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Abstract

The specific concentrations of sulfonamides in non-target feed for food-producing animals, below
which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria
relevant for human and animal health, as well as the specific antimicrobial concentrations in feed
which have an effect in terms of growth promotion/increased yield were assessed by EFSA in
collaboration with EMA. Details of the methodology used for this assessment, associated data gaps
and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed
Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the
assessment was applied. However, due to the lack of data on the parameters required to calculate the
FARSC, it was not possible to conclude the assessment until further experimental data are available. To
address growth promotion, data from scientific publications obtained from an extensive literature
review were used. Levels in feed that showed to have an effect on growth promotion/increased yield
were identified for three sulfonamides: sulfamethazine, sulfathiazole and sulfamerazine. It was
recommended to carry out studies to generate the data that are required to fill the gaps which
prevented the calculation of the FARSC for these antimicrobials.
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1. Introduction

The European Commission requested EFSA to assess, in collaboration with the European Medicines
Agency (EMA), (i) the specific concentrations of antimicrobials resulting from cross-contamination in
non-target feed for food-producing animals, below which there would not be an effect on the
emergence of, and/or selection for, resistance in microbial agents relevant for human and animal
health (term of reference 1, ToR1), and (ii) the levels of the antimicrobials which have a growth
promotion/increase yield effect (ToR2). The assessment was requested to be conducted for 24
antimicrobial active substances specified in the mandate.1

For the different substances (grouped by class if applicable)1, separate scientific opinions included
within the ‘Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target
feed’ series (Scientific Opinions Part 2 - Part 13, EFSA BIOHAZ Panel, 2021b–l – see also the Virtual
Issue; for practical reasons, they will be referred as ‘scientific opinion Part X’ throughout the current
document) were drafted. They present the results of the assessments performed to answer the
following questions: Assessment Question 1 (AQ1), which are the specific antimicrobial concentrations
in non-target feed below which there would not be emergence of, and/or selection for, resistance in
the large intestines/rumen, and AQ2: which are the specific antimicrobial concentrations in feed of
food-producing animals that have an effect in terms of growth promotion/increased yield. The
assessments were performed following the methodology described in Section 2 of the Scientific
Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (EFSA BIOHAZ Panel, 2021a, see
also the Virtual Issue). The present document reports the results of the assessment for the
sulfonamides.

1.1. Background and Terms of Reference as provided by the requestor

The background and ToRs provided by the European Commission for the present document are
reported in Section 1.1 of the Scientific Opinion “Part 1: Methodology, general data gaps and
uncertainties” (see also the Virtual Issue).

1.2. Interpretation of the Terms of Reference

The interpretation of the ToRs, to be followed for the assessment is in Section 1.2 of the Scientific
Opinion “Part 1: Methodology, general data gaps and uncertainties” (see also the Virtual Issue).

1.3. Additional information

1.3.1. Short description of the class/substance

The sulfonamides are folate pathway antagonists used since the 1930s. Sulfonamides are structural
analogues of para-aminobenzoic acid (PABA) substrate and a potent inhibitor of dihydropteroate
synthase (DHPS), which catalyses the formation of dihydropteroate. This blocks the synthesis of folate
which is an essential co-factor in the biosynthesis of thymidine and thus in DNA synthesis (Anderson
et al., 2011). As bacteria cannot take up folate from the environment, disruption of this metabolic
pathway results in inhibition of bacterial growth (Boothe, 2015; Fern�andez-Villa et al., 2019).

More than 150 sulfonamides, differing in their heterocyclic ring structure, have been used in human
and veterinary medicine. The effect is bacteriostatic but can be bactericidal at high concentrations.
Although all of the sulfonamides have the same mechanism of action, differences in terms of
antimicrobial spectrum, antimicrobial activity and in terms of pharmacokinetics (PK) exist. The
differences are due to the variation of physiochemical characteristics seen among the sulfonamides.

Sulfonamides are mainly used in combination with trimethoprim. Combinations of a sulfonamide
and a diaminopyrimidine result in synergistic, bactericidal actions on susceptible organisms. The
optimal ratio in vitro for the combination of trimethoprim and a sulfonamide is 1:20 but could vary in
function of the microorganism considered. However, the licensed products, supported by PK
considerations, use generally a ratio of 1:5 resulting in an optimal ratio at the site of infection.

1 Aminoglycosides: apramycin, paromomycin, neomycin, spectinomycin; Amprolium; Beta-lactams: amoxicillin, penicillin V;
Amphenicols: florfenicol, thiamphenicol; Lincosamides: lincomycin; Macrolides: tilmicosin, tylosin, tylvalosin; Pleuromutilins:
tiamulin, valnemulin; Sulfonamides; Polymyxins: colistin; Quinolones: flumequine, oxolinic acid; Tetracyclines: tetracycline,
chlortetracycline, oxytetracycline, doxycycline; Diaminopyrimidines: trimethoprim.
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1.3.2. Main use2

