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Abstract  

 

Productive efficiency analysis is a relevant tool that can be used to evaluate differences in 

performance between conventional and organic farms. Such study is important for the 

assessment of the economic viability of these two agricultural systems. While the existing 

research has widely used the stochastic frontier methodology and the DEA nonparametric 

approach to assess farming performance, the use of the local maximum likelihood (LML) 

approach proposed by Kumbhakar et al. (2007) is scarce. This study represents the first 

analysis that compares the efficiency levels of organic and conventional farms in Egypt. To 

do so, we apply LML methods to cross sectional, farm-level data collected from a sample of 

60 Egyptian farms. Results suggest that performance of organic farmers is slightly better than 

performance of their conventional counterparts. Further, we find a positive relationship 

between technical efficiency and farm size. 

[EconLit citations : C14; Q12; D24] 
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1. Introduction 

Although with a declining trend, Egyptian agriculture accounts for about 17 per cent of gross 

domestic product and 20 per cent of total exports and foreign-exchange revenues. In addition, 

agriculture-related industries, such as processing, marketing and input supplies, account for 

another 20 per cent of the gross domestic product. Agriculture is therefore a key sector in the 

Egyptian economy, providing the livelihood for 55 per cent of the population (UNDP, 2011). 

A very important pillar for the modernization of the Egyptian agriculture involves promoting 

exports of high value added products such as organic produce.  

The Center of Organic Agriculture in Egypt (COAE), the entity in charge of certifying 

organic agriculture, awarded its first certification more than 20 years ago to a 17 hectares 

farm (SEKEM, http://www.sekem.com/), located in the eastern desert and devoted to produce 

medicinal herbs for the export market. While expansion of organic farming was quite slow 

until 1988, it experienced a rapid growth in the vegetables, fruits, cereals, and cotton sectors 

thereafter. This rapid growth was initiated mainly by SEKEM and some other growers in 

Fayum and Kalubia governorates. Currently, organic agriculture in Egypt is expanding very 

fast due to public awareness of the advantages associated to this farming practice, as well as 

the increasing demands for organic food and fibers in both local and export markets. As a 

result, organic farming has rapidly grown from 15 thousand hectares farmed by 460 organic 

farms in 2006 to 56 thousand hectares managed by 909 producers in 2009 (FiBL & IFOAM, 

2011). Almost half of the Egyptian organic farms are located in the middle Nile, in the region 

of El Fayoum, 100 Km south of Cairo. Organic farms in Egypt are generally small holdings 

whose size usually ranges from 4.5 to 20 hectares. A few farm enterprises are larger than 400 

hectares, but they account for 20% of all organic farmland and are located in the Nile delta 

and in Upper Egypt (Kledal et al., 2008). 

http://www.sekem.com/
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The major organic producers in Africa are Uganda (227 thousand hectares) and 

Tunisia (168 thousand hectares) that concentrate around 40% of total organic area in Africa. 

Egypt is among the leading African countries in terms of organic area, occupying the eighth 

position (FiBL & IFOAM, 2011).  Despite its relevant growth, the organic area share over the 

total utilized agricultural area is still low at around 1%. Organic farming mainly relies on the 

use of less chemical inputs than conventional agriculture. Because this restricted input use, 

organic practices are likely to be less productive than conventional agriculture. This lower 

productivity however does not necessarily affect farms’ profits once their product is certified 

organic, due to the high market price for organic produce. During the early stages of 

conversion, however, farms may face economic hardships for not being yet able to receive 

the organic produce price premium.  

Technical efficiency (TE) is a prerequisite for economic efficiency, which in turn is a 

necessary condition for the economic viability and sustainability of a firm (Tzouvelekas et 

al., 2001). Knowledge about productivity and efficiency differences between conventional 

and organic farms is a relevant tool for economic agents considering alternatives to improve 

the performance of organic agriculture, and designing suitable policies to support the 

expansion of organic agriculture within Egypt. Using robust methodologies for TE analysis is 

important to derive unbiased efficiency estimates that allow monitoring the impacts of policy 

and better targeting policy measures. Despite the relevant growth of organic agriculture in 

Egypt, up to date there is no study that assesses the performance of organic farms in this 

country. Unlike previous mainstream literature on organic farming TE, which has widely 

relied on either the Stochastic Frontier Analysis (SFA) or the Data Envelopment Analysis 

(DEA), we use a new methodology recently introduced by Kumbakhar et al. (2007) based on 

local maximum likelihood techniques. In order to achieve the aforementioned objective, a 

survey was conducted for a sample of organic and conventional farms mainly specialized in 
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horticulture and cereal production and located in the Upper Egypt area. More specifically, the 

survey was conducted in Suhag, Assiut and Fayum governorates.  

