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A B S T R A C T

To understand what is driving spatial flux variability within a savanna type ecosystem in central Spain, data of
three co-located eddy covariance (EC) towers in combination with hyperspectral airborne measurements and
footprint analysis were used. The three EC systems show consistent, and unbiased mass and energy fluxes.
Nevertheless, instantaneous between-tower flux differences i.e. paired half hourly fluxes, showed large varia-
bility. A period of 13 days around an airborne hyperspectral campaign was analyzed and proved that between-
tower differences can be associated to biophysical properties of the sampled footprint areas. At high photo-
synthetically active radiation (PAR) net ecosystem exchange (NEE) was mainly controlled by chlorophyll content
of the vegetation (estimated through MERIS Terrestrial Chlorophyll Index (MTCI)), while sensible heat flux (H)
was driven by surface temperature. The spatial variability of biophysical properties translates into flux varia-
bility depending on the location and size of footprints. For H, negative correlations were found with surface
temperature for between-tower differences, and for individual towers in time, meaning that higher H was ob-
served at lower surface temperatures. High aerodynamic conductance of tree canopies reduces the canopy
surface temperature and the excess energy is relieved as H. Therefore, higher tree canopy fractions yielded to
lower surface temperatures and at the same time to higher H. For NEE, flux differences between towers were
correlated to differences in MTCI of the respective footprints, showing that higher chlorophyll content of the
vegetation translates into more photosynthetic CO2 uptake, which controls NEE variability. Between-tower
differences of latent heat fluxes (LE) showed no consistent correlation to any vegetation index (VI), or structural
parameter e.g. tree-grass-fraction. This missing correlation is most likely caused by the large contribution of soil
evaporation to ecosystem LE, which is not captured by any of the biophysical and structural properties.

To analyze if spatial heterogeneity influences the uncertainty of measured fluxes three different measures of
uncertainty were compared: the standard deviation of the marginal distribution sampling (MDS), the two-tower-
approach (TTA), and the variance of the covariance (RE). All three uncertainty estimates had similar means and
distributions at the individual towers while the methods were significantly different to each other. The un-
certainty estimates increased from RE over TTA to MDS, indicating that different components like space, time,
meteorology, and phenology are factors, which affect the uncertainty estimates. Differences between uncertainty
estimates from the RE and TTA indicate that spatial heterogeneity contributes significantly to the ecosystem-flux
uncertainty.
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1. Introduction

Savanna type ecosystems play an important role in global carbon
stocks and their productivity (Ahlstrom et al., 2015; Grace et al., 2006),
they are highly variable in seasonal carbon and water vapor fluxes
(Eamus et al., 2013; Paço et al., 2009; Tagesson et al., 2015; Unger
et al., 2012) and inter-annual (Chen et al., 2016; Costa-e-Silva et al.,
2015; Dubbert et al., 2014; Ma et al., 2007; Nagler et al., 2007; Pereira
et al., 2007) time scales. Savannas are complex ecosystems which
consist of scattered trees and a coexisting continuous grass layer/un-
derstory (Scholes and Archer, 1997). The relative contribution of trees
and the understory to overall ecosystem fluxes experience strong sea-
sonal variations, and can vary substantially depending on the savanna
type and its characteristics (e.g. Dubbert et al., 2014; Moore et al.,
2016; Otieno et al., 2015; Paço et al., 2009). Within a savanna eco-
system, the spatial distribution of trees and the composition of the
understory can result in spatial heterogeneity of biophysical properties
and ultimately fluxes. To determine spatial flux heterogeneity on the
ecosystem scale, flux footprint models offer a great possibility as they
allow relating flux measurements and therefore flux variability, to
surface properties. When detailed spatial information on surface char-
acteristics are available for the footprint area, they can be utilized to
explain spatial flux variability. Due to the intrinsic uncertainties asso-
ciated with the eddy covariance (EC) technique, the observed varia-
bility in flux measurements is not entirely related to spatial hetero-
geneity. Rannik et al. (2016) reviewed different flux error estimates for
EC measurements and compared their values for different ecosystems.
They suggested to use the method proposed by Finkelstein and Sims
(2001) or Wienhold et al. (1995) to estimate the random uncertainty of
turbulent flux measurements. Both methods can be used to associate
uncertainties to each individual flux averaging period. These un-
certainty estimates account for the properties of the measured time
series (vertical wind speed and scalar of interest), but do not integrate
information about the observed variability in flux measurements ob-
served under similar meteorological conditions and phenological
stages. Two widely used methods to quantify this uncertainty are the
standard deviation of the marginal distribution sampling (MDS;
Reichstein et al., 2005) and the two-tower-approach (TTA; Hollinger
and Richardson, 2005; Kessomkiat et al., 2013). The MDS is based on
the assumption that, for a short time window and under the same
meteorological conditions, fluxes should be similar. The TTA uses two
co-located towers (i.e. a few hundred meters apart), which are sampling
independent areas of the same homogeneous ecosystem and compares
the differences of the simultaneous flux measurements. For the TTA
differences in meteorological conditions are (nearly) completely
eliminated and differences in phenological stage and biophysical
properties should be minimized. Nevertheless, biophysical properties
within the footprint area (Schmid, 2002) can change spatially and,
therefore, influence flux measurements and increase the uncertainty
estimate. High spatial resolution remote/proximal sensing provides
means to better characterize and quantify spatial heterogeneity. For
example, Balzarolo et al. (2015) and Perez-Priego et al. (2015) showed
for grasslands, that variability in measured CO2-fluxes can be related to
changes in vegetation indices (VIs), which were derived from hyper-
spectral measurements. The best agreement was found between CO2-
fluxes and VIs associated to chlorophyll and water-content of the ca-
nopy, as well as sun-induced chlorophyll fluorescence. For savanna type
ecosystems, where a multispecies herbaceous layer (annual grasses,
forbs, and legumes) coexists with sparsely distributed trees, spatial
heterogeneity of e.g. chlorophyll content of the vegetation and leaf area
index (LAI) introduce a new dimension to account for. Variations of
biophysical properties can occur at the herbaceous- and tree layer, or as
a consequence of changes in the tree density and canopy fraction within
the footprint area. From this point of view, it is not clear how re-
presentative flux measurements can be in such a complex ecosystem to
represent ecosystem scale fluxes correctly. To be precise, this is not a

special problem of savanna type ecosystems but to all EC-sites pre-
senting significant variability in biophysical properties at EC footprint
scale.

This work focuses on the analysis of data collected with three co-
located EC flux towers within the framework of a fertilization experi-
ment (Migliavacca et al., 2017). Here, only the data acquired before the
fertilization are analyzed. The main objective is to evaluate the causes
of differences between the simultaneous, half hourly flux measurements
collected by the three co-located EC towers and to identify the main
factors, (especially random errors vs. variability in biophysical surface
properties), controlling the variability of measured carbon-, water-, and
energy fluxes. For this purpose we (i) conduct a thorough uncertainty
analysis including three different methods and (ii) make use of a
combination of EC measurements, high resolution airborne hyper-
spectral information, and footprint analysis to identify spatial hetero-
geneity of mass and energy fluxes, and to correlate spatial flux differ-
ences with VIs derived from hyperspectral data and surface properties.

