as these will be listed in the general uncertainty table

Uptake 2016 % % uptake of the control practice in 2016 from countries studied in CAMCON project. Can we list all the countries and values in the space available in
this column? If not, would it be sufficient to show the range?

* Analysed by the C-model
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D.3. Uncertainty table

Risk factor, parameter or
model feature affected by
the uncertainty

One sentence description of the
cause of uncertainty affecting this
risk factor, parameter or model
feature (one row per cause of
uncertainty)

One sentence description of how this source of uncertainty
might lead to incorrect ranking of control options, or why
that might be possible

Which types of model or
study does this
uncertainty affect? (e.g.
PAFs, C model, etc.)

Risk factors for broiler
infection with Campylobacter
spp.

Small numbers of broiler farms are a
cause of uncertainty in many studies

Sources of Campylobacter on broiler farms are many and varied and
may depend on the farms studied. Thus, the findings of a given
study, which often includes small numbers of farms, may not be
applicable on other farms and the ranking will reflect the choice of
farms in published studies and might be different if the observations
were made using a larger number of farms

PAFs

Risk factors for broiler
infection with Campylobacter
spp.

The difference in key climate, broiler
husbandry practices etc. in different
countries is a cause of uncertainty

Many studies on the risk factors for Campylobacter in broilers are
undertaken in a single country or a few countries and the data
generated and conclusions may not be applicable to other countries
in the EU, where, for example, the climate and broiler farm
practices may be different

PAFs – representativeness of
all of the EU is uncertain

Risk factors for broiler
infection with Campylobacter
spp.

Sample size is a cause of uncertainty Sample size may also be an issue with many studies using 1 g or
10 g samples, which may or may not be representative of the flock
or broiler house. For example, a 10 g sample of broiler faeces or 10
cloacal swabs from a flock of 30,000 may or may not be
representative of the flock as a whole
The result may be false-negative flocks

PAFs

Risk factors for broiler
infection with Campylobacter
spp.

Seasonal effects are a cause of
uncertainty

Seasonality greatly affects Campylobacter survival in the
environment, sources and dissemination routes and data from
studies that do not include a seasonal consideration may not be
applicable throughout the year

PAFs

Risk factors for broiler
infection with Campylobacter
spp.

Assumptions about the direction of
Campylobacter spread is a cause on
uncertainty

Contrary to the conclusion in some papers, the detection of similar
Campylobacter genotypes in farm animals adjacent to the broiler
house before they appear in the birds should not be indicative of
horizontal transmission form these animals to the birds. It is equally
possible that these animals were infected by Campylobacter from
previous broiler flocks and/or the levels in the birds were below the
level of detection if tested at the same time as the farm animals

PAFs

Risk factor and control
options

No/little adjustment for confounding or
interaction of all other factors

Measured effects or risks may actually be caused by other factors,
unless these are deliberately adjusted for – either by exclusion
(laboratory trials) or statistically (epidemiological studies)

All
-except for epistudies and
carefully designed
experimental studies
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Risk factor, parameter or
model feature affected by
the uncertainty

One sentence description of the
cause of uncertainty affecting this
risk factor, parameter or model
feature (one row per cause of
uncertainty)

One sentence description of how this source of uncertainty
might lead to incorrect ranking of control options, or why
that might be possible

Which types of model or
study does this
uncertainty affect? (e.g.
PAFs, C model, etc.)

Control options for preventing
broiler infection with
Campylobacter spp.

Unrepresentative laboratory studies are a
cause of uncertainty

Laboratory studies may not accurately reflect the conditions
encountered in the broiler house and there is considerable
uncertainty in laboratory data with respect to its application on
commercial broiler farms

The model including the
impact of interventions on
Campylobacter count
reduction?

Control options for preventing
broiler infection with
Campylobacter spp.

Unrepresentative field trials are a cause
of uncertainty

Field trials may not reliably predict the impact of specific
interventions under real-world conditions where there may be up to
30,000 birds in a shed with a stocking density of 20 birds per m2

The model including the
impact of interventions on
Campylobacter count
reduction?