The rest of the paper is organized as follows. In the next section, a literature review 

and the contribution of this work to previous literature is presented. Then, we describe the 

methodology used in our empirical application. The fourth section presents the data and 

results of the empirical implementation. Finally, the paper ends with some concluding 

remarks. 

2. Literature review 

While analyses on the adoption of organic farming practices have proliferated (Fairweather, 

1999; Lohr & Salomonson, 2000; Pietola & Oude Lansink, 2001; Acs et al., 2007, Padel, 

2001; Parra et al., 2007; Radwan et al., 2011), the literature on TE performance of organic 

farming is still small, which may be due to the scarcity of organic farming data necessary to 

conduct such analyses (Oude Lansink et al., 2002). Parametric SFA and non-parametric DEA 

methods constitute the mainstream of the efficiency literature assessing the differences in TE 

between conventional and organic farms. Results are not conclusive and differ across sectors, 

regions and methodologies. 

Oude Lansink et al. (2002) used DEA techniques to compare organic and 

conventional crop and livestock farms in Finland. They found that organic farms are more 

technically efficient than conventional farms (0.96 vs. 0.72), though they tend to be less 

productive. Different results were achieved by another DEA-based study by Bayramoglu and 

Gundogmus (2008), who found that conventional raisin-producing farms in Turkey are more 

efficient than organic producers (0.90 vs. 0.86). Tzouvelekas et al. (2001; 2002a, b) used the 

SFA approach to assess the TE performance of Greek organic and conventional farms. They 

suggested that organic farmers are operating closer to their frontier than their conventional 

counterparts. In contrast, Madau (2007) applied a SFA model and found that Italian 
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conventional cereal farms tend to be more efficient than organic farms (0.90 vs. 0.83). In 

another SFA-based study, Guesmi el al. (2012) suggested that the Catalan organic grape 

producers are more efficient than conventional growers (0.80 vs. 0.64, respectively). 

Although both SFA and DEA methods entail several methodological advantages, they 

are also criticized for their shortcomings that may conduct to biased efficiency estimates. The 

main difference between these two approaches is that the SFA accounts for the stochastic 

component of production and measurement errors and that these are separated from the 

inefficiency effects. In contrast, DEA methods do not allow disentangling inefficiency from 

stochastic effects (Sharma et al., 1999; Wadud & White, 2000). Further, SFA permits 

conducting conventional statistical tests of hypotheses. SFA, however, relies on restrictive 

assumptions regarding the functional form representing the production frontier, as well as the 

distributional assumption for the random noise and inefficiency error components. DEA, in 

contrast does not require specification of any functional form. TE estimates have been shown 

to be sensitive to estimation techniques and functional form specifications (Ferrier & Lovell, 

1990; Coelli & Perelman, 1999; Ruggiero & Vitaliano, 1999; Chakraborty et al., 2001). Both 

functional form and error distribution misspecifications, as well as ignoring stochastic 

component of production can lead to inaccurate efficiency estimates (Kumbhakar et al., 2007; 

Martins-Filho & Yao 2007; Serra & Goodwin, 2009).  

To overcome the shortcomings of both methods without foregoing their advantages, 

Kumbhakar et al. (2007) recently developed a new methodological approach based on local 

modeling techniques. This model allows the parameters representing both production and 

error distribution to be localized with respect to the covariates. Hence, in contrast to standard 

SFA models, parameters representing production characteristics are allowed to change from 

firm to firm according to each firm particularities. In addition, as opposed to DEA 

nonparametric techniques, this approach allows for stochastic variables and variable 
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measurement errors when deriving TE scores. Furthermore, an important feature of this 

method is that it addresses heteroscedasticity by estimating observation-specific variances of 

the inefficiency and noise components of the error term (Serra & Goodwin, 2009). The local 

modeling approach proposed by Kumbhakar et al. (2007) relies upon local maximum 

likelihood (LML) principles (Fan & Gijbels, 1996).  

In spite of the relevant features of LML techniques, there are few empirical studies in 

the literature (Kumbhakar et al., 2007; Martins-Filho & Yao 2007; Serra & Goodwin, 2009) 

relying on these methods. Only Serra and Goodwin (2009) have used LML to compare the 

efficiency performance of organic and conventional arable crop farming in Spain. Our work 

contributes to the efficiency literature as it constitutes the first study that compares TE levels 

for organic and conventional farms in Egypt. Productivity differences between the two farm 

types are also studied by determining the output elasticity of different inputs used in the 

production process. 