2. Methods

2.1. Site description

The study was carried out in the Majadas de Tietar site (Casals et al.,
2009) located in western Spain (39°56′25″N 5°46′29″W). The eco-
system is a typical “Iberic Dehesa”, with an herbaceous stratum of na-
tive pasture and a tree layer of scattered oak trees, with 98% of the trees
being Quercus ilex. The tree density is about 20–25 trees ha−1 with a
mean DBH of 46 cm and a canopy height of about 8m. The canopy
fraction of the trees is about 20%. The herbaceous layer consists mostly
of various annual native species such as Vulpia bromoides (L.), Vulpia
geniculate (L.), Trifolium subterraneum (L.), Ornithopus compressus (L.)
with often more than 20 species within 4 m². The fractional cover of the
three main functional plant forms within the pasture (grasses, forbs,
and legumes), varies spatially but also seasonally according to their
phenological status (Perez-Priego et al., 2015). The LAI of the trees is
around 0.35m² m-2 (1.5–2.0 m²m-² on a tree basis) while the spring
peak green LAI of the herbaceous layer ranges between 0.5–2.5 m²m-²
due to spatial heterogeneity (Migliavacca et al., 2017).

For clarity, we emphasize that the analyzed ecosystem is very het-
erogeneous on spatial scales of centimeters to few tens of meters with
large variability in plant species and their distribution within the her-
baceous layer. Trees on average are equally distributed within the
ecosystem with locally more clustered and open areas. On scales of few
hundreds of meters the ecosystem becomes homogeneous. This scale, at
which the ecosystem is becoming homogeneous corresponds to the size
of daytime flux footprints which are the basis for the analysis of this
study.

The savanna is managed and used for continuous grazing of live-
stock with a low density of 0.3 cows ha−1 which is similar at all the
sites. During the driest summer months (July–September) the cattle is
usually moved to nearby mountain grasslands.

Mean annual temperature is 16.7 °C and annual precipitation is ca.
650mm with large inter-annual variability. The prevailing wind di-
rections are West-Southwest and East-Northeast (Fig. 1).

Three EC towers were operated simultaneously at the site to
monitor ecosystem fluxes. The Control-Tower (CT) is the long-term
eddy covariance FLUXNET site Majadas de Tietar (ES-LMa in FLUXNET,
since 2003), while the other two towers (Nitrogen added Tower (NT),
ES-LM1 in FLUXNET; and Nitrogen and Phosphorous added Tower
(NPT), ES-LM2 in FLUXNET) were set up in March 2014 at a distance of
450 and 630m from the CT in northwestern and southern direction,
respectively (Fig. 1). The locations have been selected such that the
footprints do not overlap under most frequent meteorological condi-
tions, and that the tree cover and management around the towers are
similar.
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2.2. Instrumentation and flux calculation

The EC systems were identical at each tower and consisted of a
three-dimensional sonic anemometer (R3-50, Gill LTD UK) and an in-
frared gas analyzer to measure dry mixing ratios of CO2 and H2O (LI-
7200, Licor Bioscience, Lincoln, USA). The measurement height was
15m and 15.5m above ground at NT / NPT and CT, respectively, which
corresponds roughly to 7m above the mean tree canopy height.
Shortwave incoming radiation (Rg) was measured with a net radio-
meter (CNR4, Kipp and Zonen, Delft, Netherlands) roughly at 15m.
Temperature (Tair) and relative humidity (rH) were measured with a
combined Pt-100 temperature and capacitive humidity sensor (CPK1-5,
MELA Sensortechnik, Germany) at 15m. Soil moisture (SWC) was
measured at 0.1 and 0.3 m below ground (ML2x, Delat-T Devices Ltd,
Cambridge, UK). Vertical CO2 and H2O concentration-profiles were
measured at seven levels between the surface and the measurement
height (0.1, 0.5, 1.0, 2.0, 5.0, 9.0, and 15m above ground with a LI-
840, Licor Bioscience, Lincoln, USA). Vertical profiles of CO2 were
measured at the NT and NPT, but not at CT. The storage term at the CT
was estimated as the mean of the other two towers as the differences
between profiles were negligible.

All EC raw data were collected at 20 Hz with the software EddyMeas
(Kolle and Rebmann, 2009). This includes the three dimensional wind
velocities (u,v,w in m s−1), sonic temperature (Tson in K), and dry
mixing ratios of CO2 (μmol mol−1) and H2O (mmol mol−1). Tson was
internally corrected for cross wind sensitivity by the sonic anemometer.
Raw data were processed with EddyPro version 5.2.0 (Fratini and
Mauder, 2014). Where all raw data were despiked according to Vickers
and Mahrt (1997) with linear interpolation for the detected spikes, the
arithmetic mean was removed from time series, CO2 time lags were
determined by covariance maximization in predefined windows, and
for water vapor the same procedure was done as a function of relative
humidity. Spectral corrections included the analytical correction for
high-pass and low-pass filtering effects (Moncrieff et al. (2004) and
Moncrieff et al. (1997)). For the two main wind directions (East-

Fig. 1. 20%, 60%, and 80% iso-lines of the footprint climatology for three
ecosystem towers for the period of March 2014 till January 2017. Control tower
(CT) in purple, Nitrogen added tower (NT) in blue, and the nitrogen and
phosphorous added tower (NPT) in light blue. Footprint climatology was cal-
culated according to Kljun et al. (2015). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article).

Table 1
Vegetation indices (Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Photochemical Reflectance Index (PRI), MERIS
Terrestrial Chlorophyll Index (MTCI)) and their formulation. ρ are the hemi-
spherical-directional reflectance factors for specific wavelengths, the numbers
denoting the wavelengths in nm.

VI Equation Reference

NDVI
=

−

+
NDVI ρ ρ

ρ ρ
800 670
800 670

Rouse et al. (1974)

EVIMODIS =
−

+ ∙ − ∙ +
EVI ρ ρ

ρ ρ ρMODIS
800 670

( 800 6 670 7.5 469 1)
Huete et al. (2002)

PRI
=

−

+
PRI ρ ρ

ρ ρ
531 570
531 570

Gamon et al. (1992)

MTCI
=

−

+
MTCI ρ ρ

ρ ρ
753.75 708.5
708.5 681.25

Dash and Curran (2004)

Table 2
Absolute values of the 25th, 50th, and 75th percentile of the normalized range of surface prop-
erties (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Photochemical Reflectance Index (PRI), MERIS Terrestrial Chlorophyll Index (MTCI), Tree-
Grass-Ratio (TGR), surface temperature (Tsur)) and net ecosystem exchange (NEE) shown in
Fig. 6. Values correspond to the period between April 6th – April 18th 2014. Median values are in
bold for better orientation.