Sulfonamides are the oldest manufactured therapeutic antibacterial agents and were initially used in
veterinary medicine for bovine mastitis therapy in 1937 (EMA/CVMP/CHMP, 2020). Several substances
belonging to sulfonamides class are approved for use in food-producing and companion animals (e.g.
sulfadiazine, sulfadimidine, sulfamethoxazole, sulfadimethoxine). Sulfonamides are extremely important
in veterinary medicine in view of the variety of their uses and the nature of the diseases treated.
These classes when administered alone or in combination are of critical importance in the treatment of
a wide variety of diseases (bacterial infections, coccidial infections and protozoan infections) in many
animal species. Products containing sulfonamides exist in formulations for use in groups (oral
formulation) and individual animals (injectable formulation), for systemic and local treatments (Lees
et al., 2021). For examples, sulfathiazole, sulfamethazine and sulfadiazine are mainly used in
prophylaxis/metaphylaxis and therapy in animal husbandry and veterinary medicine (Baptiste and
Kyvsgaard, 2017; Charuaud et al., 2019). For veterinary, different combinations of sulfonamides with
trimethoprim are used and they are registered to be used in most of the domestic animals (livestock
and pets) for the treatment and metaphylaxis of diseases caused by a broad spectrum of gram-
positive and many gram-negative bacteria. For example, a sulfadiazine/trimethoprim combination is
used in calves, lambs, swine, rabbits and poultry for the treatment and metaphylaxis of respiratory and
digestive diseases. Veterinary products containing this combination are also authorised in horses for
the treatment of respiratory tract infections associated with Streptococcus spp. and Staphylococcus
aureus; gastrointestinal infections associated with E. coli; urogenital infections associated with beta-
haemolytic streptococci; infections of open or drained wounds and abscesses associated with
Streptococcus spp. and Staphylococcus aureus (EMA/CVMP/CHMP, 2020).

Other combinations, e.g. sulfamethoxazole/trimethoprim, are approved for oral administration in
fattening pigs for the treatment and metaphylaxis of post-weaning diarrhoea caused by Escherichia coli
K88, K99 or 987P-positive ß-hemolytic strains and secondary bacterial infections caused by Pasteurella
multocida, Actinobacillus pleuropneumoniae, Streptococcus spp. and Haemophilus parasuis. In broilers,
the approved indications are treatment and metaphylaxis of colibacillosis caused by Escherichia and
coryza caused by Avibacterium paragallinarum.

1.3.3. Main pharmacokinetic data

Sulfonamides share similar PK features in terms of absorption and elimination. Most sulfonamides
are rapidly absorbed from the gastrointestinal tract. Sulfonamides are then mainly metabolised by the
liver both by phase 1 (oxidation) and phase 2 (acetylation, glucuronidation or sulfation) reactions,
depending on the animal species (Prescott, 2013). Phase 2 reactions increase the hydrophilic character
of metabolites, thereby favouring renal excretion. The elimination of sulfonamides, as the parent drug
or metabolites, occurs mainly through renal excretion. For the parent compounds, glomerular filtration
is predominant, while the metabolites are mainly eliminated via tubular secretion. Despite these
common features, the percentages of the drug absorbed after oral administrations vary among
sulfonamides and thus, each drug will be assessed separately.

Sulfadiazine

The bioavailability of sulfadiazine is around 69 � 10% in sheep (Batzias et al., 2005),
83.9 � 17.0% in goats (Elbadawy et al., 2016), 74.44 � 12.03% in fed horses receiving sulfadiazine in
a paste (Winther et al., 2011) and ranged from 67% to 92% in non-fasted broilers (L€oscher et al.,
1990; Baert et al., 2003). The bioavailability in non-fasted pigs is complete (Baert et al., 2001).

In pigs, sulfadiazine was shown to accumulate towards the distal segments of the intestines
following absorption through the gut wall (De Smet et al., 2017). Mean concentrations of sulfadiazine
in caecum, proximal colon ascendens, distal colon ascendens and colon descendens of pigs fed with
cross-contaminated feed with 12.5 mg sulfadiazine/kg feed were 0.47, 0.45, 0.67 and 0.54 lg/g
respectively (Peeters et al., 2016). With standard doses of sulfadiazine, maximal concentrations found
in the faeces were 26.93 � 8.36 lg/g and 19.36 � 1.86 lg/g after oral gavage and consumption of

2 Antimicrobials are currently used in food-producing animal production for treatment, prevention and/or metaphylaxis of a
large number of infections, and also for growth promotion in non-EU countries. In the EU, in future, use of antimicrobials for
prophylaxis or for metaphylaxis is to be restricted as addressed by Regulation (EU) 2019/6 and use in medicated feed for
prophylaxis is to be prohibited under Regulation (EU) 2019/4.
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medicated feed in pigs respectively (De Smet et al., 2017). These studies suggest that sulfadiazine,
after absorption, is partly subjected to a mechanism of excretion in the intestines.

Sulfadimethoxine

The bioavailability is around 100% in sheep (Ferran et al., 2020) and higher than 90% in pigs
(Shimoda et al., 1990). The main metabolite of sulfadimethoxine in cattle is known to be
pharmacologically inactive and mostly excreted in urine without being extensively reabsorbed by the
kidney (Chiesa et al., 2012).

Sulfamethazine = sulfadimidine

The bioavailability of sulfamethazine is around 58% in sheep (Bulgin et al., 1991) and
44.9 � 16.4% in goats (Elbadawy et al., 2016).

The bioavailability of sulfamethazine in pigs was 48.0 � 11.5% when administered mixed with
pelleted feed for 3 consecutive days (Nouws et al., 1986). However, another study showed that after
oral administration of labelled sulfamethazine to pigs, only 16% of the dose was eliminated via the
faeces suggesting an absorption higher than 48% (Giera et al., 1982).

In calves and cows, sulfamethazine is metabolised predominantly to the N4- acetyl metabolite;
hydroxylation is absent or is a minor metabolic pathway (Nouws et al., 1991).

Sulfamethoxazole

The oral bioavailability of sulfamethoxazole is 99.4 � 7.6% in fasted calves (Nishida et al., 1997)
and around 46% in fasted hens (Queralt and Castells, 1985).

Binding of sulfachlorpyridazine

In vitro binding of sulfachlorpyridazine in caecal contents of horses after incubation for 3 h at 37°C
ranged from 58% to 69% (Van Duijkeren et al., 1996).