3. Methodology 

TE studies can constitute a useful tool to improve a firm’s economic performance. For such 

purpose, it is necessary to choose a robust method that produces unbiased efficiency 

estimates. We choose the LML approach to consistently estimate TE. As noted above, LML 

methods overcome the most relevant limitations that have been attributed to DEA and SFA 

methods, without giving up their advantages. LML techniques are used to compare the TE 

with which Egyptian organic and conventional farms operate.  

Aigner et al. (1977) and Meeusen and Van den Broeck (1977) specified the general 

stochastic frontier model as follows 0
T

i i i iY X u vβ β= + − + , where iY  represents the 

observed output level produced by firm  1,...,i N= , d
iX ∈  is a vector of input quantities 

used in the production process, the betas are unknown parameters to be estimated, 0iu >  is a 
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non-negative inefficiency term and iv  is a random noise term. The parametric estimation of 

stochastic frontier models is usually based on maximum likelihood techniques. The joint pdf 

of ( ),Y X  is decomposed into a marginal pdf for ,X  ( )= ( )pdf x p x  and a conditional pdf for 

Y  given x , ( ) ( )( )| ,pdf y x g y xθ= , where ( ) kxθ ∈  is the vector of parameters to be 

estimated. 

Based on the parametric model developed by Aigner et al. (1977), the conditional pdf 

for Y  given X x=  can be defined as: ( )Y r X u v= − + , where ( )r x is the production 

frontier, ( )( )2| 0, uu X x N xσ=  , ( )( )2| 0, vv X x N xσ=  , and u  and v  are assumed to be  

independently distributed, conditional on X . Following Kumbhakar et al.’ (2007) approach, 

the 3-dimensional local parameter vector is defined as ( ) ( ) ( ) ( )( )2 2, ,
T

u vx r x x xθ σ σ= and is 

derived using local polynomials. The conditional log-likelihood function 

( ) ( )( )1
log ,N

i ii
L g Y Xθ θ

=
=∑  is locally approximated by the following mth order local 

polynomial function:  

( ) ( ) ( )( ) ( )0 1 0 1
1

, ,..., , ...
N

m
N m i i m i H i

i
L q Y X x X x K X xθ θ θ θ θ θ

=

= + − + + − −∑ ,     (1) 

where x  represents a fixed interior point in the support of ( )p x , logq g= , ( )1,...,
T

j j jkθ θ θ=

for 0,1,...,j m= , and ( ) ( )1 1
HK u H K H u− −= , where K  represents a multivariate kernel 

function  and H  is assumed to be a positive definite and symmetric bandwidth matrix. The 

local polynomial estimator is determined by ( ) ( )0
ˆ ˆx xθ θ= where  

( ) ( )( ) ( )
0

0 0 1,...,
ˆ ˆ,..., arg max , ,...,

m
m N mx x L

θ θ
θ θ θ θ θ= . (2) 

To empirically derive the LML estimator, Kumbhakar et al. (2007) propose using a local 

linear technique. The random noise and inefficiency terms are assumed to be distributed 
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following a local normal and a half normal distribution, respectively, and the conditional 

probability density function of v uε = −  is expressed as: 

( ) ( ) ( )
( )
( )

2|
x

f X x
x x x

λεε ϕ ε
σ σ σ

   
= = Φ −      

   
 (3) 

where ( ) ( ) ( )2 2 2
u vx x xσ σ σ= + , ( ) ( ) ( )u vx x xλ σ σ=  and ( ).ϕ  and ( ).Φ  represent the 

probability and the cumulative distribution functions of a standard normal variable, 

respectively. The local linear parameter is given by ( ) ( ) ( ) ( )( )2, ,
T

x r x x xθ σ λ= and the 

conditional pdf of Y given X  is specified as: 

( )( ) ( )
( )

( ) ( )( ) ( )
( )

2;
y r x x

g y x y r x
x x x

λ
θ ϕ

σ σ σ
   −

= Φ − −      
   

 (4) 

The conditional local log-likelihood function is defined as: 

( ) ( ) ( )( )
( ) ( )( ) ( )

( )

2

2
2 2

1

1 1log log
2 2

N
i i i

i i i
i i i

Y r X X
L X Y r X

X X

λ
θ σ

σ σ=

 −
 ∝ − − + Φ − −
 
 

∑  (5) 

In the present study, we use a local linear model for the frontier ( )ir x  and a local constant 

model for the parameters of the error term. As a result, expression (5) is rewritten as: 

( )
( )( ) ( )( ) ( )

2

0 12 0
0 1 0 0 12 2

1 0 0

1 1, log log
2 2

TN
i i T

N i i H i
i

Y r r X x
L Y r r X x K X xλ

θ σ
σ σ=

 − − −
 Θ ∝ − − + Φ − − − − −
 
 