Variable / Tower Percentile CT NT NPT

NDVI
25 0.63 0.65 0.65
50 0.66 0.67 0.68
75 0.67 0.68 0.69

EVI
25 0.33 0.35 0.33
50 0.34 0.36 0.35
75 0.35 0.37 0.36

PRI
25 -0.0759 -0.0758 -0.0772
50 -0.0755 -0.0747 -0.0767
75 -0.0752 -0.0736 -0.0763

MTCI
25 1.67 1.78 1.76
50 1.72 1.81 1.81
75 1.80 1.83 1.84

TGR
25 0.17 0.19 0.27
50 0.20 0.21 0.30
75 0.22 0.28 0.31

Tsur

25 27.9 28.6 28.0
50 28.2 29.0 28.1
75 28.5 29.2 28.4

NEE
25 -10.2 -10.1 -10.4
50 -8.4 -8.8 -9.2
75 -6.5 -5.9 -7.4
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Northeast and West-Southwest) the planar fit method (Wilczak et al.,
2001) was used for coordinate rotation while double rotation was ap-
plied for the other wind directions. Quality check of the calculated
fluxes was done according to the 0-1-2 system (Mauder and Foken,
2011; Rebmann et al., 2005) and Vickers and Mahrt (1997). The storage
flux was then computed according to Aubinet et al. (2001). For each
10min record, a spline was fitted to the vertical profile and integrated
over the temporal change to derive the storage flux between the mea-
surement height and the surface. The mean of the three 10min storage
fluxes was used as the half hourly storage flux. The storage flux was
added to the CO2 flux to compute the net ecosystem exchange (NEE),

then, the u*-threshold (0.13 m −1) was estimated (Papale et al., 2006).
Bad quality data were gap-filled with MDS (Reichstein et al., 2005), and
subsequently NEE was partitioned into gross primary production (GPP)
and ecosystem respiration (Reco) according to the night-time parti-
tioning method as implemented in the REddyProc 0.7-1 R package
(Wutzler et al., 2018). Flux uncertainties were estimated according to
three different methods. (i) The variance of the co-variance according
to Finkelstein and Sims (2001), where in the original paper the term is
defined to as the ‘random sampling error’, and hereafter referred as
‘RE’. (ii) The flux uncertainty as calculated from the standard deviation
of the marginal distribution sampling (MDS) of the gap-filling proce-
dure (Reichstein et al., 2005). Finally, (iii) the two tower approach
(TTA) according to Hollinger and Richardson (2005). The ‘RE’ is cal-
culated for each half hourly period based on the raw time series of the
vertical wind speed and the scalar of interest. The uncertainty estimate
of the TTA was modified as compared to the original paper in the fol-
lowing way: (i) flux differences were calculated for each paired ob-
servation of flux measurements at the two towers of interest. (ii) The
resulting flux differences were then included in the MDS algorithm to
calculate the standard deviation of the flux differences for bins of si-
milar meteorological conditions within a +/- seven-day window. The
same bin width were used for the TTA and MDS as described in
Reichstein et al. (2005) (Tair = 2.5 K, VPD = 5 hPa, Rg = 50 Wm-²).
Estimated uncertainties were available for each half hourly flux value.
Uncertainties were used for further analysis if 10 or more values fell
into a certain meteorological bin.

There are differences in the information content embedded in each
of the methods used to estimate flux uncertainties:

(i) the RE method is only based on half hourly turbulent time series
(e.g. vertical wind speed and CO2) and their auto- and cross-cor-
relation, hence containing no, or only very limited information
about spatial, temporal, or meteorological variability;

(ii) the uncertainty from the TTA includes the variability coming from
different instruments, which should be negligible, but is mostly
dominated by the differences in the spatial variability emerging
from the footprints of the two towers (given that flux differences
are calculated for the same moment in time under the same me-
teorological conditions); and

(iii) the MDS uncertainties include information on spatial variability
(given changes in the footprints between half hours), on temporal
variability (given the +/− 7 days sampling window around an
observation), and to a certain degree also variability in meteor-
ological conditions (which should be relatively small given the
narrow bin widths).

2.3. Airborne hyperspectral imagery

Vegetation indices and land cover classifications have been re-
trieved from airborne hyperspectral measurements acquired from a
Compact Airborne Spectral Imager (CASI-1500i; Itres Research Ltd.,
Canada) over the study site on April 8th 2014 starting at 11:15 UTC. The
different overpasses were used to generate a mosaic covering the study
area with 1.25m pixel size after image resampling (0.90 m across track
and 1.66 along track original pixel size at nadir) using the software
Geocor (Itres Research Ltd., Canada); resampling was based on the
smallest off-nadir look angle and no further corrections or interpola-
tions were applied. Spectral information was recorded on 144 bands
between 380 and 1050 nm wavelengths from which spectral VIs were
calculated (Table 1). Original spectral bands and derived VIs were
combined to classify imagery using a supervised method based on the
Mahalanobis distance (Richards, 2013). Classification and VI calcula-
tions were carried out in ENVI 5.1 and IDL 8.3.0 (Harris Geospatial
Solutions, Boulder, CO, USA). Each pixel was classified as sunlit grass,
shaded grass, tree canopy, bare soil, or water surface. The tree-grass
ratio (TGR) was calculated as the ratio of tree canopy pixels over sunlit

Fig. 2. Time-series of mean daily air temperature (°C) at 2m above ground (A),
volumetric soil water content (%) in 10 cm depth as well as daily sums of
precipitation (mm) (B), vapor pressure deficit (VPD; hPa) calculated from
temperature and relative humidity at 2m above ground level (C), global ra-
diation (Rg; W m−²) (D), sensible heat flux (H; W m-2) (E), latent heat flux (LE;
W m-2) (F), and gross primary productivity (GPP; μmol m−² s−1) (G) as mea-
sured at the nitrogen added tower. Solid lines are daily averages and shaded
areas the respective minimum and maximum values calculated for each day.
The thin vertical red lines mark the period around the flight (April 6th – April
18th) which was used for additional analysis; the bold red line indicates the
flight day (April 8th). Grey solid lines indicate the first of each month and grey
dashed lines are the 10th and 20th of each month, respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).
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and shaded grass pixels (Table 2).
Surface temperature (Tsur) was obtained from multispectral

thermal infrared imagery with an Airborne Hyperspectral Scanner
(AHS) using a temperature and emissivity separation algorithm
(Gillespie et al., 1998; Sobrino et al., 2006). Both AHS and CASI sensors
were flown simultaneously onboard the C-212-200 RS aircraft operated
by the Spanish Institute for Aerospace Technology (INTA). The spatial
resolution of the AHS images was ∼4.5m, so in order to obtain surface
temperatures at a similar resolution as the hyperspectral CASI data, a
Data Mining Sharpening algorithm (Gao et al., 2012) was applied by

fusing the lower resolution AHS surface temperature with the higher
resolution CASI hyperspectral optical data to produce sharpened 1.5m
resolution surface temperature maps.

2.4. Footprint analysis

2.4.1. Footprint modelling
To relate measured fluxes with surface properties (i.e. land cover

classification-, surface temperature- and VI-maps) two-dimensional flux
footprints were calculated for each half hour using the footprint model

Fig. 3. Boxplots of footprint (FP) characteristics for the individual towers for the year 2014; Day- and nighttime data with u*>u*-threshold (0.13m s−1). Grass,
tree, and bare soil areas were calculated by intersecting the footprints with the classification map derived from hyperspectral flight.

Fig. 4. Mean diurnal courses of NEE, LE, H, and u*. Solid line is mean diurnal course and shaded area is the respective standard deviation for growing period between
March 25th and May 15th 2014.
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of Hsieh et al., (2000), with the lateral dispersion term according to
Detto et al., (2006). Input parameters for the footprint model were
retrieved from EC measurements and canopy properties. Footprints
were only calculated for situations under which the friction velocity
was equal to or larger than the u*-threshold to ensure that a meaningful
turbulent transport was present.