1.3.4. Main resistance mechanisms

Resistance to sulfonamides can be both chromosomally and plasmid mediated. Altered proteins
conferring reduced affinity with the compound is the most common mechanism of resistance. For
example, in staphylococci, resistance is chromosomally mediated by mutations in genes encoding for
dihydropteroate synthetase. Concerning horizontal spread of resistance, two plasmids were originally
characterised harbouring genes expressing drug-insensitive variants of the target enzymes
dihydropteroate synthase (sul1 and sul2). The sul1 genes are often linked to the Tn21 type integron,
while sul2 is usually located on small plasmids such as IncQ family. Also, sul1 gene is part of class 1
integrons and thus often associated with other resistance genes. Another variant of sul gene, sul3 has
also been identified from various animals and foods. Resistance to sulfonamides has spread extensively
and rapidly. Nowadays, high prevalence rates of sulfonamide resistance genes sul1, sul2, and sul3
have been observed in Gram-negative bacteria isolated from humans, animals, and aquaculture.
Overproduction of PABA can create a competition with sulfonamides preventing the inhibition of
dihydropteroate synthetase. Low-level resistance may also be mediated by alternate folic acid
synthesis pathways (Antunes et al., 2005; Jiang et al., 2019; Sk€old, 2000, Sk€old, 2001; Boothe, 2015).

2. Data and methodologies

The data sources and methodology used for this opinion are described in a dedicated document, the
Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual Issue).

3. Assessment

3.1. Introduction

As indicated in the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’
(EFSA BIOHAZ Panel, 2021a, see also the Virtual Issue), exposure to low concentrations of
antimicrobials (including sub-minimum inhibitory concentrations (sub-MIC)) may have different effects
on bacterial antimicrobial resistance evolution, properties of bacteria and in animal growth promotion.
Some examples including emergence of and selection for antimicrobial resistance, mutagenesis,
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virulence and/or horizontal gene transfer (HGT), etc. for the antimicrobials under assessment are
shown below.

3.1.1. Resistance development/spread due to sub-MIC concentrations of
sulfonamides: examples

Few studies were identified on effects of sub-MIC of sulfonamides on selection of resistance, HGT
or virulence. Generally, the MICs against specific susceptible bacteria for sulfonamides are lowered
when administered in combination with trimethoprim. The resistance development potential due to the
antimicrobial combination is lower than that to each individual agent. This aspect is of importance in
view of the common resistance to sulfonamides and the rapid development of resistance to
diaminopyrimidines when used alone.

3.1.1.1. Effects of sub-MIC concentrations on selection for resistance and mutagenesis

• It has been demonstrated in in vitro mutagenic experiments that sub-MIC levels of
sulfonamides produced statistically significant increases in mutant frequency with a maximal
increase of 17.1-, 6,3-, 8.7-fold, respectively for trimethoprim, sulfamethoxazole and
trimethoprim/sulfamethoxazole. A wild-type strain and a recA mutant strain were tested. The
corresponding MIC values for sulfamethoxasole, trimethoprim and sulfamethoxasole/
trimethoprim were, for the wild-type strain, 256, 0.5 and 0.5/9.5 mg/L and for the recA
mutant strain 256, 0.25 and 0.25/4.75 mg/L. The mutagenic effect was tested for five different
concentrations, including two lower and two higher than the MIC (i.e. 1/4 of MIC, 1/2 of MIC,
MIC, 2 9 MIC and 4 9 MIC). The concentration of each antimicrobial producing the highest
effect was re-tested using five independent replicates to confirm the results. It was concluded
that while most antimicrobials produced mild increases in mutagenesis, trimethoprim,
sulfamethoxazole and trimethoprim/sulfamethoxazole produced the highest increases in
mutant frequency in both tests (rifampicin and fosfomycin resistance) (Thi et al., 2011).

• Another in vitro experiment conducted on a multiresistant strain of P. aeruginosa showed that
sub-inhibitory concentrations of sulfonamides upregulated expression of specific resistant
genes (sul1) and efflux pumps (mexD) (Bruchmann et al., 2013).

3.1.1.2. Effects of sub-MIC concentrations on horizontal gene transfer and virulence

Regarding effects of sub-MIC levels of sulfonamides on HGT and virulence, some published in vitro
studies have showed effects. Even if scarce, this information provides some insight on the ability of
low concentrations to influence bacterial behaviour.

• In the study of Jutkina et al. (2018), an in vitro method was developed to assess the transfer
of resistance gene to a recipient bacterial strain when exposed to low concentrations. In a
study published in 2018, the same authors using this methodology had identified for example
that exposure to sulfamethoxazole at 1 mg/L (i.e. 1/16 of the MIC) significantly increases the
in vitro HGT of in conjugation assay from a bacterial community to a E. coli recipient strain
(MIC for sulfamethoxazole 16 mg/L).

• Bruchmann et al. (2013) also showed that for the in vitro experiments mentioned above on
multiresistant strain of P. aeruginosa, the application of sulfamethoxazole, erythromycin and
roxithromycin induced changes in biofilm dynamics regarding biomass formation, spatial
structure and specific gene expression.

• In the study of Zhanel and Nicolle (1992), sub-inhibitory concentrations were reported to alter
the adherence of E. coli to uroepithelial cells. It has been shown for example that both
trimethoprim and sulfonamides consistently decrease bacterial adherence at concentrations
ranging from 1/32 to 1/2 of MIC and 1/4 to 1/2 of MIC, respectively (Zhanel and Nicolle, 1992).

