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The value of gut microbiota 
to predict feed efficiency 
and growth of rabbits 
under different feeding regimes
María Velasco‑Galilea*, Miriam Piles, Yuliaxis Ramayo‑Caldas & Juan P. Sánchez

Gut microbiota plays an important role in nutrient absorption and could impact rabbit feed efficiency. 
This study aims at investigating such impact by evaluating the value added by microbial information 
for predicting individual growth and cage phenotypes related to feed efficiency. The dataset 
comprised individual average daily gain and cage-average daily feed intake from 425 meat rabbits, in 
which cecal microbiota was assessed, and their cage mates. Despite microbiota was not measured in 
all animals, consideration of pedigree relationships with mixed models allowed the study of cage-
average traits. The inclusion of microbial information into certain mixed models increased their 
predictive ability up to 20% and 46% for cage-average feed efficiency and individual growth traits, 
respectively. These gains were associated with large microbiability estimates and with reductions in 
the heritability estimates. However, large microbiabililty estimates were also obtained with certain 
models but without any improvement in their predictive ability. A large proportion of OTUs seems to 
be responsible for the prediction improvement in growth and feed efficiency traits, although specific 
OTUs taxonomically assigned to 5 different phyla have a higher weight. Rabbit growth and feed 
efficiency are influenced by host cecal microbiota, thus considering microbial information in models 
improves the prediction of these complex phenotypes.
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Feed efficiency (FE) is a fundamental trait in rabbit breeding since food expenses often represent up to 70% of 
the production costs1. The difficulties entailed in measuring the individual animals’ feed intake (FI) are the main 
reason why most programs do not perform a direct selection for FE. An alternative commonly used to improve 
FE is the indirect selection for average daily gain (ADG) or body weight (BW) at the end of the growing period2. 
Nevertheless, the genetic correlation between these growth traits and FE may be not high enough to result in 
an optimal selection response3. Therefore, it would be worth exploring new traits allowing alternative selection 
strategies such as FE definitions based on cage-average FI records. In this regard, the present study uses cage-
average records of FI and individual records of BW collected from animals raised in groups, thus reflecting the 
reality of commercial farms where animals are raised in groups.

The cecum is the main organ harboring the microbial fermentation processes in the domestic meat rabbit, 
Oryctolagus cuniculus. This organ hosts a complex microbial ecosystem dominated by bacterial phyla Firmicutes, 
Tenericutes, and Bacteroidetes4. The interactions that are continuously taking place between bacteria and their 
host ensure the homeostatic balance maintenance of the cecum ecosystem. Previous studies revealed that relative 
abundances of these, and other less abundant taxa, vary between individuals and are affected by external factors 
such as the breeding farm, the level of feeding, or the administration of antibiotics5.

In the field of livestock production, certain studies have hypothesized that the rabbit gut microbiota could be 
associated with growth6 and FE7. Furthermore, a recent study has identified several operational taxonomic units 
(OTUs) and KEEG pathways associated with ADG in commercial meat rabbits8. Nonetheless, a fact that should 
not be overlooked is the strong impact on the animals’ growth and FE exerted by the breeding environment or 
common rabbit breeding strategies such as feed restriction9, thus when considering the role of gut microbiota 
on performance traits these management and environmental effects must not be ignored. Studies are necessary 
to investigate the connection between the gut microbiota and animal performance together with these external 
factors that also affect growth and FE while shaping microbial communities5. Moreover, the existing collinearity 
between microbiota and management effects difficult the finding of real associations of the animal growth with 
specific taxa abundances.

This study aims at understanding the role of microbial communities inhabiting the cecum on the FE and the 
growth of rabbits raised in collective cages under different feeding regimes. The use of sparse partial least squares 
regression (sPLSR) and mixed models in cross-validation schema will allow unraveling the value of cecal micro-
biota to predict cage FE and individual growth performances in a rabbit line selected for post-weaning growth.

Results
Influence of genetics and cecal microbiota on rabbit growth and FE.  Table 1 includes statistics 
of marginal posterior distributions for heritabilities (h2), microbiabilities (m2), and phenotypic variances for 
individually recorded traits (ADGAL and ADGR) obtained with the dataset including only records of animals in 
which microbiota was assessed (mDataset). Similarly, Tables 2 and 3 include estimates for the same parameters 
referring both to individual growth and cage-average traits ( ADFIAL , ADRFIAL and ADFCRAL ). In these lat-
ter two cases, the estimates were computed with the dataset including records of animals in which microbiota 
was assessed as well as of their cage mates (fullDataset). Statistics were obtained with the model not including 
the microbial effect (M1) and with the models fitting the microbial effect (M2) by considering different prior 
assumptions. Trace plots and histograms of Markov chains from the posterior distribution of the parameters of 
these models using different prior assumptions and datasets are included as Additional file 4.

The heritabilities (h2) obtained with M1 and the mDataset were 0.21 and 0.29 for ADGAL and ADGR, respec-
tively (Table 1). The posterior means of h2 obtained with M1 and the fullDataset were markedly lower, 0.15 and 

Table 1.   Means (SD) of marginal posterior distributions of the heritability (h2), microbiability (m2) and 
phenotypic variance (Phe. Var.) for ADGAL and ADGR obtained with the mDataset. ADGAL, average daily gain 
in rabbits fed ad libitum; ADGR, average daily gain in rabbits fed under restriction; SD, standard deviation; M1, 
model without microbial effects; M2, model fitting the microbial effects; MO , microbial relationship covariance 
matrix defined from CSS normalized OTU counts, MB , microbial relationship covariance matrix defined from 
Bray–Curtis distance matrix; MU , microbial relationship covariance matrix defined from weighted Unifrac 
distance matrix.

Parameter Model Microbial matrix ADGAL ADGR

h2 M1 – 0.21 (0.14) 0.29 (0.19)

Phe. Var. M1 – 41.20 (4.37) 32.80 (3.93)

h2 M2 MO 0.07 (0.07) 0.13 (0.09)

m2 M2 MO 0.67 (0.15) 0.56 (0.12)

Phe. Var. M2 MO 93.08 (26.03) 57.90 (12.51)

h2 M2 MB 0.05 (0.05) 0.07 (0.06)

m2 M2 MB 0.79 (0.12) 0.77 (0.10)

Phe. Var. M2 MB 193.85 (83.54) 129.08 (46.78)

h2 M2 MU 0.08 (0.09) 0.14 (0.13)

m2 M2 MU 0.60 (0.26) 0.49 (0.26)

Phe. Var. M2 MU 174.85 (168.52) 91.03 (72.38)
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0.09 for ADGAL and ADGR, respectively (Tables 2, 3). However, estimates cannot be considered significantly 
different between datasets. The h2 estimates with M2 models including the microbial effect ranged, depending 
on the prior assumption for the microbial effects and the dataset used for the analysis, from 0.05 to 0.15 for 
ADGAL and from 0.07 to 0.09 for ADGR. These ranges for m2 varied from 0.00 to 0.79 for ADGAL and from 0.00 
to 0.77 for ADGR. In general, it was observed that the higher the magnitude of m2, the higher the changes in the 
h2 estimates from M1 to M2. It is important to note that the lowest estimates of m2 for both traits were obtained 
in the analyses in which all the individual records were considered for the study and the elements of the covari-
ance matrices for animals without microbial composition were generated considering cage-average CSS OTU 
counts ( MO, MB or MU  ) (Table 3). The posterior means of m2 for both traits were almost null for nearly all the 
cases studied with these covariance matrices, except for ADGAL when the covariance matrix was defined from 
the Bray–Curtis distance matrix ( MB ) and for ADGR when the covariance matrix was defined from the weighted 

Table 2.   Means (SD) of marginal posterior distributions of the heritability (h2), microbiability (m2) and 
phenotypic variance (Phe. Var.) for individual traits (ADGAL and ADGR) and cage-average traits ( ADFIAL , 
ADRFIAL and ADFCRIAL ) obtained with the fullDataset by expanding the corresponding microbial 
relationship matrix with ones in the diagonal and zeros outside. ADGAL, average daily gain in rabbits fed 
ad libitum; ADGR, average daily gain in rabbits fed under restriction; ADFIAL , average daily feed intake in 
rabbits fed ad libitum; ADRFIAL , average daily residual feed intake in rabbits fed ad libitum; ADFCRAL , 
average daily feed conversion ratio in rabbits fed ad libitum; SD, standard deviation; M1, model without 
microbial effects; M2, model fitting the microbial effects. a The expansion of the microbial relationship matrix 
( MO, MB or MU ) was done by including ones in the diagonal and zeros outside the diagonal for the animals 
without microbial information.