The roughness length (z0) and displacement height (d) were esti-
mated for individual 30° wind sectors using an optimization procedure
on Eq. (1) where U is the horizontal wind speed, k the von Karman
constant (0.4), and z the measurement height. Eq. (1) is valid for
neutral conditions, therefore the estimations of z0 and d were based on
a subset of a full year including 5086 half hourly files for which z/L
ranged from −0.25 to 0.25 and u* was larger 0.2m s−1. The optimi-
zation was based on a Markov Chain Monte Carlo (MCMC) algorithm
using a delayed rejection and adaptive Metropolis procedure (Haario
et al., 2006) as is implemented in the FME package for R.

=
−U u

k
z d
z

* ln( )
0 (1)

2.4.2. Analysis of footprint area characteristics
The weighting of VIs and the extraction of the main structural

properties of the ecosystem (e.g. tree, grass, and bare soil area) were
done according to the footprint probability density function (PDF), by
first normalizing the PDF by its integral and then multiplying each
image pixel by its corresponding normalized PDF footprint weight.

As described in Section 3.1 (Spring Meteorology), a period with
constant meteorological condition, 13 days around the hyperspectral
flight (April 6th – April 18th), was selected to compare simultaneous
between-tower flux differences (δNEE, δH, δLE calculated as e.g.
NEETower_A - NEETower_B on half hourly scale) with the corresponding
mean weighted VI (δVI calculated as VITower_A - VITower_B) for individual
half hourly footprints. To ensure that the data from the hyperspectral
flight could be extrapolated to a larger time window, only high radia-
tion data (Rg> 600W m−²) from when the flight was conducted were
used. By using flux- and VI-differences for simultaneous half-hourly
measurements the influence of all meteorological parameters (e.g. Rg,
VPD), for flux differences, can be considered as negligible. Therefore,
observed differences in flux measurements can be attributed to spatial
variability in surface properties.

To analyze the variability of surface properties and to account for
their different variability, each half hourly footprint weighted VI (VIi)
and other surface properties were normalized by

−

−

VI VI
VI VI

i min

max min (2)

where VImax is the 97.5th and VImin the 2.5th percentile of each VI for all
tower footprints.

Fig. 5. Correlations of half hourly NEE [μmol m−² s-1]
between towers for spring 2014 (March 25th and May
15th 2014). Black line is 1:1-line, red line is linear fit
according to the major axis regression with the re-
spective formula and r² values in the upper left corner.
The grey lines represent the 2.5 and 97.5% confidence
intervals of the linear fit. The full black circles and
vertical lines indicate the mean and standard deviation
of the y-values for each 2.5th percentile of the re-
spective x-values. (For interpretation of the references
to colour in this figure legend, the reader is referred to
the web version of this article).

Fig. 6. Boxplots of surface properties and net ecosystem exchange (NEE)
grouped by towers (purple= control tower (CT); blue=nitrogen added tower
(NT); light blue=nitrogen phosphorous added tower (NPT)) and normalized
by the 2.5 and 97.5th percentile of all respective values. Vegetation indexes,
Tsur and NEE are calculated using footprint areas and airborne hyperspectral
data for the period around the flight (April 6th – April 18th 2014) under high
radiation conditions (Rg>600W m−²). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article).

Fig. 7. Histograms of NEE flux uncertainties according to the random sampling
error (most transparent colors and small dashed lines), the two-tower-approach
(medium transparent colors and long dashed lines), and the standard deviation
of the marginal distribution sampling (opaque colors and solid lines) for Spring
2014. Lines represent density fits to the respective histograms for better visi-
bility where histograms are overlapping. CT MDS, NT MDS, and NPT MDS stand
for the MDS uncertainty for the Control Tower-, Nitrogen added Tower-, and
Nitrogen+Phosphorous added Tower; CT-NT TTA, NT-NPT TTA, and CT-NPT
TTA for the two-tower-approach from the CT and NT tower, NT and NPT tower,
and CT and NPT; and CT RE, NT RE, and NPT RE for the random sampling error
of the respective towers.
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Two tests were performed to estimate the robustness of the results;
(i) a shorter period of± 2 days from the flight (April 6th – April 10th)
was used to perform the same analysis and evaluate if, and how the
results are consistent, despite meteorological and potentially biophy-
sical changes in different time windows; (ii) the size of the footprints
was changed from 90% of the PDF to 75% to evaluate how a smaller
footprint size influences the analysis.

2.5. Statistical analysis

All statistical analyses were performed with R 3.2.2 (R Development
Core Team, 2015). Regression analysis of half hourly flux measure-
ments between towers was done with a major axis regression (MAR)
(lmodel2 package), since it can be assumed that the variance of the
errors is equal between the x- and y-variable (individual towers)
(Legendre and Legendre, 1998). Regression analysis of tower differ-
ences and VI differences were performed with ordinary least square
regressions, and Spearman’s correlation coefficients were used. When-
ever medians were compared for statistical differences the Wilcoxon-
Test (for two-sample-test) or Kruskal-Wallis-Test (for three or more-
samples) was used.

To identify which set of variables (meteorological variables, VI or
Tsur) best explained the variability of fluxes and flux differences be-
tween towers, a multiple linear model selection algorithm (regsubsets
from leaps-package) based on a branch-and-bound algorithm was used.
NEE, H, and LE were used as the response variables and Rg, VPD, NDVI,
EVI, MTCI, PRI, TGR, and Tsur as explanatory variables. The ‘best’
model was selected according to the lowest Bayesian Information
Criterion (BIC) value to balance between performance and complexity.

In order to find the simplest model with the best performance, the BIC
was used instead of the Akaike Information Criterion (AIC) to penalize
more complex models stronger. Moreover, as variable selection method
the relative importance analysis was also carried out using the relaimpo
package (Grömping, 2006) with the Lindeman, Merenda and Gold
(lmg) method. The contribution of each explanatory variable to the
total R² is (i) calculated as the average over different orderings of ex-
planatory variables within a respective model; (ii) step one is performed
for models with different numbers of explanatory variables; (iii) the
average contribution of an explanatory variable to the total R² is then
the average of all contributions in models of different lengths.

3. Results

3.1. Spring meteorology

The most productive period of the year for the studied ecosystem
typically occurs during spring, when fairly high SWC (>20%) condi-
tions coincide with high radiation levels and mild temperatures (Figs. 2
and A14). Especially when the herbaceous layer was growing during
this time of the year. The length of the growing period was mainly
driven by the amount and timing of precipitation events. The spring of
2014 started with rather low Tair around 10 °C, high SWC, low VPD,
low Rg, and low GPP. This period was followed by a mild period (April
6 to April 18) with stable meteorological conditions (Tair around 20 °C,
high Rg, decreasing but still relatively high SWC), during which GPP
was high (mean daily value around 9 μmol m−2 s-1) and stable
(Fig. 2G). This period corresponds to the peak of productivity in terms
of GPP for the year 2014. After April 18th Tair, VPD, and, Rg decrease

Fig. 8. Correlation matrix of δNEE [μmol m−2

s-1] and δVIs for CT and NT for the 13 days
around the flight under high radiation condi-
tions. Upper left boxes display the scatterplots
and a linear least square fit of the respective
variables. Lower right boxes show the sig-
nificance level (p), the spearman correlation
coefficient (colored in the center) and the
number of samples (N). The diagonal boxes
show the respective variables. Colors indicate
the strength of the correlation. Light blue for
low correlation coefficients and bright pink for
high correlation coefficients. (For interpreta-
tion of the references to colour in this figure
legend, the reader is referred to the web version
of this article).
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and roughly 10mm of precipitation fell within a week. This was the last
rain event before May 20th and before then both SWC and GPP were
constantly decreasing, while Tair and VPD were increasing and the
senescence of the herbaceous layer started. The period between the 6th

and 18th of April was therefore used for a further detailed analysis in
conjunction with data from the hyperspectral flight (April 8th), since the
meteorological and biophysical properties of the vegetation were as-
sumed to be constant during this period (Fig. 2 thin, vertical red lines).