3.2. ToR1. Estimation of the antimicrobial levels in non-target feed that
would not result in the selection of resistance: Feed Antimicrobial
Resistance Selection Concentration (FARSC)

As explained in the methodology Section (2.2.1.3) of the Scientific Opinion ‘Part 1: Methodology,
general data gaps and uncertainties’, the estimation of this value for sulfonamides for different animal
species, if suitable data were available, would follow a two-step approach as described below:
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The first step would be the calculation of the predicted minimal selective concentration (PMSC) for
sulfonamides as indicated in Table 1. However, no MSC data required to do the calculations are available.

Due to the lack of PMSC, no FARSC could be calculated. If PMSC was available, the FARSC
(FARSCintestine and FARSCrumen) corresponding to the maximal concentrations in feed would be
calculated for each species from the equations below (for details, see Section 2.2.1.3.2 of the Scientific
Opinion Part 1; see also the Virtual Issue) by including specific values for the different molecules of
sulfonamides:

FARSCintestine ðmg=kg feedÞ ¼ PMSC� daily faeces
ð1� IÞ � ð1� F þ F � GEÞ � daily feed intake

FARSCrumen ðmg=kg feedÞ ¼ PMSC� volume of rumen
ð1� IÞ � daily feed intake

With daily faeces being the daily fresh faecal output in kg, I the inactive fraction, F the fraction
available, GE the fraction of the antimicrobial that is secreted back into the intestinal tract for
elimination, after initially being absorbed into the bloodstream, and daily feed intake being the daily
dry-matter feed intake expressed in kg.

Sulfadiazine

Sulfadiazine is well absorbed in all species and one study suggests an intestinal elimination in pigs.
There is no information on the potential binding of sulfadiazine to intestinal contents.

The values of F, GE and I extracted from literature for the calculations of FARSC are summarised in
Table 2. The first set of values (scenario 1) corresponds to the average of published values while
scenario 2 corresponds to scenario that would lead to lower FARSC and scenario 3 to scenario that
would lead to higher FARSC.

Table 1: Calculation of sulfonamides predicted minimal selective concentration (PMSC)

Antimicrobial
(all values in
mg/L)

MICtest MSCtest
MICtest/MSCtest

ratio
MIClowest

Predicted MSC (PMSC)
for most susceptible species
(MIClowest/MICtest/MSCtest)

Sulfonamides NA NA NA 1 NA

MIC: minimum inhibitory concentration. MSC: minimal selective concentration. MSCtest: MSC experimentally determined.
MIClowest: lowest MIC data for sulfamethoxazole calculated based on data from the EUCAST database as described in Bengtsson-
Palme and Larsson (2016), and Methodology Section 2.2.1.3.1.1 in the Scientific Opinion Part 1 (see also the Virtual Issue).
(EUCAST database last accessed 15 May 20213). NA: not available.

Table 2: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of sulfadiazine for the different animal species

Sulfadiazine data Scenario #1 Scenario #2 Scenario #3

Inactive fraction (I) NA NA NA

Bioavailability (F) sheep 0.7 0.6 0.8
Bioavailability (F) goat 0.8 0.6 0.9

Bioavailability (F) pig 1 0.85 1
Bioavailability (F) horse 0.75 0.5 0.85

Bioavailability (F) broilers 0.75 0.65 0.95

Gastrointestinal elimination (GE) pig 0.1 0.2 0

NA: not available. Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability (F)
is the fraction of antimicrobial that is absorbed from the digestive tract to the blood. Gastrointestinal elimination (GE) is the fraction
of the antimicrobial that is secreted back into the intestinal tract for elimination, after initially being absorbed into the bloodstream.
The fraction remaining in the digestive tract and that could be available for the bacteria is equal to (1 – F + F 9 GE).

3 https://mic.eucast.org/search/
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Sulfadimethoxine

Sulfadimethoxine is well absorbed in pigs and sheep. There are no data for other species. There is
no information on the intestinal elimination nor on the binding of sulfadiazine to intestinal contents.

The values of F, GE and I extracted from literature for the calculations of FARSC are summarised in
Table 3.

Sulfamethazine = sulfadimidine

Sulfadimethazine appears to be less absorbed in pigs, goats and sheep than other sulfonamides.
There are no data for other species. There is no information on the intestinal elimination nor on the
binding of sulfadiazine to intestinal contents.

The values of F, GE and I extracted from literature for the calculations of FARSC are summarised in
Table 4. The first set of values (scenario 1) corresponds to the average of published values while
scenario 2 corresponds to scenario that would lead to lower FARSC and scenario 3 to scenario that
would lead to higher FARSC.

Sulfamethoxazole

The bioavailability of sulfamethoxazole was only found for fasted calves and hens. There are no
data for fed animals and for other species. There is no information on the intestinal elimination nor on
the binding of sulfadiazine to intestinal contents.

The values of F, GE and I extracted from literature for the calculations of FARSC are summarised in
Table 5. The first set of values (scenario 1) corresponds to the average of published values while
scenario 2 corresponds to scenario that would lead to lower FARSC and scenario 3 to scenario that
would lead to higher FARSC.

Table 3: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of sulfadimethoxine for the different animal species

Sulfadimethoxine data Scenario #1

Inactive fraction (I) NA

Bioavailability (F) sheep 1
Bioavailability (F) pig 0.90

Gastrointestinal elimination (GE) pig NA

NA: not available. Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability
(F) is the fraction of antimicrobial that is absorbed from the digestive tract to the blood. Gastrointestinal elimination (GE) is the
fraction of the antimicrobial that is secreted back into the intestinal tract for elimination, after initially being absorbed into the
bloodstream. The fraction remaining in the digestive tract and that could be available for the bacteria is equal to
(1 – F + F 9 GE).