∑
 

(6) 

where ( )2
0 0 0 0, ,

T
rθ σ λ= and 1 1

TrΘ = . The local linear estimator of the model is given by 0̂θ : 

( ) ( )( ) ( )
0 1

0 1 0 1,
ˆ ˆ,..., arg max ,Nx x L

θ
θ θ

Θ
Θ = Θ  (7) 

Jondrow et al. (1982) proposed to obtain the efficiency measure for a particular 

sample observation as follows: 
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( ) ( )
( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )
( )

0 00 0 0
2

00 0 0

ˆˆˆ ˆˆ ˆˆ
ˆ ˆ ˆ ˆ1 ˆ ˆ

i i ii i i i
i

ii i i i

X X XX X X X
u

XX X X X

ϕ ε λ σσ λ ε λ
σλ ε λ σ

 −
 = −
 + Φ − 

,                                   (8)  

where ( ) ( )0ˆ ˆi i iX Y r Xε = − . When variables are measured in logs, the efficiency level is 

given by ( ) [ ]ˆ ˆexp 0,1i ieff u= − ∈ . The maximization problem in (7) is resolved by specifying 

starting values following Kumbhakar et al. (2007). We start with the local linear least squares 

estimator of ( )0̂r x  and ( )1̂r x and the global ML estimators of 2σ̂  and λ . By using the 

parametric Modified Ordinary Least Squares (MOLS) estimator, the local intercept  ( )0̂r x  is 

corrected. For this purpose we follow Kumbhakar et al. (2007) and we use the following 

specification ( ) ( ) 2
0 0ˆ ˆ ˆ2MOLS

ur x r x σ π= + , where ( )2 2 2 2ˆ ˆˆ ˆ 1 .uσ σ λ λ= +  Hence, starting values 

for solving (7) are derived from ( )2
0 0

ˆˆ ˆ, ,
T

MOLSrθ σ λ=
 
and ( )1 1̂

Tr xΘ = . 

Regarding the multivariate kernel, we choose the following expression

( )( )1
1

dd
jj

h K h x− −
=
=∏ , where ( ).K  is the Epanechnikov Kernel and d  represents the number 

of covariates. The bandwidth is defined as: 1 5
base xh h s N −= , where xs  represents the vector of 

empirical standard deviations of the covariates and N  represents the number of observations. 

The cross validation criterion (CV) proposed by Kumbhakar et al. (2007) is used to obtain the 

optimal value for baseh . The CV, for a given value of baseh , is defined by minimizing the 

following expression: 

( ) ( ) ( ) ( )( )( )
2

0
1

1 ˆ
N

i i
base i i

i
CV h Y r x u

N =

 = − −  ∑ ,                                                                               (9) 

where ( )
0̂

ir  and ( )i
iu  are the leave-one-out versions of the local linear estimators defined 

above.  
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4. Empirical application and results 

The empirical analysis uses cross sectional, farm-level data collected from a survey designed 

and conducted in Upper Egypt, specifically in Suhag, El Fayum and Assiut Governorates 

during the year 2010. These three governorates concentrate almost half of the organic area in 

Egypt (Kledal et al., 2008). Data were collected by face-to-face questionnaires during the 

period from March to June 2010 in these three governorates. The identification of the main 

organic production areas was based on a list of certified organic farmers obtained from 

COAE. Collected data include details on farm production and input use, financial and socio-

economic characteristics (age, gender, education, family size, relevance of family labor, total 

farm income, output, subsidies, etc.), as well as information on farm structural characteristics 

(farm size, tenure regime of land).  

Our final sample consists of 30 organic farmers and 30 neighboring conventional 

farms mainly specialized in fruit crops, cereal and horticulture.1 The neighboring criteria 

allows obtaining a relatively analogous composition of the two subsamples, organic and 

conventional, avoiding unobserved regional differences in land quality, farm management 

skills, or agricultural production techniques (Tzouvelekas et al., 2001; Madau, 2007; Kopke, 

2009; Guesmi et al., 2012; Seufert et al., 2012). The reduced number of observations makes it 

advisable to pool organic and conventional data for the empirical application. On the other 

hand, conventional and organic farms use different technologies. The resulting heterogeneity 

of the sample makes it specially useful to use LML techniques2. 