3.2. Site comparison

3.2.1. Footprint composition
For a period of one year contributions of grass-, tree-, and bare soil

to the flux footprints were analyzed to understand if systematic dif-
ferences of the surface composition are present between the towers,
using day- and nighttime data. The distribution of the footprint sizes
were very similar between the sites (Fig. 3), with an inter-quartile-
range of 7.5 ha (10–17.5 ha) and a median of 12.5 ha. The analysis
revealed that the source areas of the EC measurements were generally
similar for the three towers. In most cases the grass fraction ranged
between 75 and 80% while the tree-canopy fraction ranged from 15 to
20% and the bare soil fraction accounted for less than ∼5%. The
sampled grass- and tree-canopy fractions at the NT showed a larger
variability and the NPT usually sampled ∼5–7 % more tree-canopy
fraction as compared to the other towers. When only analyzing the
short period around the hyperspectral flight (April 6th – April 18th

2014) under high radiation conditions (Rg>600W m−²), tree- and
grass fractions were very similar to the full year but with more varia-
bility between towers (Fig. A1). Due to high Rg, atmospheric stratifi-
cation was very unstable and therefore, footprints were smaller and less
integrative, which caused the larger variability between towers.

3.2.2. Flux comparison
NEE, LE, H, and u* of the three towers were very similar. Figs. 4 &

A2–A4 show the mean diurnal courses, standard deviations, as well as
between-tower correlations for the respective variables. The data used
for the mean diurnal courses are from March 25th to May 15th 2014,
which represent the core of the growing season at the site. Small dif-
ferences can be observed between the mean diurnal courses of the in-
dividual towers, which are smaller than the uncertainties associated to
the fluxes (Sec. 3.3). Mean absolute differences of mean diurnal cycles
between towers are 0.73 [μmol m−² s-1], 4.06 [W m−²], 4.77 [W m−²],
and 0.02 [m s-1] for NEE, LE, H, and u*, respectively. At the CT, NEE
was slightly less negative during daytime, while u* was slightly lower
before noon and in the evening as compared to NT and NPT. During
nighttime NEE was higher (but not significant) at the NPT as compared
to CT and NT. Besides that, flux magnitudes, patterns, and their stan-
dard deviations were similar, and fluxes of LE and H agreed very well
between the towers (Fig. 4). LE was larger than sensible heat fluxes and
emphasizes that water was not limited during the spring period.

The MAR analysis between the towers (Fig. 5) indicated that NEE
was very similar between towers during the spring of 2014. The slopes
estimated from the MAR varied between 1.01 and 1.05 (corresponding
to 1–5 % flux differences) and the intercept ranged from −0.31 –
0.25 μmol m-² s−1. The best agreement was observed between NT and
NPT with a slope of 1.01, an intercept of 0.25, and an r² of 0.86. Si-
milarly results were found for H (maximum differences of 4%) and LE
(maximum differences of 6%) between the towers (Figs. A2 and A3).
For u* the NT and NPT were showing higher values than the CT (Figs. 4
& A4). Half hourly values of u* were 7–8 % higher, slopes of 1.07 and
1.08 for NT and ST, respectively. From the mean diurnal course of u* it
seems that this underestimation was associated to the period before
noon. The r² of u* are higher for all tower combinations, as compared to
the other fluxes, ranging between 0.90 and 0.91. The means and stan-
dard deviations of fluxes and u* binned according to each 2.5th flux
percentile of the x-value, (Figs. 5 (NEE) and A2–A4 (H, LE, u*) black
circles and vertical lines) show that fluxes of NEE, LE, and H deviated
more from the 1:1 line when fluxes were larger.

3.2.3. Between-site surface properties
For NDVI, EVI, PRI, and the TGR all median values of the towers

were significantly different from each other (Fig. 6; p < 0.01), while
for MTCI and Tsur, two towers had the same median. Relative differ-
ences of PRI were large, but absolute differences between PRI values
were very small between all towers (Table 1), and suggest only little
spatial variability within the footprint areas of the towers. The inner
quartile range (IQR) of NDVI was very similar for the three towers but
the median NDVI was increasing from CT (0.66) over NT (0.67) to NPT
(0.68), even though the increase in absolute numbers was quite small.
Tsur was largest at NT where the median Tsur was nearly 1 K higher as
compared to the other two towers. Median Tsur was almost identical for
CT and NPT (Wilcoxon-Mann-Withney Test p > 0.1) with the only
difference being that at NPT the IQR was 0.3 K smaller. The distribution
of the TGR within the footprints indicated lowest and highest median
TGR for CT and NPT, respectively. NT was in between with a large IQR
compared to the other two towers. The median values ranged between
0.2 and 0.3 for the TGR. According to the Kruskal-Wallis test, differ-
ences in NEE are not significant (p > 0.1) between towers and the
Wilcoxon test shows no significant differences between the individual
tower combinations (p > 0.05).

3.3. Flux uncertainty analysis

The flux uncertainty estimates (MDS, TTA, RE) exhibited distinct
distributions, which reflect the different uncertainties they represent
(Fig. 7). As a result, the RE showed smallest median values, which are
around 0.75 μmol m−² s-1 for NEE. For the TTA medians were roughly
2 μmol m−² s-1 and the IQR ranged from 1.3 to 2.5 μmolm−² s-1, while

Fig. 9. Correlation matrix of δH [W m-2], δLE [W m−2], δTGR, and δTsur for
NT and NPT for the period of 13 days around the flight under high radiation
condition. Upper left boxes display the scatterplots and a linear least square fit
of the respective variables. Lower right boxes show the significance level (p),
the spearman correlation coefficient (colored in the center) and the number of
samples (N). The diagonal boxes show the respective variables. Colors indicate
the strength of the correlation. Light blue for low correlation coefficients and
bright pink for high correlation coefficients. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article).
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the MDS showed medians of 3 μmol m−² s-1 and IQR from 2.2 to
∼3.8 μmolm−² s-1. The distributions of the three individual un-
certainty estimates (RE, TTA, MDS) were similar between the three
towers and differences between the methods were highly significant
(Wilcoxon p < 0.001) (Fig. 7).

The three uncertainties followed similar distributions according to
flux magnitudes (Fig. A13). For low fluxes the uncertainties were
smallest and they increased with increasing fluxes. The MDS un-
certainties were largest throughout all sampled flux magnitudes and
ranged between 3 and 4 μmol m−² s-1 with a relatively constant stan-
dard deviation of 2 μmolm−² s-1. The mean TTA uncertainties ranged
between 1.5 and 2.5 μmol m−² s-1 with a standard deviation of roughly
1.5 μmol m−² s-1. The mean RE was smallest (except for the largest flux
bin), while its standard deviation was strongly increasing towards
higher flux magnitudes. The uncertainties of MDS and TTA are not
increasing as strong as RE toward higher fluxes.