Table 4: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of sulfadimethazine for the different animal species

Sulfadimethazine data Scenario #1 Scenario #2 Scenario #3

Inactive fraction (I) NA NA NA

Bioavailability (F) sheep 0.6 – –

Bioavailability (F) goat 0.45 0.30 0.6

Bioavailability (F) pig 0.5 0.35 0.85

Gastrointestinal elimination (GE) NA NA NA

NA: not available. Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability (F)
is the fraction of antimicrobial that is absorbed from the digestive tract to the blood. Gastrointestinal elimination (GE) is the fraction
of the antimicrobial that is secreted back into the intestinal tract for elimination, after initially being absorbed into the bloodstream.
The fraction remaining in the digestive tract and that could be available for the bacteria is equal to (1 – F + F 9 GE).

AMR GP Feed Residues

www.efsa.europa.eu/efsajournal 9 EFSA Journal 2021;19(10):6863



Due to the absence of MSC and other PK data the estimation of the FARSC for the different
sulfonamides was not possible.

3.2.1. Associated data gaps and uncertainties

With regard to the uncertainties and data gaps described in the Scientific Opinion Part 1
(Sections 3.1 and 3.3; see also the Virtual Issue) we identified the following for the sulfonamides
under assessment:

i) MSC data: no data is available.
ii) MIC data: only data for sulfamethoxazole are available in the EUCAST database.
iii) Bioavailability: quantitative data are not available for each species and each sulfonamide.
iv) Inactive fraction: the data only come from one study conducted in horses with

sulfachlorpyridazine.
v) Intestinal secretion: the results of one study suggest that there is an intestinal secretion of

sulfadiazine in pigs, but no quantitative data are available for the value of GE.
vi) Ruminants: no data are available for sulfonamides administered to adult ruminants by oral

route.

3.2.2. Concluding remarks

Due to the lack of data on the parameters required to calculate the FARSC, it is not possible to
conclude the ToR1 assessment until further experimental data are available.

3.3. ToR2. Specific antimicrobials concentrations in feed which have an
effect in terms of growth promotion/increased yield

3.3.1. Sulfonamides

3.3.1.1. Literature search results

The literature search, conducted according to the methodology described in Section 2.2.2.1 of the
Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual
Issue), resulted in 2,336 papers mentioning sulfonamides and any of the food-producing animal
species considered4 and any of the performance parameters identified as relevant for the assessment
of the possible growth-promoting effects of sulfonamides.5 After removing the reports not matching
the eligibility criteria, 75 publications were identified.

Table 5: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of sulfamethoxazole for the different animal species

Sulfamethoxazole data Scenario #1 Scenario #2 Scenario #3

Inactive fraction (I) NA NA NA

Bioavailability (F) calf 1 0.9 1
Bioavailability (F) hen 0.45 – –

Gastrointestinal elimination (GE) NA NA NA

Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability (F) is the fraction of
antimicrobial that is absorbed from the digestive tract to the blood. Gastrointestinal elimination (GE) is the fraction of the
antimicrobial that is secreted back into the intestinal tract for elimination, after initially being absorbed into the bloodstream. NA: not
available. The fraction remaining in the digestive tract and that could be available for the bacteria is equal to (1 – F + F 9 GE).

4 Ruminants: growing and dairy (cattle, sheep, goats, buffaloes); pigs: weaned, growing and reproductive; equines; rabbits;
poultry: chickens and turkeys for fattening, laying hens, turkeys for breeding, minor avian species (ducks, guinea fowl, geese,
quails, pheasants, ostrich); fish: salmon, trout, other farmed fish (seabass, seabream, carp); crustaceans; other animal species.

5 (i) Intake-related parameters: feed intake, feed/gain ratio, feed efficiency, feed intake/milk yield, feed intake/egg mass; (ii)
Weight-related parameters: body weight, body weight gain; (iii) Carcass-related parameters: carcass weight, carcass yield,
carcass chemical composition, relative weight of the (different sections of) intestine; (iv) Milk or egg production/quality: milk
yield, fat/protein yield, egg production/laying rate, egg weight, egg mass; (v) Digestibility/utilisation of nutrients: utilisation of
some nutrients (e.g., DM, Ca, P), digestibility; (vi) Health-related parameters: reduction of morbidity and/or mortality; (vii)
Herd/flock related parameters; (viii) Other endpoints: e.g., intestinal morphological characteristics (villi height/width), changes
in microbiota.
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3.3.1.2. Evaluation of the studies

The 75 publications identified in the literature search were appraised for suitability for the
assessment of the effects of sulfonamides on growth or yield of food-producing animals; this appraisal
was performed by checking each study against a series of pre-defined exclusion criteria (see
Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’;
see also the Virtual Issue).6 A total of 70 publications were not considered suitable for the assessment,
because of several shortcomings identified in the design of the studies or in the reporting of the results.
The list of excluded publications and their shortcomings are presented in Appendix A (Table A.1).

The publications considered suitable for the assessment are described and assessed in
Section 3.3.1.3.

3.3.1.3. Assessment of the effects of sulfonamides on growth performance and yield

Five publications were considered suitable for the assessment of the effects of sulfonamides on
growth and yield performance in food-producing animals. The effects of the administration of the
antimicrobial on the endpoints described in Section 2.2.2.2.2 of the Scientific Opinion ‘Part 1:
Methodology, general data gaps and uncertainties’ (see also the Virtual Issue) were evaluated. The
selected publications and the effects on the relevant endpoints are described below. The summary of
the studies includes the description of the source of sulfonamide used —either as the base or as any
specific form/commercial preparation—, and the concentration(s) applied as reported in each study.