Parameter Model Microbial matrixa ADGAL ADGR ADFIAL ADRFIAL ADFCRAL

h2 M1 – 0.15 (0.09) 0.09 (0.07) 0.26 (0.18) 0.49 (0.20) 0.34 (0.20)

Phe. Var. M1 – 79.79 (4.67) 57.02 (3.40) 635.14 (102.99) 206.59 (33.06) 0.20 (0.03)

h2 M2 MO,0 0.11 (0.06) 0.08 (0.05) 0.19 (0.13) 0.33 (0.15) 0.22 (0.14)

m2 M2 MO,0 0.63 (0.06) 0.66 (0.05) 0.48 (0.18) 0.38 (0.17) 0.47 (0.18)

Phe. Var. M2 MO,0 90.54 (5.47) 66.50 (4.13) 676.55 (118.29) 219.47 (37.77) 0.21 (0.04)

h2 M2 MB,0 0.12 (0.07) 0.07 (0.06) 0.19 (0.13) 0.31 (0.15) 0.22 (0.14)

m2 M2 MB,0 0.56 (0.06) 0.61 (0.05) 0.49 (0.18) 0.42 (0.17) 0.49 (0.17)

Phe. Var. M2 MB,0 92.04 (5.67) 68.13 (4.38) 711.55 (128.31) 227.88 (40.04) 0.22 (0.04)

h2 M2 MU,0 0.13 (0.07) 0.07 (0.06) 0.19 (0.13) 0.32 (0.15) 0.22 (0.15)

m2 M2 MU,0 0.52 (0.06) 0.58 (0.05) 0.45 (0.19) 0.40 (0.17) 0.45 (0.18)

Phe. Var. M2 MU,0 92.11 (5.78) 68.26 (4.43) 711.42 (128.01) 226.68 (39.58) 0.22 (0.04)

Table 3.   Means (SD) of marginal posterior distributions of the heritability (h2), microbiability (m2) and 
phenotypic variance (Phe. Var.) for individual traits (ADGAL and ADGR) and cage-average traits ( ADFIAL , 
ADRFIAL and ADFCRIAL ) obtained with the fullDataset by expanding the OTU matrix with the cage-average 
counts. ADGAL, average daily gain in rabbits fed ad libitum; ADGR, average daily gain in rabbits fed under 
restriction; ADFIAL , average daily feed intake in rabbits fed ad libitum; ADRFIAL , average daily residual 
feed intake in rabbits fed ad libitum; ADFCRAL , average daily feed conversion ratio in rabbits fed ad libitum; 
SD, standard deviation; M1, model without microbial effects; M2, model fitting the microbial effects. a The 
expansion of the microbial relationship matrix ( MO, MB or MU ) was done before computing the respective 
distance matrices, assigning to the animals without microbial information the cage-average of the CSS 
normalized OTU counts.

Parameter Model Microbial matrixa ADGAL ADGR ADFIAL ADRFIAL ADFCRAL

h2 M1 – 0.15 (0.09) 0.09 (0.07) 0.26 (0.18) 0.49 (0.20) 0.34 (0.20)

Phe. Var. M1 – 79.79 (4.67) 57.02 (3.40) 635.14 (102.99) 206.59 (33.06) 0.20 (0.03)

h2 M2 M
O

0.14 (0.09) 0.09 (0.07) 0.24 (0.17) 0.44 (0.19) 0.30 (0.18)

m2 M2 M
O

0.08 (0.05) 0.00 (0.00) 0.03 (0.06) 0.10 (0.12) 0.16 (0.09)

Phe. Var. M2 M
O

85.71 (6.42) 57.08 (3.40) 635.52 (102.28) 209.30 (34.46) 0.21 (0.03)

h2 M2 M
B

0.09 (0.06) 0.09 (0.07) 0.16 (0.12) 0.23 (0.13) 0.20 (0.14)

m2 M2 M
B

0.39 (0.13) 0.06 (0.03) 0.44 (0.19) 0.56 (0.17) 0.44 (0.16)

Phe. Var. M2 M
B

133.31 (32.36) 61.00 (6.57) 1059.88 (359.15) 407.68 (135.59) 0.32 (0.09)

h2 M2 M
U

0.15 (0.09) 0.07 (0.06) 0.11 (0.10) 0.12 (0.12) 0.08 (0.08)

m2 M2 M
U

0.00 (0.00) 0.25 (0.23) 0.58 (0.24) 0.76 (0.20) 0.78 (0.17)

Phe. Var. M2 M
U

79.83 (4.67) 88.33 (43.15) 2106.33 (1622.31) 1284.29 (948.14) 1.20 (0.80)
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Unifrac distance matrix ( MU  ) . Note that large estimation errors were observed in both cases. These errors can 
also be linked with the poor mixing of the sampling processes that are evidenced in the trace plots provided in 
the Additional file 4.

Regarding cage-average traits, the posterior means of h2 obtained with M1 were medium–high ranging from 
0.26 ( ADFIAL ) to 0.49 ( ADRFIAL ) (Tables 2, 3). When the microbial effect was included, these posterior means 
tended to decrease. The h2 obtained with M2 models ranged, depending on the prior assumption for the microbial 
effects, from 0.11 to 0.24 for ADFIAL , from 0.12 to 0.44 for ADRFIAL , and from 0.08 to 0.30 for ADFCRAL . The 
posterior means of m2 ranged from 0.03 to 0.58 for ADFIAL , from 0.10 to 0.76 for ADRFIAL , and from 0.16 to 
0.78 for ADFCRAL . Note that for all cage-average traits the highest posterior mean of h2 and the lowest posterior 
mean of m2 were obtained when the microbial covariance matrix was expanded using cage-average CSS OTU 
counts and then computing their cross-product ( MO ). The lowest posterior means of h2 and the highest posterior 
means of m2 were obtained with the microbial covariance matrix MU  (i.e., expanding the OTU table using cage-
average CSS OTU counts and then computing the weighted Unifrac distance matrix). It is worth mentioning that, 
similarly to growth traits, the posterior means of the parameters obtained with M2 models based on expanding 
the CSS OTU table by cage-average before computing the respective distance matrices ( MO, MB orMU ) (Table 3) 
are associated with large posterior standard errors. For these analyses, poor mixing was also observed (Addi-
tional file 4). Given our dataset size, the covariance structure generated with this expansion procedure seems 
not suitable to properly identify the covariance between animals due to sharing cecal microbial composition. 
The posterior means of h2 and m2 for these traits seem to be more consistent when they were obtained with the 
M2 models based on the expansion of the microbial relationship matrices that just included ones in the diagonal 
and zeros outside the diagonal for the animals without microbial information (Table 2). In this case, a similar 
pattern was obtained with MO,0 , MB,0 and MU,0 : h2 decrease from 0.26 (M1) to 0.19 for ADFIAL , from 0.49 (M1) 
to 0.32 for ADRFIAL , and from 0.34 (M1) to 0.21 for ADFCRAL while m2 ranged from 0.45 to 0.49 for ADFIAL , 
from 0.38 to 0.42 for ADRFIAL , and from 0.45 to 0.49 for ADFCRAL.

Predictive ability of individual growth and cage FE from microbial information.  Table 4 shows 
the correlation coefficient between observed and predicted records of individual traits (ADGAL and ADGR) in 
the validation set reached with the different tested models and the mDataset. It was observed that the consid-
eration of microbial information resulted in a significant prediction improvement of the individually measured 
growth traits only when MO or MB were used as covariance matrix between individual microbial effects. The 
consideration of microbial information in M2 models improved the predictive capacity of ADGAL and ADGR by 
25% and 46%, respectively.

When MU was used as covariance matrix between individual microbial effects no improvement of the predic-
tive capacity was observed for any trait. The same was observed when microbial information was included in 
sPLSR2 models fitting systematic effects and CSS OTU counts. sPLSR2 models did not exhibit better predictive 
ability than those models just fitting the systematic effects (sPLSR1).

Table 5 shows the correlation coefficient between observed and predicted records of individual growth traits 
(ADGAL and ADGR) in the validation set when different mixed models and microbial covariance matrices were 
used. In this case, the analyses were conducted using the fullDataset. Here the correlation coefficient between 
observed and predicted records of each trait in the validation set was computed separately for the animals with 
microbial information and for the animals without this information. The only consistent improvement in the 
predictive ability was observed on animals in which cecal microbiota was assessed for ADGR using M2 models 

Table 4.   Across 100 replicates average (SD) correlation coefficient between observed and predicted ADGAL 
and ADGR records with sPLSR and mixed models using the mDataset. ADGAL, average daily gain in rabbits 
fed ad libitum; ADGR, average daily gain in rabbits fed under restriction; SD, standard deviation; M1, mixed 
model without microbial effects; M2, mixed model fitting the microbial effects; MO , microbial relationship 
covariance matrix defined from CSS normalized OTU counts, MB , microbial relationship covariance matrix 
defined from Bray–Curtis distance matrix; MU , microbial relationship covariance matrix defined from 
weighted Unifrac distance matrix; sPLS1, sparse Partial Least Squares Regression model with systematic effects 
as predictors; sPLS2, sparse Partial Least Squares Regression model with systematic effects and CSS OTU 
counts as predictors. *M2 or sPLSR2 correlation between observed and predicted records significantly higher 
(bootstrapped paired t test) than M1 or sPLSR1 correlation after Bonferroni correction for multiple testing 
at the P < 0.05 level. a M2 or sPLSR2 correlation between observed and predicted records higher than M1 or 
sPLSR1 correlation in at least 80% of the replicates.

Model Microbial matrix ADGAL ADGR

M1 – 0.30 (0.15) 0.39 (013)

M2 MO 0.36 (0.13)*a 0.56 (0.11)*a

M2 MB 0.38 (0.13)*a 0.57 (0.12)*a

M2 MU 0.30 (0.14) 0.39 (0.13)

sPLSR1 – 0.50 (0.11) 0.28 (0.14)

sPLSR2 – 0.51 (0.11) 0.19 (0.16)
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based on the expansion of the microbial relationship matrices including ones in the diagonal and zeros outside 
the diagonal. The predictive capacity of ADGR with these M2 models increased by 17% with respect to M1.