The overall uncertainty estimates rank according to the various
sources of flux variations that contribute to the random noise compo-
nent of the signal: MDS > TTA> >RE (see also Figs. A5 & A6). The
contribution of the spatial variability to the flux uncertainty is em-
phasized by the higher correlations between the MDS and the TTA
approaches, which show substantial correlations already at daily scales
(r> 0.85, Table A1). Generally, the correlation between approaches
increases with the aggregation interval and at a scale of 8 days the
difference becomes negligible.

3.4. Fluxes, vegetation indices and structural properties

For the 13 day window (April 6th – April 18th) and under high ra-
diation conditions (consistent with CASI and AHS data acquisitions)
significant correlations were found between flux differences and dif-
ferences in sampled VIs (Figs. 8, 9, A7, and A8). The correlations be-
tween δNEE and δNDVI, as well as δPRI were non-significant between
the towers (Fig. 8). Negative correlations between δNEE and δMTCI
were significant for CT-NT, CT-NPT, but not for NT-NPT. The MTCI
values between NT and NPT were more similar as compared to the CT
(cf. Fig. 6 and Table 1) and δNEE between NT-NPT showed a smaller
IQR as compared to the combinations with CT.

At all tower combinations δH was positively correlated with δLE
and negatively correlated to δTsur. δH was further more positively
correlated to the δTGR for CT-NT and NT-NPT, which were the com-
binations with largest differences in TGR (cf. Fig. 6 and Table 1). Ad-
ditionally, at all tower combinations strong negative correlations were
observed between δTsur and δTGR. Tree canopies had lower Tsur as
compared to the grass layer (Fig. A9), and differences in the TGR
translated into differences in Tsur. Even though δLE was positively
correlated with δH no significant correlations were found between δLE,
δTGR, and δTsur.

For the individual towers LE (not δLE) was significantly positive,
and H significantly negatively correlated with VPD under high radia-
tion (Rg> 600W m−²) conditions (Figs. A10–A12). For NT and CT
significant negative correlations were observed between H and Tsur
within the footprint. Additionally, Tsur was negatively correlated with
the TGR, indicating lower Tsur at higher tree canopy cover within the
footprints (Fig. A9). This correlation was strongest at NT and CT and
both towers indicated a reduction in average footprint Tsur of roughly
0.7 K per 0.1 increases in TGR. This ratio can be observed for tower
differences and at individual towers (Figs. 9, A10 and A11).

The multiple linear model selection based on BIC showed for NEE at
each individual tower that VPD is the strongest explanatory variable.
While, the model selection for the flux differences between two towers
selected 1 or 2 variables, which were MTCI (for CT/NT and CT/NPT)
and NDVI and EVI (for NT/NPT).

The method validation proved the robustness of merging VI-maps
with results from the footprint analysis against uncertainties in the
selected footprint size (90%) and window width (13 days). Reducing

the time window for the analysis increased the correlation coefficients
between δMTCI and δNEE from −0.34 to −0.65 for the differences
between CT and NT, and from −0.29 to – 0.39 for CT and NPT. This
indicated that the temporal extrapolation of the MTCI introduced ad-
ditional uncertainties to the analysis, but increases the number of
samples that can be used for the analysis. For δTsur and δH the cor-
relation coefficient increased with the shorter time window by 0.09
(CT/NT), 0.04 (CT/NPT), and 0.09 (NT/NPT). The reduction of foot-
print size resulted in nearly no change to the correlations because, (i)
the weighing of the VI-values by the PDF of the footprint accounted
already for the contribution to the flux which was largely captured by
the 75% footprint, even though the area of the 90% footprint was much
larger and (ii) the footprint areas at each tower were homogeneous with
no major changes in vegetation or other surface properties.

4. Discussion

The results of the turbulent flux comparison during spring 2014
demonstrate that the three eddy covariance towers and located within a
homogenous landscape (at footprint scale i.e. several ha) used in this
analysis, are measuring on average similar fluxes at half-hourly and
daily time scales (Fig. 4). Half hourly flux measurements correlate very
good between the three towers, and show better or similar agreements
than values reported in the literature for similar comparisons (Eugster
et al., 1997; Hollinger et al., 2004; Rannik et al., 2006). However, in-
dividual half hourly fluxes can vary strongly, especially for large fluxes
(Figs. 5; A2–A4). These differences are attributed to random un-
certainties associated to the eddy covariance technique (Richardson
et al., 2012), but can be partly attributed to spatial heterogeneity, as
shown above. Several studies (e.g. Hollinger and Richardson, 2005;
Lasslop et al., 2008) showed the increase of the random uncertainty
with the flux magnitude independent of the method used (Fig. A13),
which is in line with the observations of larger scatter when comparing
two towers (Figs. 5; A2–A4). In this analysis, the uncertainties of the
MDS and the TTA increase from smaller to larger fluxes and flattened
out toward the most negative NEE values, while the RE increased lin-
early. As the TTA approach is based on differences between flux tower
measurements, it includes spatial heterogeneity in its flux uncertainty
estimate. Therefore, it characterizes not only the random uncertainty of
flux measurements but also the uncertainty associated to spatial het-
erogeneity. In our case the uncertainty associated to spatial hetero-
geneity of the flux measurements would be 2–3 times larger as the RE
when comparing their medians (Fig. 7). We emphasize that the dis-
tributions and medians of the three uncertainty estimates were sig-
nificantly different from each other, but similar between the towers
(Fig. 7). This means that not only fluxes, but also the associated flux
uncertainties are similar within a homogeneous ecosystem. The differ-
ences between the methods suggest that the uncertainty estimates were
a result of a random flux component as well as spatial heterogeneity,
temporal variability, and small meteorological variability. In the fol-
lowing we will discuss potential causes and implications for the dif-
ferent uncertainty magnitudes of three applied methods.

Spatial variability in fluxes (which increases the uncertainty esti-
mate from the MDS and TTA) can arise from variability in vegetation
properties and composition, changes in soil properties e.g. nutrient and
water availability, topography, or stand age. Different magnitudes of
calculated uncertainties have an impact in the propagation of flux un-
certainties when calculating e.g. annual sums. But these methodological
differences also translate in different correlations between the methods
(Table A1). This is of interest because temporal changes in the un-
certainty estimates affect the relative importance of individual ob-
servations and can propagate to ecosystem parameters in model in-
version exercises (e.g. Wang et al., 2011; Williams et al., 2009).