3.3.1.3.1. Study in ruminants

Only one study in lambs for fattening was identified. The study by Calhoun and Shelton (1973),
involved a total of 120 females and castrated males Crossbred lambs (white-faced and black-faced),
which were used in three identical successive experiments. In each experiment, the lambs were
distributed in eight pens in groups of five animals per pen and allocated to four dietary treatments. In
each experiment, three basal diets (for phases days 0–7, 8–14, 15–56) containing 40% roughage were
either not supplemented (control) or supplemented with different treatments. Two were the relevant
treatments: a control and a treatment consisted of sulfamethazine (unspecified chemical form;
Sulmet® 7.7% sulfamethazine American Cyanamid Company, Princeton, New Jersey, USA) at a
concentration of 55 mg/kg feed. All three experiments lasted 56 days. The animals were weighed on
days 0, 7, 14, 18 and 56. Feed consumption was determined daily for the first week and thereafter at
weekly intervals. Rectal temperature was measured twice a week for the first 28 days. Data from the
three experiments were pooled and analysed, and at the end of the experiments the lambs’ fed rations
supplemented with sulfamethazine showed, compared to the control group, a higher feed consumption
(1.34 vs. 1.28 kg/day) and a higher daily weight gain (210 vs 184 g). The study showed that
sulfamethazine at 55 mg/kg feed had a growth-promoting effect in lambs.

3.3.1.3.2. Study in poultry

In the study of Stutz and Lawton (1984), Experiment 4, a total of 168 two-day-old male chickens
for fattening (Hubbard) were allocated to six dietary treatments and distributed in six (control) or
three (experimental) pens per treatment, in groups of eight birds per pen. The basal diet based on
maize and soybean meal was either not supplemented (control) or supplemented with different
treatments. Two were the relevant treatments: a control and a treatment consisting of sulfathiazole
(unspecified form) supplementation at a concentration of 110 mg/kg feed. The experiment lasted eight
days (from day 3 to day 11 of age). Body weight (BW) and cumulative feed intake (FI) were recorded
and feed to gain ratio (F:G) calculated at the end of the experiment. At the end of the experiment, 32
chickens (control) or 16 chickens (sulfathiazole treatment) were slaughtered for relative ileal weight
determination, whereas ileal digesta from 12 chickens (control) or 6 chickens (sulfathiazole treatment)
were used for enumeration of C. perfringens. At the end of the experiment, the birds treated with
sulfathiazole at 110 mg/kg feed, compared to the control group, showed no differences in daily weight
gain, F:G or C. perfringens count, but had increased relative ileum weight (1.57% vs. 1.46% BW).
Dietary sulfathiazole supplementation at 110 mg/kg feed did not have a growth-promoting effect in
chickens for fattening.

6 The following exclusion criteria were applied: ‘Combination of substances administered to the animals’, ‘Antimicrobial used
different from the one under assessment’, ‘Administration via route different from oral’, ‘Use of the antimicrobial with a
therapeutic scope’, ‘Animals subjected to challenges with pathogens’, ‘Animals in the study sick or not in good health,
Zootechnical parameters not reported’, ‘Insufficient reporting/statistics’, ‘Other (indicate)’.
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3.3.1.3.3. Studies in fish

In the study of Boujard and Le Gouvello (1997), in Experiment 1, a total of 360 rainbow trouts
(Oncorhynchus mykiss) were allocated to four dietary treatments and distributed in three tanks
(replicates) per treatment, in groups of 30 fish per tank. One basal diet based on fish meal and maize
starch was either not supplemented (control) or supplemented with different treatments. Two were the
relevant treatments: a control and a treatment consisting of sulfamerazine sodium supplementation
(Sigma Chem.) at a concentration of 10,000 mg/kg feed (corresponding to 9,200 mg sulfamerazine/kg
feed). The study lasted 20 days, and fish in the sulfamerazine sodium group received the basal diet
without sulfamerazine sodium supplementation between days 1 and 10 of the experiment and with
sulfamerazine sodium supplementation between days 11 and 20 of the experiment. Mortality and
health status were checked every day. Fish weight was recorded on days 1, 10, and 20 of the study.
Feed intake was recorded and specific growth rate and F:G calculated at the end of the experiment.
Overall, mortality was low (1.4%). Feed intake was decreased in the sulfamerazine sodium group by
more than 50% during the last 10 days compared to the control group. Consequently, specific growth
rate decreased in the sulfamerazine sodium group during the last ten days (1.1 vs. 2.0%), when
compared to the control group. Feed to gain ratio remained unaffected during the whole period.
Overall, negative effects were observed on performance parameters at 10,000 mg sulfamerazine
sodium/kg feed (corresponding to 9,200 mg sulfamerazine/kg feed) of for rainbow trout.

In the study by Glencross et al. (2006) a total of 960 juvenile rainbow trout (Oncorhynchus mykiss)
of 35.6 g BW were allocated to 48 tanks (four tanks/treatment, 20 fish/tank). One basal diet was
either not supplemented (control) or supplemented with different treatments. Two were the relevant
treatments: a control and treatments consisting of sulfamerazine sodium supplemented at 5,000 mg/
kg feed and 10,000 mg/kg feed (corresponding to 4,600 and 9,200 mg sulfamerazine/kg feed). The
experiment lasted 42 days. The following parameters were measured: survival of fish, growth
parameters (BW, FI) and nutrient utilisation (nitrogen, phosphorous and energy). Further calculated
parameters were weight gain and feed conversion ratio. Final BW of the fish in the groups
supplemented with sulfamerazine was lower (117.4 and 97.8 g for the groups fed sulfamerazine
sodium at 5,000 or 10,000 mg/kg feed, respectively) compared with the control fish (126.8 g); the
weight gain of the fish in the supplemented groups was decreased (81.9 and 62 g for the groups fed
sulfamerazine sodium at 5,000 or 10,000 mg/kg feed, respectively) compared with the control fish
(91.2 g/fish). Feed intake was lower (1.64 and 1.28 g/fish per day for the groups fed sulfamerazine
sodium at 5,000 or 10,000 mg/kg feed, respectively) compared to control fish (1.89 g/fish per day).
The supplementation of sulfamerazine sodium at the concentrations of 5,000 and 10,000 mg/kg feed
(corresponding to 4,600 and 9,200 mg sulfamerazine/kg feed) negatively affected the performance of
rainbow trout.