Finally, Table 6 shows the correlation coefficient between observed and predicted records of cage-average 
traits ( ADFIAL , ADRFIAL and ADFCRAL ) in the validation set reached with the different mixed and sPLSR 
models under study using the fullDataset.

Table 5.   Across 100 replicates average (SD) correlation coefficient between observed and mixed model 
predicted ADGAL and ADGR records using the fullDataset by expanding the microbial relationship covariance 
matrix in different ways. ADGAL, average daily gain in rabbits fed ad libitum; ADGR, average daily gain in 
rabbits fed under restriction; SD, standard deviation; M1, mixed model without microbial effects; M2, mixed 
model fitting the microbial effects; MO , microbial relationship covariance matrix defined from CSS normalized 
OTU counts, MB , microbial relationship covariance matrix defined from Bray–Curtis distance matrix; MU , 
microbial relationship covariance matrix defined from weighted Unifrac distance matrix. *M2 correlation 
between observed and predicted records significantly higher (bootstrapped paired t test) than M1 correlation 
after false discovery rate correction for multiple testing at the P < 0.05 level. a M2 correlation between observed 
and predicted records higher than M1 correlation in at least 80% of the replicates. b The expansion of the 
microbial relationship matrix ( MO, MB or MU ) was done by including ones in the diagonal and zeros outside 
the diagonal for the animals without microbial information. c The expansion of the microbial relationship 
matrix ( MO, MB or MU ) was done before computing the respective distance matrices, assigning to the 
animals without microbial information the cage-average of the CSS normalized OTU counts.

Model Microbial matrix

Animals with microbial information
Animals without microbial 
information

ADGAL ADGR ADGAL ADGR

M1 – 0.46 (0.15) 0.48 (0.15) 0.39 (0.11) 0.42 (0.14)

M2 MO,0
b 0.47 (0.14) 0.56 (0.14)*a 0.37 (0.10) 0.42 (0.14)

M2 MB,0
b 0.46 (0.15) 0.57 (0.15)*a 0.37 (0.10) 0.43 (0.14)

M2 MU,0
b 0.45 (0.15) 0.55 (0.14)*a 0.37 (0.10) 0.43 (0.14)

M2 M
O

c 0.47 (0.14)* 0.48 (0.15) 0.39 (0.10) 0.42 (0.14)

M2 M
B

c 0.47 (0.15)* 0.48 (0.15) 0.39 (0.10)* 0.42 (0.14)

M2 M
U

c 0.45 (0.15) 0.48 (0.15) 0.39 (0.10) 0.42 (0.14)

Table 6.   Across 100 replicates average (SD) correlation coefficient between observed and predicted individual 
cage-average ADFIAL , ADRFIAL and ADFCRIAL records with sPLSR and mixed models using the fullDataset. 
ADFIAL , average daily feed intake in rabbits fed ad libitum; ADRFIAL , average daily residual feed intake in 
rabbits fed ad libitum; ADFCRAL , average daily feed conversion ratio in rabbits fed ad libitum; SD, standard 
deviation; M1, mixed model without microbial effects; M2, mixed model fitting the microbial effects; 
MO , microbial relationship covariance matrix defined from CSS normalized OTU counts, MB , microbial 
relationship covariance matrix defined from Bray–Curtis distance matrix; MU , microbial relationship 
covariance matrix defined from weighted Unifrac distance matrix; sPLS1, sparse Partial Least Squares 
Regression model with systematic effects as predictors; sPLS2, sparse Partial Least Squares Regression model 
with systematic effects and cage-average CSS OTU counts as predictors. *M2 or sPLSR2 correlation between 
observed and predicted records significantly higher (bootstrapped paired t test) than M1 or sPLSR1 correlation 
after false discovery rate correction for multiple testing at the P < 0.05 level. a M2 or sPLSR2 correlation between 
observed and predicted records higher than M1 or sPLSR1 correlation in at least 80% of the replicates. b The 
expansion of the microbial relationship matrix ( MO, MB or MU ) was done by including ones in the diagonal 
and zeros outside the diagonal for the animals without microbial information. c The expansion of the microbial 
relationship matrix ( MO, MB or MU ) was done before computing the respective distance matrices, assigning 
to the animals without microbial information the cage-average of the CSS normalized OTU counts.

Model Microbial matrix ADFIAL ADRFIAL ADFCRAL

M1 – 0.79 (0.11) 0.42 (0.21) 0.61 (0.16)

M2 MO,0
b 0.83 (0.08)*a 0.50 (0.19)*a 0.69 (0.12)*a

M2 MB,0
b 0.83 (0.08)*a 0.50 (0.19)*a 0.69 (0.12)*a

M2 MU,0
b 0.82 (0.08)*a 0.50 (0.18)*a 0.69 (0.12)*a

M2 M
O

c 0.79 (0.11) 0.41 (0.21) 0.61 (0.16)

M2 M
B

c 0.79 (0.11) 0.41 (0.21) 0.61 (0.16)

M2 M
U

c 0.79 (0.11) 0.42 (0.21) 0.61 (0.15)

sPLSR1 – 0.79 (0.08) -0.31 (0.14) 0.65 (0.15)

sPLSR2 – 0.73 (0.09) 0.17 (0.21)*a 0.39 (0.18)



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19495  | https://doi.org/10.1038/s41598-021-99028-y

www.nature.com/scientificreports/

The M2 mixed models in which the elements of the covariance matrices for animals without microbial 
information were generated from cage-average CSS OTU counts did not add any predictive value for any trait. 
On the contrary, the consideration of microbial information resulted in a significant improvement of the pre-
dictive ability of all traits with all M2 mixed models based on microbial relationship matrices expanded with 
ones in the diagonal and zeros outside the diagonal for the animals without microbial information. When these 
models are used, the predictive ability increased by 5%, 20% and 14% for ADFIAL , ADRFIAL and ADFCRAL , 
respectively, over M1. These improvements were nearly the same irrespectively the covariance matrix considered: 
MO,0, MB,0 or  MU, 0.

Regarding the sPLSR multivariate approach, the correlation coefficient between observed and predicted 
records reached in the validation set with the model that only included the systematic effects as predictors 
(sPLSR1) was pretty high and in most cases better than that achieved with the sPLSR2 models (i.e., also includ-
ing the cage-average CSS OTU counts as predictors). The only exception was observed for ADRFIAL what could 
be said to be expected since a correction by batch effect is implicit in its definition. Thus, the systematic effects 
considered do not play any role in the prediction of the observations, indeed, an average negative correlation 
associated with large dispersion was observed. This average correlation turned positive (although of low mag-
nitude: 0.17) when CSS OTU counts were considered, resulting in a significant improvement of the predictive 
capacity of the model for this cage-average phenotype.

Identification of relevant OTUs for the prediction of rabbit growth and FE.  The observed 
improvement in the predictive ability of the sPLSR2 model for ADRFIAL could be explained by the systematic 
selection of 7 OTUs in more than 80 out of the 100 replicates conducted. Table 7 shows the taxonomic assign-
ment with the RDP classifier of the selected OTUs, and their representative sequences can be found in Addi-
tional file 5. Out of these OTUs, 5 belong to family Lachnospiraceae and 2 are unclassified bacteria. The Pearson’s 
correlations between these OTUs and ADRFIAL were computed to quantify the degree of association. These 
correlations ranged from − 0.33 to 0.31 (Table 7).

On the other hand, sPLSR models were used to fit the posterior means of the individual microbial effects 
predicted for growth and FE traits with M2 models and microbial covariance matrices MO,0, MB,0 or  MU, 0 to 
identify the most relevant OTUs for the prediction of such phenotypes. Table 8 shows, for each trait and covari-
ance matrix, the number of OTUs selected from a total of 946 in at least 80 out of the 100 replicates conducted.

Additionally, Table S1 shows the taxonomy of the most relevant OTUs (i.e., those having the greatest loading 
weights and selected with the three M2 models) for the prediction of growth and FE traits based on the individual 
microbial effects predicted with the linear mixed models. The Pearson’s correlations between each OTU and the 
traits are also shown in Table S1 while their representative sequences can be found in Additional file 7. Sixteen 
OTUs seemed to have an important weight for the prediction improvement of ADGAL. Ten of them belong to 
phylum Firmicutes, 2 to phylum Euryarchaeota, and 4 OTUs are unclassified Bacteria. Thirteen OTUs were 
found to be relevant to improve the predictive ability of mixed models for ADGR. Of these OTUs, 10 belong to 
phylum Firmicutes, 2 to phylum Euryarchaeota and 1 to phylum Bacteroidetes. Twenty-five OTUs were found to 
be involved in the improvement of the predictive ability of mixed models for ADFIAL . Most of them (20 OTUs) 
belong to phylum Firmicutes, 1 to phylum Bacteroidetes, 1 to phylum Actinobacteria, 1 to phylum Proteobacteria, 
and 2 OTUs are unclassified Bacteria. Sixteen OTUs were found to be relevant to improve the predictive ability of 
mixed models for ADRFIAL . Out of these OTUs, 8 belong to phylum Firmicutes, 3 to phylum Bacteroidetes, 1 to 
phylum Proteobacteria, and 4 OTUs are unclassified Bacteria. Finally, 13 OTUs were responsible for the predic-
tion improvement of ADFCRAL when microbial information was fitted in the proposed mixed models. Most of 
them (8 OTUs) belong to phylum Firmicutes, 2 to phylum Bacteroidetes, and 3 OTUs are unclassified Bacteria. 
It is worth mentioning that some OTUs were found to be relevant for the prediction of more than one trait. In 
this regard, two OTUs belonging to genus Methanobrevibacter and one to order Clostridiales were found to be 
relevant for the prediction of both growth traits, i.e., ADGR and ADGAL. One OTU taxonomically assigned to 
family Lachnospiraceae was found to be relevant for the prediction of both ADGAL and ADFIAL . Seven OTUs (2 
belonging to genus Eisenbergiella, 1 to class Alphaproteobacteria, 1 to genus Longibaculum, 1 to family Erysipel-
otrichaceae, 1 to family Lachnospiraceae, and 1 unclassified Bacteria) were found to be relevant for the prediction 
of both ADFIAL and ADRFIAL . Three OTUs (1 belonging to genus Ruminococcus, 1 to genus Blautia, and 1 to 
family Lachnospiraceae) were found to be relevant for the prediction of both ADGR and ADFIAL . Two OTUs 

Table 7.   Taxonomic assignment of the OTUs selected in the sPLSR analysis for ADRFIAL. ADRFIAL , average 
daily residual feed intake in rabbits fed ad libitum. *P for Pearson’s correlation t-test between the relevant OTU 
and ADRFIAL lower than 0.05.