For the purpose of our efficiency analysis, we define the following variables. Farm 

output ( iy ) is expressed in currency units, euros, and represents total farm income. The use of 

                                                 
1 In order to promote participation and accuracy of the responses, farmers received economic incentives. This 
limited the number of farms that could be included in the analysis. This is a shortcoming in that the small 
number of units included may not fully reflect the existing variability within the population of farms. 
2 It is important to recall the robustness of LML to compositional differences in the sample (Kumbhakar et al., 
2007).  
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a single aggregate output instead of a multi-output vector is common in productive efficiency 

analyses, requires measurement of output in monetary units, and reduces dimensionality 

problems (e.g. Färe et al., 1994; Brümmer, 2001; Chavas, 2008; Serra el al., 2010; Nauges et 

al., 2011). While prices are very likely to be exogenous and homogeneous within the 

conventional and organic farming groups, they are likely to be different across groups. The 

price premium received by organic farms may lead to overestimation of the efficiency of 

organic farmers. Possibly higher input prices paid by organic farms may compensate this 

problem. Furthermore, it is worth noting that the LML method is likely to minimize the price 

difference problem between organic and conventional farms by choosing a homogeneous 

farms’ reference set. 

Among the inputs considered is crop land ( 1x ) measured in hectares. Total labor input 

( 2x ) expressed in euros and comprising both family3 and hired labor. Chemical inputs ( 3x ) 

represent the expenditures (in euros) in fertilizers and pesticides. Other inputs ( 4x ) include 

irrigation, energy, fuel and seed expenses and are also measured in monetary units. Table 1 

provides summary statistics for the variables used in the analysis.  

Organic and conventional farms differ in terms of both inputs used and outputs 

produced. Conventional farms’ cultivated area more than triples the area planted by organic 

farms. The majority of land is cultivated by small farmers (farm average size is about 5 ha 

and 16 ha for organic and conventional groups, respectively) who often diversify their 

income sources. Conventional and organic farms are mainly specialized in the production of 

fruit crops, cereals and vegetables, which together represent on average 96% and 70% of total 

agricultural income, respectively. However, organic farms are more diversified and also 

embrace the production of aromatic and medicinal crops, which represent about 30% of their 

                                                 
3 Family labor was priced using actual payments to family labor when these were made. In case that farm labor 
was not compensated, opportunity costs were used, i.e., the market price of labor in the region was used. 
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income. Differences in value of output may be thus be attributed to different reasons such as 

the composition of agricultural production, farming yields and price premiums received by 

organic farmers. The average value of conventional farm output (27,242 Euros) more than 

doubles the average output of their organic counterparts (11,319 Euros). This is in line with 

previous literature that has generally shown that conventional farms are usually larger than 

organic farms (Oude Lansink et al., 2002; Serra & Goodwin, 2009; Guesmi el al., 2012). 

Yields, however, are superior in organic farms, which may be due to the organic produce 

price premium and is in line with previous studies (Offermann & Nieberg, 2000; Oude 

Lansink et al., 2002; Oude Lansink & Jensma, 2003). Conventional (organic) farms spend 

1,440 (1,052) Euros annually in labor input. On a per unit of land, organic farms are much 

more labor intensive than conventional farms (427 vs. 142 Euros per ha). Given the 

restrictions faced by organic farms regarding the use of chemical inputs, labor becomes much 

more relevant in these farms. Relative to organic farms, conventional farms spend quite a lot 

of money to ensure immunity against pests and diseases (5,899 Euros vs. only 589 Euros). On 

a per ha basis, these expenses show that conventional farms are much more intensive in 

fertilizers and crop protection applications (477 Euros per ha) than organic farms (240 Euros 

per ha). This is not surprising given the legal regulations that substantially restrict the use of 

chemical inputs by Egyptian organic farms. On a per ha basis, organic farms are less 

intensive in energy, fuel and seed use (511 Euros per ha) than conventional farms (631 Euros 

per ha).  Expenses in other inputs are rather low in organic farms compared to their 

conventional counterparts (1,575 Euros vs. 8,147 Euros). Variation in climatic conditions for 

our sample farms is scarce due to the cross sectional nature of our data and the fact that 

sample farms are all located in Upper Egypt. Precipitation is the most influential climatic 
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condition for our sample farms and changes in precipitation will imply changes in the use of 

irrigation systems. As a result, the variable other inputs also reflects weather conditions4. 

Using the aforementioned variables and based on Kumbhakar et al.’s (2007) 

approach, the parametric frontier model is specified as a Cobb-Douglas function: 

0 1 1 2 2 3 3 4 4log log log log logY x x x x u vβ β β β β= + + + + − +                                               (10) 

It is worth noting that estimating the frontier for each observation in the sample allows 

overcoming any functional form misspecification. It also provides enough flexibility to 

capture the differences in production behavior across sample farms. The CV procedure 

defined above is used to select the bandwidth parameter required to derive the LML estimator 

of (10). Final results indicate that the bandwidths 1h , 2h , 3h  and 4h take values of 4.45, 8.50, 

5.12 and 5.65, respectively.  Once the adequate bandwidth for our data is selected, the local 

parameter estimates are derived.  