Control options for preventing
broiler infection with
Campylobacter spp.

Human behaviour is a cause of
uncertainty

In biosecurity studies, the participants are often volunteers who are
aware they are being assessed and may behave differently to their
normal practices

Minor for PAFs as variability
– incl. Compliance is included
and thus accounted for in
epi-studies

Control options for preventing
broiler infection with
Campylobacter spp.

Broiler farm selection is a cause of
uncertainty

Many studies are undertaken on a relatively low number of broiler
farms that may not be representative of broiler farms in general.
Moreover, their selection is often agreed with their contract
processor, who is more likely to suggest farms that have a good
Campylobacter performance record

?

Control options for preventing
broiler infection with
Campylobacter spp.

The specificity of bacteriophage is a
cause of uncertainty

The high specificity of phage in terms of the Campylobacter strains
they can infect introduces great uncertainty in phage research
especially when extrapolating to a real-world situation where there
may be multiple Campylobacter strains within a given bird or flock

?

Control options for preventing
broiler infection with
Campylobacter spp.

The age and lineage of the test birds is a
source of uncertainty

When evaluating probiotic bacteria as a feed additive, a range of
factors including the age and lineage of the birds and the mode of
administration greatly influence the outcome of the experiments.
Moreover, if the birds are exposed to Campylobacter first, the
probiotic strain is considerably less likely to have a positive effect

?

Control options for preventing
broiler infection with
Campylobacter spp.

Lack of reproducibility between trials
Experimental level, not tested on field

In one trial, the product can have a very significant effect in terms
of reduction but when repeating the same conditions in a second
trial, no significant effect can be obtained. This loss of significance
between two trials is often (but not the only reason) the variability
of Campylobacter counts between (control) animals

C-model
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Risk factor, parameter or
model feature affected by
the uncertainty

One sentence description of the
cause of uncertainty affecting this
risk factor, parameter or model
feature (one row per cause of
uncertainty)

One sentence description of how this source of uncertainty
might lead to incorrect ranking of control options, or why
that might be possible

Which types of model or
study does this
uncertainty affect? (e.g.
PAFs, C model, etc.)

Risk factors for broiler
infection with Campylobacter
spp.
Control options for preventing
broiler infection with
Campylobacter spp.

The ability of Campylobacter to enter the
viable but not culturable (VBNC) state is
a cause of uncertainty

Campylobacter can enter a viable but not culturable (VBNC) state
which may greatly affect the data obtained, especially in studies
designed to reduce or eliminate these pathogens. An alternative is
to use PCR-based methods, but the presence of Campylobacter DNA
does not indicate the presence of viable cells

?

C-model: Use of caecal
concentration

It is not necessarily the caeca that
contaminate the carcass, it may also be
leaking faeces, which has a lower
concentration

This increases the variability in the data and the uncertainty about
the regression line and the uncertainty of the ranking. (In general:
The ranking between measures within the C-model is not altered,
only the ranking compared to the P-model measures)

C-model

C-smodel: Use of caecal
concentration

It need not be the caecal count that is
used to measure the impact of the
intervention

The regression line is not representative for the evaluated
intervention if no caecal counts are used, it increases the overall
uncertainty of the ranking

C-model

C-model: In reality, the
relation between caecal
concentration and carcass
concentration is probably not
linear

If the slope at high caecal concentrations
is larger than the slope at low values
(i.e. there is not really a linear relation, it
is j-shaped), the regression line may
overestimate the effect of the
intervention at low concentrations

The effect of the intervention may be slightly overestimated if the
regression is based on high concentrations

C-model

C-model: Censored data on
caeca and/or skins

Concentration data usually suffer from
the presence of data below (or above) a
limit of quantification, so-called censored
data. The way these are traditionally
dealt with (taking a fixed value, the
lower limit or so; or simply omitting the
data) may have high large impact on the
regression line obtained. Methods for
regression with censored data may help
(Tobit regression), but there is no
established method to deal with
regression and censored data in both the
dependent and independent variable

This impacts the uncertainty of the slope obtained C-model
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Risk factor, parameter or
model feature affected by
the uncertainty

One sentence description of the
cause of uncertainty affecting this
risk factor, parameter or model
feature (one row per cause of
uncertainty)

One sentence description of how this source of uncertainty
might lead to incorrect ranking of control options, or why
that might be possible

Which types of model or
study does this
uncertainty affect? (e.g.
PAFs, C model, etc.)