OTU ID and taxonomical assignment Pearson’s correlation

874627 Unclassified Bacteria 0.31*

NR1922 Unclassified Lachnospiraceae − 0.27*

NR2153 Unclassified Lachnospiraceae 0.31*

NR3628 Unclassified Lachnospiraceae − 0.33*

NR381 Unclassified Lachnospiraceae − 0.31*

NR4083 Unclassified Lachnospiraceae 0.32*

NR768 Unclassified Bacteria − 0.27*
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(1 belonging to genus Butyricimonas, and 1 unclassified Bacteria) were found to be relevant for the prediction 
of both ADRFIAL and ADFCRAL . One OTU belonging to genus Butyricicoccus was found to be relevant for the 
prediction of ADGR, ADGAL and ADFIAL . Finally, one OTU belonging to family Lachnospiraceae was found to 
be relevant for the prediction of ADGR, ADFIAL and ADRFIAL (Table S1). In Fig. 1, a Venn diagram shows the 
degree of overlap between traits regarding the most relevant OTUs for their prediction. In general, this degree 
of overlap was small, but it responds to the nature of traits. For example, ADFCRAL has only relevant OTUs in 
common with ADRFIAL , being both feed efficiency traits. On the other hand, ADFIAL has the largest amount of 
OTUs in common with other traits: ADRFIAL and both growth traits (i.e., ADGR and ADGAL) that are strongly 
influenced by the animal’s intake.

Discussion
The role of microbial communities inhabiting the rabbit cecum on key breeding traits related to FE remains 
unknown. To shed light on this matter, we have reported heritabilities and microbiabilities of ADG under dif-
ferent feeding regimes commonly used in meat rabbit commercial farms. We have also computed such ratios for 
cage-average traits related to FI and FE in animals fed AL. Dealing with such cage-average performances, while 
having only measured cecal microbial information in a few animals per cage, is a statistical modeling challenge. 

Table 8.   Number of OTUs selected in at least 80 out of the 100 sPLSR replicates conducted for microbial 
effects predicted with covariance matrices MO,0, MB,0 and MU,0 for growth and FE traits. ADGAL, average 
daily gain in rabbits fed ad libitum; ADGR, average daily gain in rabbits fed under restriction; ADFIAL , 
average daily feed intake in rabbits fed ad libitum; ADRFIAL , average daily residual feed intake in rabbits 
fed ad libitum; ADFCRAL , average daily feed conversion ratio in rabbits fed ad libitum; MO,0 , microbial 
relationship covariance matrix defined from CSS normalized OTU counts and expanded by including ones in 
the diagonal and zeros outside the diagonal for the animals without microbial information, MB,0 , microbial 
relationship covariance matrix defined from Bray–Curtis distance matrix and expanded by including ones in 
the diagonal and zeros outside the diagonal for the animals without microbial information; MU,0 , microbial 
relationship covariance matrix defined from weighted Unifrac distance matrix and expanded by including 
ones in the diagonal and zeros outside the diagonal for the animals without microbial information. a The most 
relevant OTUs were those with the greatest loading weights and that were selected with MO,0, MB,0 and MU,0.

Trait MO,0 MB,0 MU,0 Most relevanta

ADGAL 911 931 673 16

ADGR 887 874 621 13

ADFIAL 850 785 490 25

ADRFIAL 600 793 480 16

ADFCRAL 824 832 877 13

Figure 1.   Venn diagram showing the numbers and overlap of most relevant OTUs for the prediction of the 
5 traits analyzed. ADGAL, average daily gain in rabbits fed ad libitum; ADGR, average daily gain in rabbits fed 
under restriction; ADFIAL, average daily feed intake in rabbits fed ad libitum; ADRFIAL, average daily residual 
feed intake in rabbits fed ad libitum; ADFCRAL, average daily feed conversion ratio in rabbits fed ad libitum.
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We have faced it using different approaches, with the final objective of evaluating the predictive value of microbial 
information for both individual growth and cage-average FE phenotypes.

The study of ADG has particular significance for rabbit breeding programs since this trait is commonly 
selected to indirectly improve FE. Apart from that, the commercial application of feed restriction (i.e., a reduc-
tion in the amount of the feed provided to the animal) is common since it improves FE and reduces mortality 
and morbidity caused by enteric disorders10. Piles and Sánchez11 estimated a low genetic correlation between 
ADGAL and ADGR, and the genome-wide association study conducted by Sánchez et al.12 identified different 
QTL regions for both traits. Such findings support the existence of different genetic backgrounds for these traits. 
Thus, in this study, we reported the posterior means of the heritability (h2) for ADGAL and ADGR separately. In 
line with previous results11, we have found a lower h2 for ADGR, which implies difficulties to achieve a response 
to selection for growth or indirectly for FE.

In this context, one can understand the relevance of exploring whether microbiota explains a significant 
percentage of the phenotypic variance of these traits as well as the value of microbial information to predict such 
complex traits as tools to define the degree of influence of microbial information on the traits of interest. A clear 
effect of microbial composition on the traits of interest would open the door to search and select for taxa posi-
tively associated with them. Ross et al.13, motivated by the existence of numerous exploratory studies in humans 
and other animals aiming at relating the microbiome to a complex trait, tested a method to predict body mass 
index in humans and methane production phenotypes in cattle. Their results showed that microbial information 
could be useful to predict complex host phenotypes, and even suggested that it could exceed prediction accuracies 
based on the host genome for traits largely influenced by the gut microbiota. Following that study, others have 
been conducted in an attempt to evaluate the utility of microbial information to predict complex phenotypes in 
different livestock species. However, to date, there is a lack of knowledge about the value of microbial information 
to predict phenotypes related to growth in rabbits. This is the first study to assess the value of cecal microbiota 
to predict individual growth traits in meat rabbits using different modeling approaches. What is more, this is 
the first time that the predictive value of microbial information is evaluated when this information has not been 
measured in all the individuals contributing to the phenotype. The first challenge we faced was to properly define 
a between-animals relationship matrix due to microbial effects (M). Thus, we replicated each analysis with three 
alternative definitions of M: one defined from CSS normalized OTU counts ( MO ) and two defined from two clas-
sical measures of distance; Bray–Curtis ( MB ) and weighted Unifrac ( MU ). A second challenge was to define an 
appropriate way to expand M for those animals in which cecal microbiota was not assessed. These developments 
are strongly linked with several prediction tools based on kernel methods already proposed14. In our study, we 
have derived kernel matrices by implementing an ad-hoc solution to transform distance matrices into proper 
covariance matrices, while Ramon et al.14 directly derived the kernel matrices associated with distance metrics 
from raw information. Not having microbial information for all the animals under study would request, anyhow, 
some heuristics to generate valid covariance matrices to be included in the mixed models.

Despite the difficulties mentioned above and the fact that, in general, a low predictive ability for growth traits 
was observed (the correlation coefficient between observed and predicted records in the validation set with M1 
was not higher than 0.4), we have been able to detect a certain predictive ability improvement by considering 
microbial information. Such consideration improved the predictive capacity of mixed models for ADGAL and 
ADGR by 25% and 46%, respectively, in the dataset comprised of only the rabbits in which cecal microbiota was 
assessed (mDataset). When the role of the microbial information was assessed by inspecting the percentage of 
phenotypic variance explained by the bacterial effect, a large proportion was attributed to the bacterial effect, 
being this large proportion of the phenotypic variance accompanied by a sharp reduction of the h2 which is 
probably related to a certain degree of association between cecal microbiota and host genotype. This was even 
observed for the case in which the definition of the M covariance matrix was based on the weighted Unifrac 
distance matrix. However, for this particular case, we did not see any improvement when considering microbial 
information for predicting ADGAL or ADGR. This result highlights the need to accompany any assessment of 
the proportion of the phenotypic variance attributed to the microbial effect (i.e., microbiability) by validation 
of its actual predictive value.