Table 2 shows the descriptive statistics for the variation in the local estimates of 2
uσ  

and 2
vσ . These statistics support the presence of heterogeneity in the sample indicating an 

important degree of variability among observations regarding the proportion of the 

inefficiency volatility to the noise term volatility ( 2 2/u vλ σ σ= ). The noise term however 

usually dominates the inefficiency term, which is compatible with efficiency levels being 

derived from relatively homogeneous subsets of data, which reduces 2
uσ . Figures 2 and 3 

illustrate the variation of the estimates of the input coefficients for conventional and organic 

farms, respectively. Since a Cobb–Douglas functional form is assumed for our model, the 

coefficients represent input elasticities. The variation in the localized estimates supports that 

                                                 
4 To the extent that remaining variables influencing production are observed by the firm but are not observed by 
the econometrician, faulty measures of efficiency and productivity may be derived. Recent papers have 
proposed alternative solutions to the problem (Quiggin and Chambers, 2006; Mutter et al., 2013; Tran and 
Tsionas, 2013; Shee and Stefanou, 2015). 
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it is not advisable to assume the same input elasticities for all observations5. For conventional 

farms, variation is especially important for land, with an elasticity that ranges from 16% to 

75%, followed by chemical inputs, labor and other inputs, that have an elasticity fluctuating 

from 10% to 50%, 15% to 45% and 10% to 40%, respectively. In the case of organic farms, 

variation is relevant for land with an elasticity that ranges from 20% to 43%, followed by 

other inputs (20% to 40%), labor (20% to 38%) and chemical inputs (3% to 18%).  

Input elasticities indicate that both conventional and organic farms operate under 

decreasing returns to scale with a mean scale elasticity equal to 0.835 and 0.749, respectively 

(table 3). Hence, it is not recommendable to increase farm size for the purpose of increasing 

productivity. The localized elasticity estimates for both types of farms have the expected 

positive sign. On average, production elasticity estimates indicate that labor is the most 

productive input in conventional farming, followed by land, fertilizers and crop protection 

products. In organic farming, other inputs present the highest contribution to output increases 

followed by land, labor and crop protection inputs. The restrictions faced by organic farmers 

regarding the use of conventional inputs may be behind the low productivity of crop 

protection inputs, i.e., the authorized crop protection inputs may not be as productive as 

conventional ones. The fact that labor is more productive in conventional than in organic 

farming is compatible with the more restrictive use that conventional farms make of this 

input. Further, the lower intensity with which organic farms use other inputs also explains the 

higher productivity of this input in organic produce. 

The distribution of the localized efficiency estimates is shown in Table 4. Our 

empirical findings suggest high and similar TE performance for both farm types. Organic 

farmers, on average, are slightly more efficient than their conventional counterparts (97.5% 

and 96.4%, respectively), indicating that organic (conventional) farmers achieve 97.5% 

                                                 
5 Kumbhakar et al. (2007) conducted simulation exercises that prove that the LML approach is preferred to ML 
methods.  
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(96.4%) of their maximum potential output. High TE performance contributes to the firm’s 

economic viability. This high level of efficiency is motivated by the scarcity of agricultural 

resources such as land and water which compels farmers to optimize their use. It also 

indicates that there is small scope, for both types of farms, to improve their economic results 

by reducing input use. Hence, in light of increasing input costs, both types of farms are likely 

to face reduced economic profits: organic (conventional) farms would only be able to 

increase their output by 2.5% (3.6%) if they were in the efficient frontier (i.e., by holding 

input level constant).  

To draw further conclusions from our results, an ANOVA analysis is used to examine 

the relationship between farm size and several production characteristics including input use 

per hectare, output generated per hectare and technical efficiency (table 5). Three 

conventional (organic) categories of farms are defined as follows: the first group is integrated 

by farms cultivating less than 10 (2) ha, representing 43% (47%) of the subsample of 

conventional (organic) farms. The second cluster consists of farms that cultivate between 10 

and 20 (2 and 5) ha, representing 33% (30%) of the subsample. The third cluster is integrated 

by holdings with an area larger than 20 (5) ha, representing 23% (23%) of the subsample 

(table 5). Results show that, on per hectare basis, input costs are much higher in small farms 

than those borne by larger ones, implying that larger farms tend to rely on more extensive 

production techniques. Accordingly, output per hectare is bigger in smaller farms. Larger and 

more extensive farms are found to operate closer to their production frontier than smaller 

farms. On average, the first, second and third conventional (organic) groups have an 

efficiency level of 92.9% (96.3%), 98.8% (97.9%) and 99.4% (99.5%), respectively. 