3.3.1.4. Discussion

In the four studies assessed, only three sulfonamides were tested (sulfamethazine, sulfathiazole
and sulfamerazine), being this fact a limitation when considering the large variety of substances that
the functional group ‘sulfonamides’ comprises.

From the studies examined, the test item has been described as (i) ‘sulfamerazine sodium’ (two
studies), (ii) ‘sulfamerazine’ (unspecified form; one study) or (iii) ‘sulfathiazole’ (unspecified form; one
study). Therefore, for the cases (ii) and (iii), an uncertainty on the exact product/concentration applied
has been identified.

A detailed analysis of the uncertainties for sulfonamides is included in Appendix B (Table B.1) of
this document, and the Section 3.3 of the Scientific Opinion Part 1 (see also the Virtual Issue).

3.3.1.4.1. Ruminants

In one study in lambs for fattening, dietary sulfamethazine supplementation at 55 mg/kg feed
improved the growth performance of lambs (Calhoun and Shelton, 1973).

3.3.1.4.2. Poultry

From one study in poultry, sulfathiazole supplementation at 110 mg/kg feed had no growth-
promoting effect in chickens for fattening (Stutz and Lawton, 1984).
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3.3.1.4.3. Fish

From two studies in rainbow trout, dietary sulfamerazine sodium supplementation adversely
affected the performance of rainbow trout fingerlings at 10,000 mg/kg feed (Boujard and Le Gouvello,
1997) and that of juvenile rainbow trout at 5,000 mg/kg feed (Glencross et al., 2006).

3.3.1.5. Concluding remarks

It is judged 33–66% certain (‘about as likely as not’) that sulfonamides have growth-promoting/
increase yield effects in lambs for fattening at the concentration of 55 mg sulfamethazine/kg complete
feed (one study).

It is judged 33–66% certain (‘about as likely as not’) that sulfonamides have negative effects on
performance of rainbow trout at concentrations ranging from 4,600 to 9,200 mg sulfamerazine/kg
complete feed (two studies).

No data are available in the scientific literature showing effects of substances from the functional
group ‘sulfonamides’ on growth promotion/increased yield when added (i) to lambs for fattening feed
at concentrations below 55 mg sulfamethazine/kg, or (ii) to feed of any other food-producing animal
species or categories for all sulfonamides.

4. Conclusions

ToR1: to assess the specific concentrations of antimicrobials resulting from cross-
contamination in non-target feed for food-producing animals, below which there would
not be an effect on the emergence of, and/or selection for, resistance in microbial agents
relevant for human and animal health.

AQ1. Which are the specific concentrations of sulfonamides in non-target feed below which there
would not be emergence of, and/or selection for, resistance in the large intestines/rumen?

• Due to the lack of data on the parameters required to calculate the Feed Antimicrobial
Resistance Selection Concentration (FARSC) corresponding to the concentrations of
sulfonamides in non-target feed below which there would not be expected to be an effect on
the emergence of, and/or selection for, resistance in microbial agents relevant for human and
animal health, it is not possible to conclude until further experimental data is available.

ToR2: to assess which levels of the antimicrobials have a growth promotion/increase
yield effect.

AQ2. Which are the specific concentrations of sulfonamides in feed of food-producing animals that
have an effect in terms of growth promotion/increased yield?

• It is judged 33�66% certain (‘about as likely as not’) that sulfonamides have growth-
promoting/increase yield effects in lambs for fattening at the concentration of 55 mg/kg
complete feed (one study).

• It is judged 33�66% certain (‘about as likely as not’) that sulfonamides have negative effects
on performance of rainbow trout at concentrations ranging from 4,600 to 9,200 mg
sulfamerazine/kg complete feed (two studies).

• No data are available in the scientific literature showing effects of substances from the
functional group ‘sulfonamides’ on growth promotion/increased yield when added (i) to lambs
for fattening feed at concentrations below 55 mg sulfamethazine/kg, or (ii) to feed of any
other food-producing animal species or categories for all sulfonamides.

The results from these assessments for the different animal species are summarised in Annex F
(Tables F.1 and F.2) of EFSA BIOHAZ Panel, 2021a – Scientific Opinion ‘Part 1: Methodology, general
data gaps and uncertainties’ (see also the Virtual Issue).

5. Recommendation

To carry out studies to generate the data that are required to fill the gaps which have prevented
calculation of the FARSC for the sulfonamides (e.g. sulfadiazine, sulfadimethoxine,
sulfamethazine = sulfadimidine and sulfamethoxazole).
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F:G feed conversion ratio or feed to gain ratio
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GE fraction of the antimicrobial that is secreted back into the intestinal tract for elimination,

after initially being absorbed into the bloodstream
I fraction of the antimicrobial present in the digestive tracts that would be inactive on the
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MIC minimum inhibitory concentration
MIClowest minimum inhibitory concentration of the most susceptible species/strain included in the

EUCAST database for a certain antimicrobial used to calculate the PMSC (see below)
MICres minimum inhibitory concentration of the resistant strain
MICsusc minimum inhibitory concentration of the susceptible strain
MICtest minimum inhibitory concentration of the susceptible isolate used in the competition

experiments to calculate the MSC
MSC minimal selective concentration
PABA para-aminobenzoic acid
PK pharmacokinetic(s)
PMSC predicted MSC
rRNA ribosomal ribonucleic acid
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Appendix A – List of excluded publications and their shortcomings

The publications excluded from the assessment of the effects of sulfonamides on growth promotion/increased yield following the criteria defined in
Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual Issue) are summarised in
Table A.1.