The opportunistic situation with three EC-towers within one eco-
system allowed to evaluate whether and how the three uncertainty
estimates agree at different locations within one homogeneous
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ecosystem. A similar test could be performed at other ecosystems by
using a mobile EC-tower which can be placed at various locations
within a homogenous area. The RE and the MDS can be performed with
one tower at different locations. As the magnitude of the MDS is not
only depending on spatial variability but also on the variability of
ecosystem processes and phenology (within the +/− 7-day window)
the magnitude of the MDS might not be comparable throughout the
year. In fact, only the TTA needs more than one EC-tower to be per-
formed and this problem can be overcome. Hollinger and Richardson
(2005) addressed exactly this problem and developed the successive
days approach (SDA) which creates paired measurements by comparing
flux measurements exactly 24 h apart from each other under similar
meteorological conditions. They observed that the uncertainty of the
SDA was generally greater than that of the TTA, which fits well into our
findings, where the MDS uncertainty yielded larger uncertainties as the
TTA. Richardson et al. (2012) stated also that the inclusion of the wind
direction to the SDA reduced the uncertainty estimates, but at the cost
of data loss (i.e. less ‘paired’ observations). We argue that the overlap of
the respective footprints or surface properties within the footprints
should be used for the SDA to account for spatial variability of surface
properties. Comparing the average flux differences between the three
towers with the estimated flux uncertainties of the RE, TTA, and MDS
methods, leads to the conclusion that within a reasonably homogeneous
ecosystem fluxes are spatially invariant and therefore, towers are
measuring the same aggregated fluxes even though small scale spatial
variability is present.

Instantaneous half-hourly flux differences between co-located
towers are associated to spatial heterogeneity of biophysical properties
and ecosystem structures. During the spring period, half-hourly flux
differences of NEE between towers were correlated with spatial varia-
bility of MTCI (Fig. 8). The MTCI is a good proxy for canopy chlorophyll
content, which is sensitive to the LAI and greenness of the vegetation,
therefore it is a good proxy for the photosynthetic uptake of CO2 by the
vegetation (Dash and Curran, 2007). We showed that flux differences of
NEE between the three towers (under high radiation conditions) are
correlated to changes in MTCI, and therefore to changes in chlorophyll
content of the canopy within the flux-footprints. Higher canopy chlor-
ophyll content results in more carbon uptake (i.e. more negative NEE).
This relationship is only visible when meteorological differences are
eliminated (co-located towers), and when differences in MTCI are large
enough. The range between the 10th and 90th percentile of MTCI dif-
ferences between the NT and NPT is only 0.1, while it is 0.2 and 0.25
between CT and NPT/NT, respectively. Due to the minor differences
between NPT and NT the signal is most likely too small and buried in
the random noise of the measurements.

Half hourly between-tower differences of H were correlated to
spatial variability of TGR and Tsur (Figs. 8, 9, A9). The correlation
between H, Tsur, and TGR is more pronounced and visible for both,
tower difference and individual towers. The sampled TGR within
footprints is strongly negatively correlated to the average Tsur of the
respective footprints (Fig. 9). Tree canopies have a lower aerodynamic
resistance as compared to the herbaceous layer (e.g. Baldocchi and Ma,
2013), and can therefore dissipate heat more efficiently in form of
additional H. In other words, tree canopies are an additional source of
H and lower the average surface temperatures (Fig. A9a) within the
footprints. This counter-intuitive relationship is so pronounced because
trees contribute 50% of the ecosystem H during spring period (data not
shown), and because biophysical differences between the herbaceous
layer and the trees are large. At a homogeneous forest or grassland, H
would mostly be positively correlated to Tsur during daytime condi-
tions.

Even though δH and δLE are strongly positively correlated to each
other at all tower combinations, δLE is only weakly correlated (at one
tower combination CT/NT) with δTsur. The explanation for the missing

correlation lies in the different contribution of the herbaceous layer and
the tree canopy to LE and H, which is influenced by the iso- and ani-
sohydricity of the trees and the herbaceous layer, respectively. Quercus
ilex trees are rather isohydic and close their stomata when e.g. VPD is
high (Garcia-Forner et al., 2016; Quero et al., 2011). The contribution
of the trees to LE is therefore small, while the contribution to H is large.
In contrast, the annual plants are rather anisohydric, they do not close
their stomata to reduce transpiration under high VPD conditions as long
as the soil water content (SWC) is high enough (Brilli et al., 2011;
McDowell et al., 2008). During the analyzed period SWC was high
(above 20%; Fig. 2b) and the herbaceous layer transpired as much as
needed. Additionally, evaporation of soil water will increase with
higher atmospheric demand, i.e. high VPD, which is emphasized by the
strong positive correlation between VPD and LE (at all towers). We
could not observe indications for reduced LE under high VPD condi-
tions. The analysis of diurnal cycles of LE also did not provide evidence
of hysteresis i.e. a reduction of LE in the afternoon. As a result, the
herbaceous layer contributes, strongly to LE but less to H. These dif-
ferent contributions to LE and H by the herbaceous layer and the tree
canopy offers an explanation as to why δH and δLE are corelated to
each other, but only δH is correlated with δTsur.

The relationship of half hourly between-tower differences of fluxes
and surface properties (i.e. canopy fraction, chlorophyll content, and
surface temperature) shows how, spatial variability in biophysical
properties and therefore in fluxes, can be interpreted as random un-
certainty of the measurements, and that different fluxes (NEE, H, LE)
might have different causes (i.e. spatial heterogeneity of MTCI, Tsur or
TGR) rather than only random error.

5. Conclusions

This work explores the relationships between flux variability, spatial
variability of surface properties (vegetation indices, surface tempera-
ture, and tree-grass-ratio), and how these influence uncertainty esti-
mates within a savanna-type ecosystem. The three co-located eddy
covariance towers, used in this study showed no significant differences
in average fluxes of H, LE, and NEE. Therefore, these results emphasize
that the eddy covariance method is able to measure the same fluxes
independent of the tower location, if the surface properties are similar
enough at footprint scale within a given ecosystem. The use of high
resolution hyperspectral and thermal remote sensing data in combina-
tion with footprint modelling proved to be able to partly attribute half
hourly flux differences to surface properties, and allowed to identify
drivers of spatial heterogeneity in flux measurements. The spatial
variability of canopy chlorophyll content (i.e. quantified with MTCI)
and surface temperature were correlated with NEE and H, respectively.
Drivers of spatial heterogeneity can vary for different fluxes and also
between biophysical properties or state variables e.g. chlorophyll con-
tent, LAI, surface temperature, structure. It is important to remember,
that the relationship between spatial variability of biophysical proper-
ties and flux footprint size determines if the flux variability or the flux
magnitude are affected. As spatial variability in surface properties in-
fluences flux measurements it has a direct impact on commonly used
uncertainty estimates like the standard deviation of the marginal dis-
tribution sampling, the successive days approach, and the two-tower-
approach, by adding spatial variability into the random uncertainty
estimate, and thereby overestimating the random uncertainty.
However, when data of the analyzed ecosystem are aggregated at
longer time scales spatial variability averages out.

We suggest that further research is needed to better understand the
impact of applying different flux uncertainty estimates, and aggrega-
tions to estimate biosphere model parameters using model data in-
tegration approaches and model inversions.
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Appendix

See Figs. A5 and A6

Fig. A2. Correlations of half hourly H-fluxes [W m−²]
between towers for spring 2014 (March 25th and May
15th 2014). Black line is 1:1 line, red line is linear fit
according to the major axis regression with the re-
spective formula and r² values in the upper left corner.
The grey lines represent the 2.5 and 97.5% confidence
intervals of the linear fit. The full black circles and
vertical lines indicate the mean and standard deviation
of the y-values for each 2.5th percentile of the re-
spective x-values.