C-model: assumption that
s = 1: the contamination of
the meat is always 1 log less
than the skin

Lack of data led to an expert estimate of
the Campylobacter WG in 2010

This impacts the effect estimate (in terms of relative risk reduction),
it is included in the model

C-model

C-model: CPM used (with
assumptions on cross
contamination) is
representative for all
prepared chicken meals

Consumer food preparation is highly
variable, not under control and hard to
measure or influence

Increases the overall uncertainty; this is studied by comparing
different CPMs

C-model

C-model: DR model used:
actual dose response for
Campylobacter on chicken is
highly uncertain

The DR relations are based on one or a
few strains; not from chicken meat; are
for healthy adults or primates that are
not immune

Increases the overall uncertainty; this is studied by comparing
different DRs

C-model

C-model: use of 2008
baseline data on skin samples

These are old data, but collected all over
Europe in a harmonised way. In the
meantime, action may have been taken
to reduce these concentrations

Not really sure how this impacts the results; we may overestimate
the (relative) risks. The high incidence of human infection suggests
that Campylobacter prevalence at farm and slaughter at has not
improved since 2008

C-model

C-model: implementation
effect of control options

The variation between log reductions as
observed in the (raw) data is interpreted
both as variability (the st. dev in the
data) and the uncertainty (the s.e.m.),
whilst it actually is a combination of both

Both variability and uncertainty are overestimated, which leads to
underestimation of the effect and overestimation of the uncertainty.
The impact of this phenomenon can be assessed by considering the
scenarios where either the variability or uncertainty are omitted, in
the sensitivity analysis

C-model

Risk factors (all) for PAF
calculation

PAFs are calculated from adjusted
Relative Risks, different studies adjust
for different confounders in the final
multivariate model

Impact on the estimates of the multivariate model and thus on the
size of PAFs

PAF

Risk factors (all) for PAF
calculation

Few studies considered the effect of
including non-significant (but potentially
confounding) factors in the final
multivariate model

Impact on the estimates of the multivariate model and thus on the
size of PAFs

PAF
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Risk factor, parameter or
model feature affected by
the uncertainty

One sentence description of the
cause of uncertainty affecting this
risk factor, parameter or model
feature (one row per cause of
uncertainty)

One sentence description of how this source of uncertainty
might lead to incorrect ranking of control options, or why
that might be possible

Which types of model or
study does this
uncertainty affect? (e.g.
PAFs, C model, etc.)

Risk factors (all) for PAF
calculation

Heterogeneity in the biological samples
that are collected on farm/slaughter
(Pool of different number of caeca
samples, cloacal swabs, sock samples)
and analysed to define a flock as
‘positive’. Possible differences in
sensitivity between methods

Probably little impact under the assumption that within-flock-
prevalence is typically considered to by high in infected flocks

PAF

All risk factors Underreporting of non-significant effects If no significant effect is found for a risk factor or control option, it
may not be published. This means the ‘mean published’ effect size
of a potential control option may be larger than it actually is

All

Control measure: ‘Avoid
presence of standing water in
drinkers’

Two of the studies were convenience
samples of farms and may not represent
all of Germany. Furthermore, a
convenience sample may have less
variability than a representative sample

Introduces more uncertainty about the effect in all of EU and the
altered variance may have over- or underestimated the PAF

PAF

Effective hygiene barrier at
broiler house entrance

One of the studies was only
representative of 60% of French broilers
and the Spanish study was only carried
out in Andalusia