The predictive value of models not including the microbial effect for growth traits was slightly higher (up 
to 0.46–0.48) with the fullDataset (i.e., that comprised of records from rabbits in which cecal microbiota was 
assessed and from their cage mates without such microbial information) than with the mDataset. In this case, 
however, the predictive value added by microbial information was more limited, being only significant for ADGR 
of animals in which microbiota was assessed, and exclusively when the expansion of M for those animals without 
microbial information was based on the identity matrix. Despite this limited predictive value of the microbial 
information when the fullDataset was studied, and similar to that observed in some cases when the mDataset 
was considered, a very large percentage of the phenotypic variation of ADGAL was estimated to be explained 
by cecal microbiota when the covariance matrix M was expanded using the identity matrix. The large estimates 
of m2 for this trait can be said to be artifacts given that they are not accompanied by an improvement in the 
predictive capacity of the model, and they seem to be associated with an increase of the phenotypic variance 
estimates regarding M1. Such increase could be associated with an increment of the residual variance in the 
model, probably linked with the existence of a certain degree of collinearity between the covariance matrices 
of the different factors in the model. In this regard, the results obtained using covariance matrixes M expanded 
with cage-average CSS OTU counts could be said to be more coherent, since the null microbiability estimates 
are associated with a null improvement of the prediction of both growth traits (ADGAL or ADGR).

Fang et al.15 found that only 10% of the phenotypic variance of finishing weight in commercial meat rabbits 
was explained by the gut microbiome. Besides that, previous studies in Japanese quails16 and pigs17 estimated m2 
for body weight gain of 0.18 and 0.28, respectively. These large differences between our current results for growth 
traits and the previous ones could be simply due to the study of different definitions of these traits in different 
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species or to the use of different approaches and definitions of M to estimate m2. We report a predictive value of 
cecal microbiota for ADGAL, in line with that reported for daily gain in pigs by Camarinha‐Silva et al.17 applying 
microbial best linear unbiased prediction (M-BLUP) and by Maltecca et al.18 using Bayesian models, machine 
learning approaches and semi-parametric kernel model. In our study, another important point to note is that 
the predictive value of cecal microbiota was higher for ADGR than for ADGAL. This result suggests that ADGR 
is more strongly influenced by gut microbial composition than ADGAL, which is more affected by host genetics 
as Piles and Sánchez11 previously evidenced.

Regarding the study of cage-average phenotypes, the current difficulties in individually recording FI of rab-
bits bred in group suppose the major limitation to conduct a direct selection for FE. Therefore, definitions of 
FE in this study rely on group records of FI and individual records of growth. In addition to this constraint, in 
the current study, we have also faced the challenge that supposes not having microbial information for all the 
individuals of a cage. Our modeling approaches allow including the phenotypic information of cage mates on 
which cecal microbiota was not assessed. Thus, we present the first study to predict cage-average FI and FE traits 
in a rabbit sire line with a mixed model approach using microbial information although it was only measured 
in approximately 30% of the individuals within cage. To deal with this limitation, we tested two different expan-
sions of three microbial covariance matrices for the animals in which microbiota was not assessed to be able to 
consider the contributions of all individuals to the cage performance traits.

Our modeling approaches exhibited moderate predictive abilities for the cage-average phenotypes, higher 
than those obtained for the individually measured growth traits. This result was not surprising since the predic-
tion of individual measures is more challenging than averages. Moreover, the inclusion of microbial information 
increased the predictive ability of mixed models by 5%, for ADFIAL , 20% for ADRFIAL and 14% ADFCRAL over 
the model not considering a microbial effect. It is worth mentioning that this improvement was only achieved 
when the expansion of the microbial relationship matrix for those animals without microbial information was 
based on the identity matrix (i.e., for those animals without microbial information the diagonal elements of the 
covariance matrix were set to one and elements outside the diagonal were fixed to zero). These improvements in 
the prediction were accompanied by large microbiability estimates, which in turn were associated with a reduc-
tion of heritability estimates. Clear evidence of ill-conditioned models was observed for those cases in which 
the expansion of the covariance matrices was based on cage-average CSS OTU counts given that large microbi-
abilities were estimated but they were not associated with improvements in the prediction, but with increased 
phenotypic variance estimates. The consideration of cage-average CSS counts to expand the covariance matrix 
could increased the collinearity between the individual microbial and the cage effects, deteriorated the parameters 
identification, and altered convergence properties (Additional file 4).

Previous studies have evaluated the value of gut microbiota to predict complex traits related to FE in other 
livestock species. In cattle, Delgado et al.19 found a set of microbial contigs obtained from a de novo metagenome 
assembly that allowed high classification power for samples with extreme values of FE and FI traits. They found 
that these microbial contigs had a certain predictive ability for such traits in an independent cattle population. 
In pigs, Camarinha‐Silva et al.17 achieved higher prediction accuracies for FI and feed conversion with micro-
bial best linear unbiased prediction (M-BLUP) method than with the same method but employing the genomic 
relationship matrix (G-BLUP). They quantified that 21% of the phenotypic variance of feed conversion in pigs 
is explained by the gut microbiome. In Japanese quails16 and pigs17, 9% and 16% of the phenotypic variance of 
FI, respectively, seem to be explained by the gut microbiome. In line with these studies estimating microbi-
abilities of traits related to FI and FE, we have also reported that a large percentage of the phenotypic variance 
of these phenotypes can be explained by the cecal microbiota. Such percentage was, in most cases, larger than 
that explained by the additive genetic effects. Nonetheless, as we have previously indicated, large microbiability 
estimates are not always associated with improvements in the predictive capacity of the models. Thus, such 
estimates should be interpreted with caution.

What seems clear from our results is that in those cases in which an improvement in the predictive ability of 
the model was evidenced, the estimated high microbiability was accompanied by a reduction in the heritability 
estimates with respect to those obtained in models not fitting the microbial effect. We interpret this as indirect 
evidence of certain host genetic control over the gut microbial composition. Several studies have already reported 
the existence of moderate heritability for certain microbial taxa and diversity indexes in humans20,21, pigs22–25 or 
cattle26. A preliminary study in the same meat rabbit population used in the current study has also directly shown 
that cecal microbiota is under genetic control27. These results are relevant from a biological perspective to better 
understand the symbiotic relationship between host and gut microbial communities, but also from an applied 
perspective. In the case we confirm that relevant OTUs (i.e., associated with performance traits of interest) have 
a clear host genetic control, selective breeding could be considered as an additional tool to promote the presence 
of such favorable microbial taxa in the gut of a given livestock population.

The predictive ability of multivariate sPLSR models for the traits under study did not improve by consider-
ing microbial information, except for ADRFIAL . This result was discouraging since with this approach we had 
hoped to identify the group of OTUs responsible of an improvement in the predictive ability. The unique case 
in which we identified a group of OTUs that appears to confer a predictive value was for ADRFIAL . We detected 
some unclassified OTUs belonging to family Lachnospiraceae moderately correlated with this trait, some of them 
positively and others negatively. This is not surprising given this is a big family encompassing numerous different 
genera. Siegerstetter et al.28 found different Lachnospiraceae genera enriched in both low or high residual feed 
intake chickens and suggested that these bacteria could promote the host FE by stimulating fatty acid, amino acid, 
and vitamin synthesis. In short, with sPLSR we have not been able to detect the improvement in the predictive 
ability observed with mixed models, suggesting the existence of an added value of microbial information that 
cannot be captured by all predictive machineries when the amount of data and microbial information are limited.
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Our implemented mixed models approach integrates all the available pedigree information in the analysis. 
Such information is particularly relevant for the analysis of cage-average traits since it allows to share information 
between cages according to the additive genetic relationships. This way, predictions of individual phenotypes 
include variability between cage mates. However, the same cage-average measurement was assigned to all cage 
mates in the sPLSR model approach.

We have thus tried an alternative application of sPLSR models by fitting the posterior means of individual 
microbial effects estimated with M2 mixed models for each trait to identify the most relevant OTUs contributing 
to the improvement of the model predictive ability. This approximation has allowed us to identify for each trait 
a number of OTUs that are systematically chosen by the sPLSR models fitted with the three different matrices 
based on the identity matrix (i.e., those that we have found associated with gains in the predictive ability of the 
model) having the greatest loading weights.

We have detected four unclassified OTUs belonging to family Lachnospiraceae moderately correlated with 
growth traits: one positively and other negatively with ADGR, and two positively with ADGAL. This is not sur-
prising given this is a big family encompassing numerous different genera. Fang et al.15 identified a positive 
association between members of this family and ADG of commercial meat rabbits. Another study in the same 
population of rabbits reported a positive association between members of family Lachnospiraceae and finishing 
BW8. Interestingly, we have found two different OTUs belonging to genus Methanobrevibacter positively associ-
ated with ADGAL and negatively with ADGR. Kušar and Avguštin29 suggested that methanogenic microorganisms 
inhabiting the rabbit cecum are predominantly Methanobrevibacter species. This result was supported by the 
study conducted by Velasco-Galilea et al.4 in which all archaeal species identified in the rabbit cecum and feces 
belonged to such methanogenic genus that encompasses different hydrogenotrophic methane-producing spe-
cies. Conversely, McGovern et al.30 and McCabe et al.31 reported a negative correlation between the abundance 
of this genus and body mass index, as well as an overrepresentation of this genus in cattle under fed restriction.