Differences in efficiency levels across farm size groups appear to be statistically significant 

(at the 10% significance level) for the conventional farm group, but not for the organic farm 
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group. Thus, increased conventional farm size measured as the extension of cultivated land, 

may lead to higher efficiency levels.  

Serra and Goodwin (2009) found that organic arable crop farming in Spain has 

efficiency levels slightly below conventional farms (0.94 vs. 0.97). In any case, average 

efficiencies are close to the ones derived in our work. Comparison with other studies that use 

different methodologies can be conducted to provide a reference for our findings. Guesmi et 

al. (2012) used SFA and obtained TE scores of 0.80 and 0.64 for organic and conventional 

grape farms in Catalonia, respectively. These efficiency scores are very distant from ours and 

are likely due to heterogeneity in the sample. In another study, Oude Lansink et al. (2002) 

used DEA to compare organic and conventional crop and livestock farms in Finland and 

found that organic crop producers have higher efficiency than conventional farms 0.96 and 

0.72, respectively. Our findings are also consistent with Tzouvelekas et al.’s results (2001; 

2002a, b), who used the SFA approach to evaluate the TE levels achieved by Greek organic 

and conventional farms. They found organic producers to be more efficient than conventional 

ones for five types of farms, namely, wheat, olives, raisins, grapes and cotton (0.84 vs. 0.79, 

0.69 vs. 0.54, 0.76 vs. 0.70, 0.68 vs. 0.62 and 0.75 vs. 0.71, respectively). However, our 

results are different from those derived by Bayramoglu and Gundogmus (2008), who 

assessed the efficiency of the Turkish grape sector using DEA techniques and suggested that 

conventional farms operate closer to their frontier than organic producers (0.90 vs. 0.86). In 

contrast with our findings, Madau (2007) used a SFA model and concluded that Italian 

conventional cereal farms are more efficient than organic farms (0.90 vs. 0.83). Differences 

in TE estimates found in the literature of productive efficiency of organic farming can be 

attributed to either the use of different methodologies or different production systems. 

Technical efficiencies range from a minimum of 69% (81%) to a maximum of 100% 

(100%) for conventional (organic) farmers, indicating important heterogeneity within sample 
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farms. However, a lower dispersion is found among organic farms: almost two thirds of 

organic farmers have efficiency ratings between 99% and 100%, whereas one half of 

conventional farmers display these high performance levels. This result is expected as the 

organic Egyptian farms are rather homogeneous regarding managing practices and area 

cultivated, while conventional farms are more diverse ranging from very small farms to huge 

commercial ones.  

5. Concluding remarks 

Despite the relevant growth in organic farming in Egypt, there is no study that focuses on the 

performance of organic farming in this country. Ours contributes to the scarce literature by 

conducting a comparative study of technical efficiency ratings for organic and conventional 

farms in Egypt. As well known, both parametric SFA and nonparametric DEA approaches 

present some shortcomings that may conduct to derive biased efficiency estimates. A new 

approach introduced by Kumbhakar et al. (2007) based on LML techniques allows to 

overcome these drawbacks by locally estimating the parameters of the deterministic and 

stochastic components of the frontier. Since using a robust methodology is important for 

sound decision making, LML methods are used in this article.  

Our analysis is based on farm-level dataset which consists of 60 organic and 

conventional farms in Egypt. Empirical findings indicate substantial variation in efficiency 

estimates across observations. Results suggest that our sample farms operate with high mean 

efficiency scores and that organic farmers, on average, achieve higher technical efficiency 

levels than their conventional counterparts (0.97 and 0.96, respectively). Further, we find a 

positive relationship between technical efficiency and farm size for conventional farms, 

suggesting that large sized farms are found to be more technically efficient compared to small 

scale categories. 
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Our results allow deriving some interesting policy implications. Since high technical 

efficiency is a prerequisite for economic viability, knowledge that organic farms are at least 

as efficient as conventional farms may encourage more farmers to adopt organic practices. 

The low productivity of authorized organic fertilizers and crop protection inputs in organic 

farming, may be attributed to the lack of necessary information on how to adequately use 

these inputs. Specialized extension and training services providing technical assistance could 

improve production performance.  