This introduces more uncertainty about the control effect of all of
EU and the biased variability may over- or underestimate the PAF

PAF

Effective rodent control Two of the studies were carried out in
regions (Brittany and Andalusia) and are
unlikely to be nationally representative

This introduces uncertainty about the control effect of all of EU and
the biased variability may over- or underestimate the PAF

PAF

No animals in close proximity This control estimate was derived from a
broad range of risk factors

This adds uncertainty around the precision of the PAF estimate PAF

Have few and permanent
staff

PAF

Additives to drinking water One of the studies was carried out using
a convenience sample and another was
from Brittany

This introduces uncertainty about the control effect in all of EU and
a biased variability may over- or underestimate the PAF

PAF
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D.4. Report on expert knowledge elicitation, 19–20 November 2019

The ranking and quantification of control options reported in the Opinion was conducted in two
steps:

• Step 1: Experts assessed the probability that each of 22 (later reduced to 20) control options
would, if implemented by all EU broiler producers, reduce the incidence of campylobacteriosis
in the EU by at least 10%.

• Step 2: Experts assessed the magnitude of reduction in incidence of campylobacteriosis in the
EU that each of the prioritised control options would achieve, if implemented by all EU broiler
producers.

The methods and results for the first step are reported in the opinion and were used to prioritise
eight control options to be considered in step 2. Methods and results for step 2 are summarised in the
opinion and documented in more detail in this appendix.

Note: the names used for control options in this appendix are those used during the elicitation
workshop.

Methods for step 2 of elicitation process

The precise question to be addressed in step 2 was specified as follows: If the specified control
option is implemented by all broiler producers in the EU that are not currently using it, what will be the
resulting % reduction (compared to the current level of implementation) in average annual incidence
of campylobacteriosis cases in the whole EU population caused by campylobacter in broiler meat
produced from chickens raised in the EU, other things being equal?

When addressing this question, the following definitions were applied:

• The meaning of ‘campylobacteriosis cases’ was clear for the experts and did not require further
definition.

• ‘Other things being equal’ includes other control options remaining at the current level of
implementation, production and processing practices remain unaltered and no change in the
consumption in the EU of meat from broilers raised in the EU.

• If a control option acts on both prevalence and concentration, both should be taken into
account when answering the question.

• For each control option, the experts will answer the question assuming that, of the specific
practices for this control option which are referred to in this Opinion (e.g. different vaccines, or
different methods of rodent control), the practice that would, on its own, achieve the largest
reduction in campylobacteriosis will be implemented by all EU broiler producers.

The experts comprised all members of the Working Group developing the Opinion, plus three EFSA
scientists who were supporting the WG.

Expert judgements on the question were elicited in the course of a one day (midday to midday)
expert knowledge elicitation (EKE) workshop. The elicitation method was based on the Sheffield or
SHELF protocol (EFSA 2014, Oakley and O’Hagan, 2019), which first elicits judgements from each
expert individually and then seeks to elicit a consensus judgement from the group, integrating their
individual judgements by a process of discussion (behavioural aggregation, EFSA 2014) rather than
calculation. The elicitation was conducted by a facilitator and rapporteur who are experienced in use of
the Sheffield method. The experts were trained on the approach to making both the individual and
consensus judgements using an example question unrelated to the Opinion.

Two modifications were made to the normal Sheffield protocol (EFSA, 2014) in order to complete
the exercise within the time allocated. First, experts made individual judgements on all eight of the
selected control options during a single session, before proceeding to the consensus process. Second,
the unweighted linear pool of the individual judgements was used as a starting point to be discussed
by the group and modified as necessary to reflect their consensus judgement, rather than eliciting
consensus quantiles and fitting a distribution.