We have identified a positive association between an unclassified member of family Ruminococcaceae and 
ADGR. This result is in agreement with the above-mentioned studies in meat rabbits that also identified a positive 
association of this family with ADG and finishing BW8,15. Interestingly, we have found a negative association 
between genus Bacteroides and ADGR and ADFIAL , as well as between genus Butyricicoccus and ADGR. Genus 
Bacteroides has been associated with obesity in humans32. However, it is worth mentioning that this genus 
encompasses pathogenic species, such as Bacteroides fragilis33, that could lead to a diversion of nutrients from 
growth towards immune response. Previous studies have hypothetized that an overgrowth of Bacteroides species 
in the rabbit gut could lead to a decrease of butyrate yield and, consequently, to the incidence of epizootic rabbit 
enteropathy34. Several studies have demonstrated that the application of feed restriction after weaning reduces 
the risk of enteric disorders in rabbits9,10,35. In this regard, a lighter presence of genus Bacteroides in restricted 
animals could be associated with the benefits conferred by this feeding strategy. Previous studies, indeed, have 
found a negative correlation between this genus and pig BW36,37.

It is also noteworthy that we have identified three different OTUs taxonomically assigned to genus Neglecta 
that are negatively associated with ADFIAL . This genus encompasses pathogenic bacterial species, and it has 
been associated positively with pig ADG in a previous study conducted by Tran et al.38. On the other hand, we 
have identified two and five unclassified OTUs belonging to family Lachnospiraceae positively correlated with 
ADRFIAL and ADFIAL , respectively. In cattle, in accordance with our results, Li and Guan39 and Shabat et al.40 
found an overrepresentation of family Lachnospiraceae in less efficient animals (greater RFI). High relative 
abundances of members belonging to this family could suggest a more active cecum fermentation, which leads to 
increased butyrate short-chain fatty acid that is a nutrient for the gut of the animal. Besides that, we have found 
one OTU taxonomically assigned to genus Olsenella that seems to be relevant for the prediction of ADRFIAL , 
and that is positively associated with this trait. Members of this genus ferment starch and glycogen substrates to 
produce lactic, acetic, and formic acid41. In line with our results, Ellison et al.42 and Kubasova et al.43 reported 
higher abundances of Olsenella in the rumen of low feed efficient lambs and piglets, respectively.

On another note, we have found several OTUs relevant for the prediction of traits related to FE analyzed in 
this study, i.e., ADRFIAL and ADFCRAL . Two OTUs taxonomically assigned to genus Paramuribaculum were 
found negatively correlated with ADRFIAL . Members of this genus are involved in the metabolism of carbohy-
drates, lipids, vitamins, and amino acids as well as in glycan biosynthesis44. On the other hand, we have identified 
OTUs belonging to class Acidaminococcaceae and genus Negativibacillus positively correlated with ADFCRAL . 
Zhang et al.45 suggested a role of genus Negativibacillus in sheep feed efficiency throughout the fermentation of 
complex carbohydrates. Conversely, Elolimy et al.46 identified an enrichment of class Acidaminococcaceae and 
genus Negativibacillus in the most efficient Holstein heifer calves.

Finally, we want to highlight that, in line with previous studies, we have observed that bacterial members 
assigned to the same taxonomic group can either be positively or negatively associated with a given phenotype. 
The observed heterogeneity in this study includes members of family Lachnospiraceae and genera Rumminoc-
cocus, Butyricicoccus, and Bacteroides. This suggests that these OTUs belong to functionally and/or physiologi-
cally different species encompassed within the same taxa. Our experimental design faithfully represents rearing 
conditions of most commercial farms in which kits are bred in collective cages, however, it does not grant the 
optimal statistical power to unravel the foundations behind these biological processes. For future studies with 
this purpose, an experimental design based on individual measures could be, although costly, more appropriate.

Conclusions
Significant improvements in the prediction of individual growth and cage-average traits related to FE were 
observed when cecal microbial information was fitted into the models. However, these improvements are not gen-
eral and depend to a large extent on the prediction method used as well as on the prior information considered 
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to define the covariance matrix between animals due to their cecal microbial effect. We have introduced a novel 
modeling approach based on the traditional mixed animal models that, relying on the pedigree information, 
enables the estimation of variance components and the evaluation of the predictive value of microbial informa-
tion for cage-average performances even when microbiota was not assessed in all individuals of the cage. Cau-
tion must be taken, however, to interpret the magnitude of the proportion of the phenotypic variance explained 
by the individual gut microbial effect since large microbiabilities estimates are not necessarily associated with 
gains in the predictive ability of the model. In general, a certain drop in heritability estimates was observed 
when both additive genetic and individual microbial effects were fitted at the time. This suggests that part of 
the effect associated with the prediction improvement by considering cecal microbial information partially has 
a genetic origin. We are in the process of assessing this host genetic determinism. Cecal microbiota seems to 
have a polibacterial role in growth and FE traits since, although we have identified certain OTUs with a relevant 
weight, a large proportion of OTUs are responsible for the prediction improvement achieved with mixed models.

Methods
Animals.  All animals involved in the study were raised at the rabbit facilities of the Institute of Agrifood 
Research and Technology (IRTA) in two different periods. The animals come from the Caldes line47 that has 
been selected for post-weaning growth since 1983, and it is commonly used as a terminal sire line within the 
three-ways crossbreeding schema for rabbit meat production in Spain. The animals used in this study were ran-
domly selected from 5 batches of a larger experiment conducted to estimate the effect of the interaction between 
the genotype and the feeding regime on growth, feed efficiency, carcass characteristics, and health status of the 
animals11.

Most of the animals were produced in 4 batches in a semi-open-air facility during the first semester of 2014, 
and the remaining were produced in a single batch in another facility under better controlled environmental 
conditions in spring 2016. The animals bred in the first facility were housed in collective cages containing 8 
kits each one from weaning (32 days of age) until the end of the fattening period (66 days of age). On the other 
hand, the kits raised in the second facility were housed in cages of 6 kits each one and their growing period was 
slightly shorter (32–60 days of age).

Beyond these differences, all animals received the same management and were fed with a standard pelleted 
diet. Water was provided ad libitum and feed was supplied once per day in a feeder with three places for the 
4–5 weeks that the fattening lasted. At weaning, the animals were randomly assigned to one of the two different 
feeding regimes under assessment: (1) ad libitum (AL) or (2) restricted (R) to 75% of the AL FI. The amount of 
feed supplied to the animals under R in each week for each batch was computed as 0.75 times the average FI of 
kits on AL from the same batch during the previous week, plus 10% to account for a FI increase as the animals 
grow. Kits under both feeding regimes were categorized into two groups according to their BW at weaning (big 
if their BW was greater than 700 g or small otherwise) to generate homogeneous groups regarding animal size 
within feeding regime. A maximum of two kits from the same litter were assigned to a single cage to avoid con-
founding between cage and maternal effects.

The individual BW was weekly recorded for all animals in both feeding regimes, and the cage FI was also 
weekly recorded in AL cages. From BW raw records, individual ADG was computed as the slope of the within 
animal regression of all BW measurements on their respective ages in days. This trait was individually computed 
for each feeding regime, thus obtaining ADG on AL (ADGAL) or under R (ADGR). For the AL cages, three addi-
tional traits were computed. The individual average daily feed intake ( ADFIAL ) was computed as the total FI of 
the cage during the whole growing period divided by the number of days and the number of kits that each cage 
contained. The individual average daily residual feed intake ( ADRFIAL ) was obtained as the residual of a batch-
nested multiple regression of ADFIAL on the ADGAL and the cage-average mid-growing-period day metabolic 
weight ( MWAL ). Finally, the individual average daily feed conversion ratio ( ADFCRAL ) was computed as the 
ratio between ADFIAL and the cage-average ADGAL ( ADGAL).

Two different datasets were considered for the analyses performed in this study. The mDataset was represented 
by the 425 kits from which cecal samples were collected at the end of their growing period for microbiota assess-
ment, and the fullDataset included these 425 kits and their cage mates. On average, cecal microbiota was assessed 
in 2 kits by cage. The number of animals and cages within feeding regime and batch are shown in Table 9, and 
the descriptive statistics of the traits under study are presented in Table 10.