Fig. A1. Boxplots of footprint characteristics
for the individual towers for the period around
the hyperspectral flight (April 6th – April 18th)
using only daytime data with Rg> 600W
m−².
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Fig. A3. Correlations of half hourly LE-fluxes [W m−²]
between towers for spring 2014 (March 25th and May
15th 2014). Black line is 1:1 line, red line is linear fit
according to the major axis regression with the re-
spective formula and r² values in the upper left corner.
The grey lines represent the 2.5 and 97.5% confidence
intervals of the linear fit. The full black circles and
vertical lines indicate the mean and standard deviation
of the y-values for each 2.5th percentile of the re-
spective x-values.

Fig. A4. correlations of half hourly u* [m s−1] be-
tween towers for spring 2014 (March 25th and May
15th 2014). Black line is 1:1 line, red line is linear fit
according to the major axis regression with the re-
spective formula and r² values in the upper left corner.
The grey lines represent the 2.5 and 97.5% confidence
intervals of the linear fit. The full black circles and
vertical lines indicate the mean and standard deviation
of the y-values for each 2.5th percentile of the re-
spective x-values.

Fig. A5. Histograms of flux uncertainties according to the random sampling error (most transparent colors and small dashed lines), the two tower approach (medium
transparent colors and long dashed lines), and the standard deviation of the marginal distribution sampling (opaque colors and solid lines) for Spring 2014. Lines
represent density fits to the respective histograms for better visibility where histograms are overlapping. CT_MDS, NT_MDS, and NPT_MDS stand for the MDS
uncertainty for the Control Tower-, Nitrogen added Tower-, and Nitrogen+Phosphorous added Tower; CT_NT_TTA, NT_NPT_TTA, and CT_NPT_TTA for the two
tower approach from the CT and NT tower, NT and NPT tower, and CT and NPT; and CT_RE, NT_RE, and NPT_RE for the random sampling error of the respective
towers.
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Fig. A6. Histograms of flux uncertainties according to the random sampling error (most transparent colors and small dashed lines), the two tower approach (medium
transparent colors and long dashed lines), and the standard deviation of the marginal distribution sampling (opaque colors and solid lines) for Spring 2014. Lines
represent density fits to the respective histograms for better visibility where histograms are overlapping. CT_MDS, NT_MDS, and NPT_MDS stand for the MDS
uncertainty for the Control Tower-, Nitrogen added Tower-, and Nitrogen+Phosphorous added Tower; CT_NT_TTA, NT_NPT_TTA, and CT_NPT_TTA for the two
tower approach from the CT and NT tower, NT and NPT tower, and CT and NPT; and CT_RE, NT_RE, and NPT_RE for the random sampling error of the respective
towers.

Fig. A7. Correlation matrix of δNEE and δVIs for CT and NPT for the 13 days around the flight under high radiation condition. Upper left boxes display the
scatterplots and a linear least square fit of the respective variables. Lower right boxes show the significance level (p), the spearman correlation coefficient (colored in
the center) and the number of samples (N). The diagonal boxes show the respective variables. Colors indicate the strength of the correlation. Light blue for low
correlation coefficients and bright pink for high correlation coefficients.
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Fig. A8. Correlation matrix of δNEE and δVIs for NT and NPT for the 13 days around the flight under high radiation condition. Upper left boxes display the
scatterplots and a linear least square fit of the respective variables. Lower right boxes show the significance level (p), the spearman correlation coefficient (colored in
the center) and the number of samples (N). The diagonal boxes show the respective variables. Colors indicate the strength of the correlation. Light blue for low
correlation coefficients and bright pink for high correlation coefficients.

T.S. El-Madany et al. Agricultural and Forest Meteorology 262 (2018) 258–278

271



Fig. A9. Surface temperatures (top), MTCI (middle) and NDVI (bottom) as measured with the airborne hyperspectral scanner on April 8th. Black circles with cross
indicates the position of the nitrogen added tower. Yellow circular structures in top panel (low surface temperatures) are trees. Brownish line structures in the NDVI
plot (bottom) are dirt roads and cable tranches.
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Fig. A10. Correlation matrix of H and LE of the CT with tree-grass-ratio (TGR), surface temperature (Tsur), and vapor pressure deficit (VPD) for the 13 days around
the flight under high radiation condition. Upper left boxes display the scatterplots and a linear least square fit of the respective variables. Lower right boxes show the
significance level (p), the spearman correlation coefficient (colored in the center) and the number of samples (N). The diagonal boxes show the respective variables.
Colors indicate the strength of the correlation. Light blue for low correlation coefficients and bright pink for high correlation coefficients.
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Fig. A11. Correlation matrix of H and LE of the NT with tree-grass-ratio (TGR), surface temperature (Tsur), and vapour pressure deficite (VPD) for the 13 days
around the flight under high radiation condition. Upper left boxes display the scatterplots and a linear least square fit of the respective variables. Lower right boxes
show the significance level (p), the spearman correlation coefficient (colored in the center) and the number of samples (N). The diagonal boxes show the respective
variables. Colors indicate the strength of the correlation. Light blue for low correlation coefficients and bright pink for high correlation coefficients.
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Fig. A12. Correlation matrix of H and LE of the NPT with tree-grass-ratio (TGR), surface temperature (Tsur), and vapour pressure deficite (VPD) for the 13 days
around the flight under high radiation condition. Upper left boxes display the scatterplots and a linear least square fit of the respective variables. Lower right boxes
show the significance level (p), the spearman correlation coefficient (colored in the center) and the number of samples (N). The diagonal boxes show the respective
variables. Colors indicate the strength of the correlation. Light blue for low correlation coefficients and bright pink for high correlation coefficients.

Fig. A13. Mean flux uncertainty binned according to flux magnitude of NEE for spring 2014. Filled circles represent the mean flux uncertainty for a flux bin and the
three towers (CT,NT,NPT) from the MDS approach (purple), the two tower approach (light blue), and the random error (blue). Shaded areas correspond to the
standard deviations from the binning.
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Fig. A14. Time-series from March 25th 2014 – January 1st 2015 of mean daily air temperature (°C) at 2m above ground (A), volumetric soil water content (%) in
10 cm depth as well as daily sums of precipitation (mm) (B), vapor pressure deficit (VPD; hPa) calculated from temperature and relative humidity at 2m above
ground level (C), global radiation (Rg; W m−²) (D), sensible heat flux (H; W m-2) (E), latent heat flux (LE; W m-2) (F), and gross primary productivity (GPP; μmol m-²
s-1) (G) as measured at the nitrogen added tower. Solid lines are daily averages and shaded areas the respective minimum and maximum values calculated for each
day. The thin vertical red lines mark the period around the flight (April 6th – April 18th) which was used for additional analysis; the bold red line indicates the flight
day (April 8th). Grey dashed lines represent the first day of each month.

Table A1
Pearson correlation coefficient between different uncertainty estimates for 30min, 1 day, and 8 day aggregation periods.

Tower / Average Period Methods 30 Min 1 Day 8 Day

CT MDS/RE 0.29 0.24 0.68
MDS/TTA 0.73 0.88 0.93
RE/TTA 0.37 0.39 0.86

NT MDS/RE 0.28 0.38 0.95
MDS/TTA 0.73 0.90 0.98
RE/TTA 0.36 0.41 0.95

NPT MDS/RE 0.29 0.57 0.97
MDS/TTA 0.75 0.94 0.98
RE/TTA 0.41 0.57 0.92
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