Evidence and sources of uncertainty relevant to answering the question had been collated and
summarised in the course of the work on the Opinion, as described in the main text. The experts were
familiar this information, having used it for their judgements on the question for Step 1 during the
preceding 2 weeks.
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The experts completed their individual judgements in a period of 40 min at the end of the first half of
the workshop. Overnight, the facilitator and rapporteur collected and processed the individual
judgements, using a downloaded copy of the SHELF app for multiple experts (http://www.jeremy-oakley.
staff.shef.ac.uk/project/elicitation/). For each control option considered in step 2, the app was used to
plot, on a single graph, a separate distribution fitted to the judgements of each expert (selecting the
option ‘best-fitting’ in the app) plus an additional distribution representing the unweighted linear pool of
the individual expert distributions, together with the median and 95% probability interval for the linear
pool. An example of this for one control option is shown in Figure D.1.

A boxplot was produced, comparing the linear pool distributions for all eight control options. The
first version of this, depicting the results prior to the consensus process, is shown in Figure D.2.

At the beginning of the second half-day of the workshop, the initial results (Figure D.2 plus a version
of Figure D.1 for each control option) were displayed and discussed by the group. In view of the limited
time, the group prioritised five options (designated tools; additives; discontinued thinning; few and well-
trained staff; and vaccination) to discuss in detail for developing consensus distributions. For each of
these options in turn, the facilitator asked experts with contrasting individual distributions to summarise
the reasoning behind their judgements. For three control options (designated tools; discontinued

Figure D.1: Example of the initial results of the elicitation for the control option ‘discontinued
thinning’, prior to the consensus process. The dashed curves represent the best-fitting
distributions for the individual experts and the solid line represents the unweighted linear
pool (average) of those distributions

Figure D.2: Boxplots comparing the initial unweighted linear pool distributions for all eight control
options considered in step 2, prior to the consensus process. For each control option, the
horizontal line represents the 95% probability interval of the linear pool distribution, the
box represents the interquartile range (covering 50% probability) and the vertical bar
within the box is the median
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thinning; few and well-trained staff), this led to agreement by the group to accept the unweighted linear
pool as representing their consensus judgement. For additives, the discussion led one expert to suggest
reducing the weight given to this expert’s distribution. A linear pool giving zero weight to this expert was
displayed and the group unanimously agreed to accept this as their consensus judgement for additives.
For vaccination, the discussion led three experts to revise their individual judgements, after which the
group agreed to accept the revised linear pool as their consensus.

After agreeing the consensus for each of the five options that were discussed in detail, the group
briefly summarised the principal evidence and reasoning behind it, as shown in Table D.1.

Finally, the experts reviewed a revised set of boxplots, which had been updated with the modified
consensus distributions for additives and vaccination. The group accepted this plot as representing its
consensus judgement about all eight control options considered in step 2, including the three which it
had not been possible to discuss in detail (hygienic anterooms; avoiding drinkers that allow standing
water; and disinfectants added to drinking water). This final set of boxplots representing the group’s
consensus judgements are shown in Figure 6 in the main text of the opinion. Selected quantiles for
the consensus distributions (including those shown in the boxplots) are shown in Table D.2.

Table D.1: Rapporteur’s notes summarising the expert group’s collective rationale for the consensus
distributions for the five control options that were discussed in detail

Control option Summary of rationale as recorded by rapporteur

Designated tools per broiler
house

Reason why it is unlikely that designated tools would have more than 10% effect:
very little evidence that the tools are the main risk; sharing tools is such a bad
biosecurity sign that unlikely to be more than 10% effect just by changing this
practice; available evidence points to less than 10% effect

Feed and water additives Consensus distribution represents experts’ judgement of difference from model
estimates due to likelihood of unreported negative studies, expectation of less
effects in field, expectation that effect will not happen always

Discontinued thinning Start from old opinion (4 Member States between 2% and 25%, CANCOM between
3% and 13%, but various biases), but long tail due to uncertainty about differences
between countries and differing experiences in different countries)

Employing few and
well-trained staff

Main peak reflects the PAF results, but the tail reflects variation of judgement about
how large the bonus biosecurity effect would be