Sample processing, DNA extraction and sequencing.  Animals were slaughtered at morning after 
fasting (at 66 and 60 days of age in first and second facility, respectively) and cecal samples of 425 rabbits were 
collected in a sterile tube, kept cold in the laboratory (4 °C), and stored at − 80 °C. DNA extraction, amplifica-
tion, Illumina library preparation and sequencing followed methods described in previous studies4,5. Whole 
genomic DNA was extracted from 250 mg of each biological sample according to manufacturer’s instructions of 
kit ZR Soil Microbe DNA MiniPrep Kit (Zymo Research, Freiburg, Germany). Cecal samples were mechanically 
lysed in a FastPrep-24 homogenizer (MP Biomedicals, LLC, Santa Ana, CA, United States) at a speed of 6 m/s 
for 60 s, thus facilitating an efficient lysis of archaeal and bacterial species. Integrity and purity of DNA extracts 
were measured with NanoDrop ND-1000 spectrophotometer equipment (NanoDrop products; Wilmington, 
DE, United States) following Desjardins and Conklin’s protocol48. All DNA extracts showed adequate integ-
rity and purity (absorbance ratio 260 nm/280 nm > 1.6) to avoid PCR inhibition issues. A fragment of the 16S 
rRNA gene that included the V4–V5 hypervariable regions was amplified with the F515Y/R926 pair of primers 
(5′-GTG​YCA​GCMGCC​GCG​GTAA-3′, 5′-CCG​YCA​ATTYMTTT​RAG​TTT-3′)49. The initial polymerase chain 
reaction (PCR) was conducted for each sample using 12.5 µl 2 × KAPA HiFi HotStart Ready Mix, 5 µl forward 
primer, 5 µl reverse primer and 2.5 µl template DNA (5 ng/µl). The PCR conditions were the following: initial 
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denaturation for 3 min at 95 °C, 25 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C; and final extension for 
2 min at 72 °C. The fragment was then re-amplified in a limited-cycle PCR reaction to add sequencing adaptors 
and 8 nucleotide dual-indexed barcodes of the multiplex Nextera XT kit (Illumina, Inc., San Diego CA, United 
States) according to manufacturer’s instructions. The adaptors and barcodes were added to both ends of the frag-
ment in a second PCR by using 25 µl 2 × KAPA HiFi HotStart Ready Mix, 5 µl index i7, 5 µl index i5, 10 µl PCR 
Grade water and 5 µl concentrated amplicons of the initial PCR. The second PCR conditions were the following: 
initial denaturation for 3 min at 95 °C, 8 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C; and final extension 
for 5 min at 72 °C. Final libraries were cleaned up with AMPure XP beads, validated by running 1 µl of a 1:50 
dilution on a Bioanalyzer DNA 1000 chip (Agilent Technologies, Inc., Santa Clara, CA, United States) to verify 
their size, quantified by fluorometry with PicoGreen dsDNA quantification kit (Invitrogen, Life Technologies, 
Carlsbad, CA, United States), pooled at equimolar concentrations and paired-end sequenced in 5 parallel plates 
in a Illumina MiSeq 2 × 250 platform at the Genomics and Bioinformatics Service (SGB) of the Autonomous 
University of Barcelona (UAB).

Bioinformatic pipeline for OTU calling.  Sequence processing was performed using QIIME software 
version 1.9.0 (https://​github.​com/​bioco​re/​qiime/​relea​ses/​tag/1.​9.0)50 as described in5. The first step consists of 
assembling the paired-ended V4–V5 16S rRNA gene reads into contigs with the python script multiple_join_
paired_ends.py. The resulting contigs were filtered (those with a quality score smaller than Q19 were discarded) 
and assigned to samples using the python script split_libraries.py with default parameters. Chimeric sequences 
generated in the PCR were detected with UCHIME algorithm51 and removed. The filtered contigs were clustered 
into operational taxonomic units (OTUs) with a 97% similarity threshold using the script pick_open_reference_
otus.py with default parameters52. This script uses the UCLUST algorithm53, to first align the sequences against 
Greengenes reference database (version gg_13_5_otus)54, and then to make a de novo clustering of those contigs 
that did not match the database. After doubletons removal, the filtered OTU table contained the sequence counts 
of 963 OTUs for 425 samples. Finally, the OTU table was normalized with the cumulative sum scaling (CSS) 
method55. Figure 2 provides a graphical summary of the present experimental design and the phenotypes ana-
lyzed together with microbiota assessment of cecal samples and the bioinformatic pipeline used for OTU calling. 
Taxonomic assignment of representative sequences of each OTU was conducted with the QIIME default param-
eters of the UCLUST consensus taxonomy assigner by mapping the sequences against the Greengenes reference 
database gg_13_5_otus. The raw sequence data were deposited in the sequence read archive of NCBI under the 

Table 9.   Number of individual and cages within feeding regime and batch. Animals with microbiota assessed 
and non-assessed are distinguished for the individual records. R, animals under restriction; AL, animals fed 
ad libitum.

Batch

Individuals

Cages
With 
microbiota W/o microbiota

R AL R AL R AL

1 45 44 51 52 16 16

2 30 27 66 61 12 11

3 41 35 103 84 18 15

4 53 61 195 211 31 34

5 32 57 96 126 16 23

Table 10.   Descriptive statistics of growth and FE traits. ADGAL, average daily gain in rabbits fed ad libitum; 
ADGR, average daily gain in rabbits fed under restriction; ADFIAL , average daily feed intake in rabbits fed 
ad libitum; ADRFIAL , average daily residual feed intake in rabbits fed ad libitum; ADFCRAL , average daily feed 
conversion ratio in rabbits fed ad libitum; SD, standard deviation; IQR, interquartile range; mDataset, dataset 
including only records of animals in which microbiota was assessed; fullDataset, dataset including records of 
animals in which microbiota was assessed as well as of their cage mates. a Refers to individual traits. b Refers to 
cage traits.

Trait Dataset N Mean SD IQR

ADGAL (g/day)a mDataset 224 55.12 6.52 7.30

ADGAL (g/day)a fullDataset 758 53.21 9.42 8.49

ADGR (g/day)a mDataset 201 36.35 5.85 7.56

ADGR (g/day)a fullDataset 712 35.35 7.99 8.27

ADFIAL (g/day)b fullDataset 99 151.37 17.01 20.93

ADRFIAL (g/day)b fullDataset 99 0.00 5.92 6.66

ADFCRAL (g/day)b fullDataset 99 2.84 0.24 0.33

https://github.com/biocore/qiime/releases/tag/1.9.0
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BioProject accession number PRJNA524130. Metadata, OTU table, and corresponding taxonomic assignments 
are also included as Additional files 1, 2 and 3, respectively. In summary, after executing the bioinformatic 
processing, 14,928,203 filtered sequences clustered into 963 different OTUs were obtained for 425 cecal rabbit 
samples. Most of these OTUs were assigned to phyla Firmicutes (76.74%), Tenericutes (7.22%) and Bacteroidetes 
(6.26%). Details on the taxonomic assignment can be found at Velasco-Galilea et al.5.

Statistical analyses: mixed models.  Parameter estimation.  The following univariate microbial mixed 
linear model was fitted to estimate the marginal posterior distributions of additive, litter, cage, and microbial 
effects of the individual growth traits ADGAL and ADGR with the mDataset:

where y is a vector containing the phenotypes (ADGAL or ADGR); β is a vector of the systematic effects of batch 
(5 levels) and of BW at weaning (2 levels: big and small) with its corresponding incidence matrix X; a is a vector 
including the additive genetic effects with the corresponding incidence matrix ZA; l is a vector with litter birth 
effects with the corresponding incidence matrix ZL; c is a vector including cage effects with the corresponding 
incidence matrix ZC; m is a vector having the animal microbial effects with the corresponding incidence matrix 
ZM; finally e is a vector of residuals. The mDataset used in these analyses included phenotypic information of 
425 rabbits born from 318 litters and housed in 192 cages, while the pedigree included relationships of 2547 
individuals.

The fullDataset was used to estimate the marginal posterior distributions of additive, litter, and microbial 
effects of ADFCRAL , ADFIAL and ADRFIAL from records on the 99 AL cages available. The following univariate 
microbial mixed linear model was fitted:

where y is a vector containing cage trait phenotypes ( ADFCRAL , ADFIAL or ADRFIAL ); β is a vector including 
the systematic effects of batch (5 levels) and of BW at weaning (2 levels: big and small) with its corresponding 
incidence matrix X. As described above, vectors a, l, m and e correspond to additive genetic, litter birth, animal 
microbial and residual effects, respectively. However, the corresponding incidence matrices ZA, ZL and ZM are 
not composed by zeros and ones but by real numbers representing the proportions of the different levels of the 
factor contributing to the cage-average.

In both models, the same sets of prior distributions were considered for the different factors. The system-
atic effects (β) were a priori assumed to follow uniform distributions. The assumed prior distribution for the 
additive genetic effects was a ~ NMV (0, A σ2A ), with A being the numerator relationship matrix56 and σ2A being 
the additive genetic variance. The prior distribution assumed for the litter effects was l ~ NMV (0, I σ2L ), with I 
being an identity matrix of appropriate dimension, and σ2L being the litter birth variance. The prior distribution 
for the cage effects was c ~ NMV (0, I σ2C ), with I also being an identity matrix of appropriate dimension, and 

y = Xβ+ ZAa + ZLl + ZCc + ZMm+ e,

y = Xβ+ ZAa + ZLl + ZMm+ e,

Figure 2.   Graphical summary of the experimental design, phenotypes analyzed, microbiota assessment of cecal 
samples and bioinformatic pipeline for OTU calling.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19495  | https://doi.org/10.1038/s41598-021-99028-y

www.nature.com/scientificreports/

σ
2
C

 being the cage variance. In different analyses, alternative prior distributions were assumed for the vector of 
animal-specific microbial effects, being its general form m ~ NMV (0, M σ2M ), with M being a between-animals 
relationship matrix due to microbial effects, and σ2M being the animal microbial variance. Three alternative 
definitions of M were considered in three separate analyses: (1) MO = OO′ , with O being the row-normalized 
CSS OTU count matrix, [n (animals) × m (OTUs)]; the O matrix was row-wise normalized by dividing the row 
vector elements by the row norms ensuring that MO had ones in its diagonal (this definition is fairly similar to 
that previously proposed by Difford et al.57; (2) MB = 1− B2

2
 ; with B being the Bray–Curtis distance matrix58 

computed from the CSS OTU count matrix; and iii) MU = 1− U2

2
 ; with U being the weighted Unifrac distance 

matrix59 computed from the CSS OTU count matrix. Both distance matrices (B and U) were computed using 
the “phyloseq” R package60.