Our research can be extended in different ways. Given the increasing relevance of the 

environmental impacts of agriculture, correcting the technical efficiency estimates with 

environmental considerations would provide very useful information. Consideration of risk 

issues in our efficiency analysis may refine research results. As is well known, agriculture is 

affected by both output and price risks that usually determine production decisions, which in 

turn can affect production efficiency.  
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Table 1. Summary statistics for the variables of interest 

Variable 

Organic  
(n=30) 

Conventional 
(n=30) 

T-test of mean 
difference 

Significance 
level2 Mean Std. Dev.1 Mean Std. Dev.1 

Total output (€)   11,319.17 12,112.37 27,241.87 22,774.17 0.001*** 

Land (ha) 4.76 8.18 16.22 16.77 0.001*** 

Labor (€) 1,051.67 666.59 1,439.58 1,701.34   0.250 

Chemical inputs (€) 589.38 483.70 5,898.54 7,118.34 0.000*** 

Other inputs (€) 1,574.76 1,874.08 8,147.42 1,0518.73 0.001*** 

Statistics on a per ha basis 

Total output (€/ha) 3,619.30 1,671.54 2,562.45 1,435.48 0.012* 

Labor (€/ha) 426.65 307.48 141.50 150.51 0.000*** 

Chemical inputs (€/ha) 240.23 281.50 476.67 294.19 0.003** 

Other inputs (€/ha) 511.03 376.23 630.78 366.46 0.221 
1Std Dev: standard deviation. 2 ***, ** and * indicates statistical significance at the 1%, 5% and 10%, 
respectively 
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Table 2. Summary statistics for the local estimates of 2
uσ  , 2

vσ  and λ  

Local estimates  2
uσ  2

vσ  λ  

Maximum (100%) 0.183 0.093 30.117 

Third quartile (75%) 4.895E-04 0.086 0.075 

Median (50%) 7.610E-05 0.083 0.031 

First quartile (25%) 1.130E-05 0.075 0.012 

Minimum (0%) 1.458E-06 2.004E-04 0.004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
  



26 
 

Table 3. Input and scale elasticities for conventional and organic Egyptian Farms 

Elasticities  
 

Conventional Organic 

Estimate Std. Dev Estimate Std. Dev 

Land  0.239 0.158 0.237 0.048 

Labor 0.271 0.117 0.202 0.091 

Chemical inputs 0.161 0.094 0.062 0.044 

Other inputs 0.164 0.108 0.248 0.068 

Returns to scale 0.835 0.086 0.749 0.055 
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Table 4. Frequency distribution of technical efficiency scores 

TE (%) Conventional Organic  

<90 3 4 
90-95 2 0 
95-99 10 5 
99-100 15 21 
Mean 0.964  0.975  
Standard deviation 0.075 0.045 
Minimum  0.694 0.811 
Maximum 0.998 0.999 
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Table 5. ANOVA analysis results 

 
Farm size Test of  difference 

between means 
(significance level) 

Small  
<10 ha 

Medium 
10-20ha 

Big 
>20ha 

Conventional farms 

Total output (€/ha) 3498.55 
(1159.53) 

2390.72 
(1112.75) 

1069.31 
(929.73) 

0.000*** 

Labor (€/ha) 185.39 
(159.87) 

145.18 
(170.86) 

54.75 
(40.13) 

0.182 

Chemical inputs (€/ha) 541.57 
(177.36) 

571.20 
(338.88) 

221.12 
(287.97) 

0.025** 

Other inputs (€/ha) 802.87 
(274.16)     

586.69 
(350.24)    

374.17 
(412.94)      

0.034** 

Technical efficiency  0.929 
(0.105) 

0.988 
(0.022) 

0.994 
(0.005) 

0.083* 

Observations (%) 43.33  33.33  23.33  

Organic farms  

Total output (€/ha) 4538.59 
(1516.01)    

3854.17 
(1109.16) 

1610.09  
(422.46) 

0.000*** 

Labor (€/ha) 559.45 
(324.91) 

470.53 
(245.80) 

123.59 
(35.39) 

0.005** 

Chemical inputs (€/ha) 335.03 
(392.86) 

218.46 
(102.63) 

92.14 
(36.28) 

0.180 

Other inputs (€/ha) (670.71) 
(494.79) 

453.28 
(140.81)    

288.74 
(163.08) 

0.078* 

Technical efficiency  0.963  
(0.059) 

0.979  
(0.032) 

0.995  
(0.004) 

0.309 

Observations (%) 46.67 30.00 23.33  

Standard deviation in parenthesis. ***, ** and * indicate F-statistical significance at the 1%, 5% and 10%, respectively.  
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Fig. 1 Distribution of localized estimates of 2
uσ  , 2

vσ  and λ  
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Fig. 2 Distribution of localized estimates of input elasticities: conventional farming 
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Fig. 3 Distribution of localized estimates of input elasticities: organic farming 
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