Vaccination Diversity of views about role of strain specificity and about transfer to the field is
key to the wide distribution of uncertainty with some experts close to the model
results and others much lower

Table D.2: Selected quantiles of the consensus distribution for each of the control options considered
in step 2. The P2.5 and P97.5 provide the 95% probability interval for each option, while
the P16.7 and P83.3 provide a 66.6% probability interval (corresponding to the category
‘Likely’ in EFSA’s approximate probability scale, (EFSA Scientific Committee, 2018)

Control options P2.5 P5 P16.7 P25 P50 P75 P83.3 P95 P97.5

Vaccination 3 4 10 13 27 42 50 74 84

Feed and water additives 2 4 11 15 24 37 43 60 69
Discontinued thinning 3 5 9 12 18 29 39 65 74

Few and well-trained staff 3 5 9 11 16 23 28 45 52
Avoiding drinkers that allow standing water 2 4 7 9 15 26 34 53 62

Addition of disinfectants to drinking water 2 3 7 9 14 21 25 36 41
Hygienic anterooms at broiler house
entrance

2 3 6 8 12 20 26 50 58

Designated tools per broiler house 1 1 3 4 7 11 13 18 21

Update and review of Campylobacter control options in broilers

www.efsa.europa.eu/efsajournal 86 EFSA Journal 2020;18(4):6090



Appendix E – Studies on effects of control options on broiler farms to reduce the concentration of Campylobacter
in the birds

Numbers in bold are obtained after re-analysing the raw data with a method that allows inclusion of censored data (Lorimer and Kiermeier, 2007).

Intervention Specification Type of study
Mean log
reduction

SD log
reduction

S.E. of
mean

Sample size Reference

Vaccination Recombinant (DNA + protein)
new antigen 1

Experimental on broilers 1.96 2.03 1.83 0.49 15 birds for each
vaccine test

Meunier et al. (2017)

Recombinant (DNA + protein)
new antigen 2

Experimental on broilers 3.54 3.47 2.14 0.63 15 birds for each
vaccine test

Meunier et al. (2017)

Recombinant (DNA + protein)
new antigen 3

Experimental on broilers 4.2 4.15 1.63 0.51 15 birds for each
vaccine test

Meunier et al. (2017)

Recombinant (DNA + protein)
new antigen 4

Experimental on broilers 2.01 2.09 1.82 0.5 15 birds for each
vaccine test

Meunier et al. (2017)

Feed additive Probiotic Experimental on broilers
(45–49 birds)

1.88 (at 35 day)
1.79 1.88

1.18 0.42 15 birds Guyard-Nicod�eme
et al. (2016)

Probiotic Experimental on broilers
(45–49 birds)

1.70 (at 42 day)
1.68

1.2 0.65 15 birds Guyard-Nicod�eme
et al. (2016)

prebiotic Experimental on broilers
(45–49 birds)

3.17 (at 42 day)
3.25

2.2 0.64 15 birds Guyard-Nicod�eme
et al. (2016)

Organic acid Experimental on broilers 2.13 (at 42 day)
1.23

0 0.66 15 birds Guyard-Nicod�eme
et al. (2016)

Organic acid Experimental on broilers
(45–49 birds)

0.9 (at 42 day) 0.206 10 birds Gracia et al. (2016a,
b)

Microencapsulated mixture of
short chain fatty acids and
phenolic essential oils,
2,000 ppm

Chickens inoculated with a
mixture of 2 strains of C,
jejuni (10,000 CFU)

0.7 log reduction
in treated birds
(after 35 days)

Not given Not given Not given Thibodeau et al.
(2015)

Ferric tyrosine Experimental on broilers 2 (at 42 day) 36 birds (3
replicates of 12)

Skoufos et al. (2019)

Mixture of ion-exchanged clay in
feed and organic acid in water

Experimental on free range
broilers (78 day)

0.82 0.25 15 birds Guyard-Nicod�eme
et al. (2017)
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Intervention Specification Type of study
Mean log
reduction