To deal with the fact that microbial information was only available for some of the rabbits within a cage, it 
was necessary to generate the rows and columns of the between-animal covariance matrices due to the cecal 
microbial content for the animals not having microbial information assessed. This approach allows to consider 
the contributions of all individuals to the cage-average performance traits. Two different expansion strategies 
were adopted: (1) assigning to the animals without microbial information the within cage-average of each CSS 
OTU count, and then computing MO , MB and MU  between the 1470 animals under study (425 having microbial 
information plus their cage mates without microbial information); (2) first computing MO , MB and MU from 
the 425 animals with microbial information and then expanding with ones in the diagonal and zeros out of the 
diagonal the rows and columns corresponding to animals not having microbial information, thus obtaining 
MO,0 , MB,0 and MU,0 . The resulting covariance matrices were forced to be positive definite by conducting an 
eigen-value decomposition, saving all the positive eigen-values and their associated eigen-vectors, and finally 
reconstructing the covariance matrices from these elements. Note that the original (obtained between the 425 
animals having microbial composition) Bray–Curtis or unweighted Unifrac distance matrices could be undefined 
matrices, i.e., mixing positive and negative eigen values, since distance matrices are pairwise constructed. Thus, 
certain incongruities could exist when the distances are studied beyond pairs of individuals, which translate 
into non-positive definition of the whole distance matrix. These incongruities must be corrected if the distance 
matrix is going to be used as a covariance matrix.

The MCMC Bayesian estimation procedure was conducted using gibbsf90test program61. Chains of 2,000,000 
samples were run discarding the first 500,000 to allow the algorithm to reach convergence to the marginal pos-
terior distributions. Finally, one in every 10 samples was saved. Trace plots and histograms of Markov chains 
from the posterior distribution of the parameters of Bayesian models fitted for the individual growth traits and 
for the cage FE traits are included as Additional file 4.

The fractions of the phenotypic variance of ADGAL and ADGR explained by σ2A (heritability), σ2L (litter vari-
ance ratio), σ2C (cage variance ratio), and σ2M (microbiability;57) were calculated as :

where σ2P = σ
2
A + σ

2
L + σ

2
C + σ

2
M + σ

2
e is the phenotypic variance.

Similarly, for the cage traits ( ADFCRAL , ADFIAL and ADRFIAL ), the fractions of the phenotypic variance 
explained by σ2A (heritability), σ2L (litter variance ratio), and σ2M (microbiability) were calculated as:

where σ2P = σ
2
A + σ

2
L + σ

2
M + 7σ2e is the phenotypic variance. Given that σ2e represents the cage residual mean, 

it is necessary to multiply it by 7 (the average number of animals within cage in this study), thus obtaining an 
individual residual variance estimate referred to individual records. Note that l2 and c2 were defined but related 
results are not presented in this study.

Predictive ability assessment.  For each trait, two cross-validations assessments were conducted to evaluate 
whether including microbial information in the model improves its predictive ability. The first one was based 
on the above-described mixed model whose predictive performance was compared with that of the same model 
but without considering the microbial effect. Cross-validations were replicated 100 times. In each of them, the 
dataset for the individually measured traits (ADGAL and ADGR) was randomly split into training and validation 
sets with probabilities 0.9 and 0.1, respectively. This partition was done in a manner that ensured all litters and 
cages of the animals in the validation set were also represented in the training set. For the cage traits ( ADFCRAL , 
ADFIAL and ADRFIAL ), the dataset was randomly split in a way that cages within a given batch were assigned 
to the training or the testing set with probabilities 0.8 and 0.2, respectively. The predictive ability of each model 
was defined as the average, across 100 replicates, correlation coefficient between predicted and observed phe-
notypes in the validation set. In this cross-validation assessment, the training step of the model was conducted 
using the expectation–maximization residual maximum likelihood (EM-REML) algorithm as implemented in 
the program remlf9061. Paired t test62 was applied to compare the across replicates mean correlations obtained 
with the model considering microbial effect to that from the model that ignored this information. The tests were 
assumed paired because the same dataset was used in each replicate of both analyses (i.e., with and without bac-
terial effect). Empirical bootstrap P values for the paired t test were computed after generating 1000 bootstrap 
samples under the null hypothesis of the correlation coefficients from both models across the 100 replicates. The 
bootstrap P  value was defined as the proportion of bootstrap rounds having an estimated difference equal to or 
greater than that obtained with the original dataset. A P value lower than 0.05, after Bonferroni correction63, was 
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considered to support the rejection of the hypothesis of both models having the same predictive ability. In those 
cases where the null hypothesis was rejected, the percentage of times across the 100 replicates that the correlation 
coefficient obtained with the model considering microbial information was higher than that obtained with the 
model that ignored such information was computed.

Statistical analyses: multivariate models.  Predictive ability assessment.  Another predictive perfor-
mance assessment was conducted using a multivariate approach. Individual (ADGAL and ADGR) and cage traits 
( ADFCRAL , ADFIAL and ADRFIAL ) were fitted with sparse Partial Least Squares Regression (sPLSR) models. 
The predictors of the first sPLSR model where the columns of the design matrix obtained with the model.ma-
trix() R function62 after fitting for each trait a linear model defined by the same systematic effects as those used 
in the mixed model approach (i.e., batch and body size at weaning). The second sPLSR model fitted for each trait 
include as predictors the abovementioned systematic effects together with the 946 CSS OTU counts which were 
detected in at least 5% of the samples and had a sum of its counts resulting in a frequency greater than 0.01% of 
the total sum of all OTUs counts across all samples. CSS OTU counts on the 425 rabbits having measures of gut 
microbial composition were directly used for the analysis of the individual growth records. For the cage-average 
traits, it was needed to associate these cage-average performances to the cage-average CSS OTU counts. For each 
trait, the corresponding dataset was randomly divided into 5 folds, 4 of which constituted the learning dataset, 
and the remaining was used as the validation dataset. Before fitting the sPLSR on the learning dataset, optimal 
tuning parameters sparsity and number of latent components were chosen by an internal 5-fold cross-validation 
using cv.spls() function of the “spls” R package64 within ranges (0.01–0.99) and (1–20) for sparsity and number of 
latent components, respectively. With the tuning parameters returned by the cv.spls() function, the combination 
that resulted in the minimum mean squared prediction error (MSPE) was used to finally fit the sPLSR to the 
learning dataset by the function spls(). Then, the fitted sPLSR model was used to predict the host trait perfor-
mances of the validation dataset. This process was replicated 20 times with different seeds, thus obtaining 100 
replicates for each trait and model tested. The predictive ability of each model was defined as the average, across 
100 replicates, correlation coefficient between predicted and observed host trait phenotypes in the validation 
dataset. The significance of the differences in the correlation coefficient between observed and predicted re-
cords across these 100 replicates was tested using the bootstrap paired t tests previously described for the mixed 
model analysis. In this case, the comparison involved the correlations between observed and predicted records 
obtained with a model just fitting the systematic effects and with other model fitting both systematic effects and 
CSS OTU counts. Additionally, when the predictive ability of the model including the microbial information was 
declared as better than that obtained with that of the model only including the systematic effects as predictors, 
the taxonomy of those OTUs selected in more than 80% of the sPLSR replicates was studied with the reference 
taxonomic database RDP65. Finally, the Pearson’s correlation was computed to quantify the degree of association 
between selected OTUs and the trait of interest.

Identification of relevant OTUs.  Multivariate sPLSR models were also used to fit the posterior means of the 
individual microbial effects predicted with the univariate microbial mixed linear models that led to a significant 
prediction improvement of growth and FE traits. This approach was conducted in an attempt to identify the most 
relevant OTUs for the prediction of such phenotypes. In each case, the microbial composition records associated 
with the animals that conformed the mDataset were randomly divided into 5-fold (one and 4-fold constituted 
the validation and the learning dataset, respectively). Before fitting the sPLSR on the learning dataset, optimal 
tuning parameters sparsity and number of latent components were chosen by an internal 5-fold cross-validation 
using cv.spls() function of the “spls” R package as described above. A sPLSR model was then fitted to the learning 
dataset by the function spls() with the tuning parameters returned by the cv.spls() function using the 946 CSS 
OTU counts as predictors. This process was replicated 20 times with different seeds for each trait and model 
tested to select those OTUs chosen in at least 80 out of the 100 replicates conducted. The OTUs considered as 
relevant for the prediction of a given trait were those having the greatest loading weights (i.e., below 5th and 
above 95th‰ values) and that were selected with all the models tested. The taxonomy of the relevant OTUs was 
studied with the reference taxonomic database RDP and the Pearson’s correlation was computed to quantify the 
degree of association between each OTU and the trait of interest.

Ethics approval and consent to participate.  This study was carried out in compliance with the ARRIVE 
guidelines. This study was carried out in accordance with the relevant guidelines and regulations of the animal 
care and use committee of the Institute for Food and Agriculture Research and Technology (IRTA) which adopts 
“The European Code of Conduct for Research Integrity”. The protocol was approved by the committee of the 
Institute for Food and Agriculture Research and Technology (IRTA).

Data availability
The raw sequence data were deposited in the sequence read archive of NCBI under the accession number 
SRP186982 (BioProject PRJNA524130). Metadata, the filtered and CSS-normalized OTU table and corresponding 
taxonomic assignments have all been included as Additional files 1, 2 and 3, respectively.
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