SD log
reduction

S.E. of
mean

Sample size Reference

Bacteriophage 4 phage cocktail applied via
drinking water, 5.8–7.5 log pfu
dose per bird, 6–7 days before
slaughter

3 field trials using broilers
under commercial
conditions. Data (control and
trial groups) have been
provided for the 3 field trials

Trials 1, 2 & 2
Treatment
groups
(trial number,
days after
application,
mean faecal
count t plus SD
in brackets)
1, 0, 2.4 (0.6)
1, 1, < 1.8 (0)
1, 6, 3.8 (0.5)
2, 0, 3.1 (0.8)
2, 1, 4.6 (0.4)
2, 6, 5.9 (0.2)
3, 0, 0.5 (0.7)
3, 1, 4.6 (1.0)
3,7, 0, 6.7 (0.2)

Corresponding
data for
control groups
1, 0, 1.2 (0.6)
1, 1, 2.6 (0.7)
1, 6, 7.0 (0.2)
2, 0, 4.6 (0.7)
2, 1, 4.7 (0.6)
2, 6, 4.4 (1.0)
3, 0, 2.7 (0.9)
3, 1, 5.6 (0.6)
3,7, 0, 4.5
(0.4)

9 birds per each
of the 3 trials

Kittler et al. (2013)

Water additive Commercial additive composed
of short chain organic acids and
medium chain fatty acids

Commercial flocks. broilers-3
consecutive rearing cycles.
Caecal reductions did not
result in lower carcass
counts

Treated birds 35
days mean
count (SD)
5.67 (1.28)
0.85 (0)
0.85 (0)
Treated birds
(42 days
4.19 (1.59)
0.85 (0)
0.85 (0)

Control birds
35 days)
2.95 (3.39)
7.72 (0.92)
0.85 (0)
6.26 (1.19)
5.09 (2.14)
7.36 (0.92)

Jansen et al. (2014)

Thinning Naturally contaminated broilers
before and after thinning

Commercial flocks – Data
provided for prevalence and
caecal counts for 14
commercial flocks

Mean counts
and SD provided

Too much data
to be included
here but well
presented in
Table 1 (page
878) of the
paper

Koolman et al. (2014)
(incl. Bolton)

www.efsa.europa.eu/efsajournal 88 EFSA Journal 2020;18(4):6090

Update and review of Campylobacter control options in broilers



Intervention Specification Type of study
Mean log
reduction

SD log
reduction

S.E. of
mean

Sample size Reference

Vaccination 2 vaccines both formalin killed C.
jejuni but in 2 different
adjuvants (oil and aluminium
hydroxide gel)

Field-based trial using Jidori
chicks

26 days post
challenge:
oil: 7.0 (1.2)
Aluminium: 7.5
(0.7)
Control: 7.0
(1.1)
56 days post
challenge:
Oil: 6.8 (1.2)
Aluminium: 6.6
(2.2)
Control: 7.2
(1.1)

17 Okamura et al. (2012)

Feed additive MCFA Applied test conditions. Birds
experimentally infected with
C. jejuni at 15 days old and
tested at 27 days old

Control: 7.0
(0.8)
Tylosin 2.8 (1.5)
Caproic acid 7.3
(0.8)
Caprylic acid 7.8
(0.7)

10 Hermans et al. (2010)

Bacteriophage Ross 308 broilers were given
7 log CFU C. jejuni after 20 days
rearing

Birds were housed in a
commercial environment in
individual pens

The control was
birds treated
with a placebo
or carrier alone

1 log reduction
after 1 day,
2.4 log
reduction after
2 days, 1.9 log
reduction after
3 days, 1.4 log
reduction after
4 days & 1.6
reduction after
6 days

Provided,
see
Figure 1

5 birds tested
per sampling
time

Richards et al. (2019)

At 24 days, the birds were given
a 2 phage mixture, & log PFU

5 chickens were tested on each
day from 25 to 29 days and C.
jejuni enumerated in ceca
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