Table A.1: Publications not relevant for the assessment of the effects of sulfonamides on growth promotion/increased yield and excluding criteria

Author, year SPECIES

Excluding criteria

Combination of
substances

administered to
the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study
sick or not
in good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Al-Ankari and
Homeida (1996)

Poultry X

Alzieu et al.
(1999)

Ruminants X X

Anderson et al.
(1974)

Poultry X X X

Atabaigi Elmi
et al. (2020)

Poultry X X X X(1)

Backstrom et al.
(1994)

Pigs X X X X

Bhandari et al.
(2008)

Pigs X X X

Bridge et al.
(1982)

Pigs X

Burnell et al.
(1988)

Pigs X X(2)

Cabel et al.
(1991)

Pigs X X X

Cabel and
Waldroup (1991)

Poultry X X X X(2)

Cho et al. (2006) Pigs X X

Daft et al. (1989) Poultry X X X X(3)
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antimicrobial
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therapeutic

scope

Animals
subjected to
challenges

with
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sick or not
in good
health
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parameters
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Insufficient
reporting/
statistics

Other
(indicate)

Davami et al.
(1987)

Poultry X X X(4)

Dean et al.
(1973)

Poultry X X X X

Dritz et al. (1993) Pigs X X X(2)

Edmonds et al.
(1985)

Pigs X X

Fayer (1992) Ruminants X X X X(5)

Furusawa (2001) Poultry X X(6)

Gallo and Berg
(1995)

Ruminants X

Gardiner (1958) Poultry X X X
Gerhold et al.
(2011)

Poultry X X X

Gibb et al. (2006) Ruminants X X X(2)

Glencross et al.
(2011)

Fish X

Glisson et al.
(2004)

Poultry X X X

Goren et al.
(1984)

Poultry X X X X(7)

Goren et al.
(1987)

Poultry X X X

Harper et al.
(1983)

Pigs X

Hathaway et al.
(1996)

Pigs X

Hathaway et al.
(1999)

Pigs X X
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Hathaway et al.
(2003)

Pigs X

Holderread et al.
(1983)

Poultry X X(8)(9)

Hong et al.
(2004)

Pigs X X X(2)(10)

Howarth and
Marks (1973)

Poultry X X(11)

Huang et al.,
2012;

Pigs X

Joachim and
Mundt (2011)

Pigs X X

Johnson and
Smith (1994)

Fish X X X

Johnson et al.
(1992)

Fish X X X

Johnson et al.
(1993)

Fish X X X

Limbu et al.
(2018)

Fish X X X(12)

Mengelers et al.
(2000)

Pigs X X X

Mitrovic et al.
(1969)

Poultry X X X X

Mitrovic et al.
(1980)

Poultry X X X

Morand-Fehr
et al. (2002)

Ruminants X X(2)

Mosleh et al.
(2016)

Poultry X X X X(13)
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via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study
sick or not
in good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

NCR-89 (1984) Pigs X X

Neveling et al.
(2017)

Poultry X

Nyachoti et al.
(2012)

Pigs X X X X

Olson (1977a) Poultry X X X
Olson (1977b) Poultry X X X

Patterson (1984) Pigs X X
Piva et al. (2007) Pigs X X X(2)

Radecki et al.
(1988)

Pigs X

Radwan et al.
(1991)

Poultry X X X(9)

Rawles et al.
(1997)

Fish X

Robinson et al.
(1990)

Fish X X

Rollins et al.
(1976)

Pigs X X

Rozeboom et al.
(2005)

Pigs X

Ruff and Wilkins
(1990)

Poultry X X X

Sedqyar et al.
(2012)

Poultry X

Stanford et al.
(2015)

Ruminants X X

Svensson (1998) Ruminants X X X X X(14)
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Author, year SPECIES

Excluding criteria

Combination of
substances

administered to
the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study
sick or not
in good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Ternus et al.
(1971)

Ruminants X X

Thaler et al.
(1989)

Pigs X X(15)

Unno et al.
(2015)

Pigs X X(15)

Veum et al.
(1980)

Pigs X X

Weber et al.
(2001)

Pigs X X

Woods et al.
(1972)

Pigs X X X X

Yilmaz et al.
(2018)

Fish X X X X(2)

Young et al.
(1973)

Pigs X

Zinn (1986) Ruminants X X X(7)

Zinn (1993) Ruminants X X

(1): No specific information on sulfadiazine administration in water could be found.
(2): No control group used in the experiment.
(3): The study aimed to experimentally reproduce sulfaquinoxaline toxicosis. Mortalities of 33% and 44% were observed in sulfaquinoxaline-treated groups due to sulfaquinoxaline toxicosis.
(4): Animals were subsequently treated with lasalocid or monensin.
(5): The antimicrobial was administered orally, but in the form of oral bolus.
(6): Designed to study the transfer of antibiotics to eggs.
(7): No replicates.
(8): The study investigated the adverse effects of anticoccidial drugs administered to ducklings.
(9): Low number of animals.
(10): Antibiotic diet vs. diets with SDEP (spray-dried egg protein). Low number of animals (4 pens of 3 pigs/treatment).
(11): Sulfaguanidine was used as a goitrogenic compound.
(12): Small number of animals per group.
(13): The study investigated the effects of sulfanilamide on calcium absorption and egg shell thickness.
(14): Oral administration, but not administered with feed (slow release bolus).
(15): The study focused on sequencing the microbiota.
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Appendix B – Table of uncertainties

Table B.1: Potential sources of uncertainty identified in the levels of sulfonamides in feed which have growth promotion/increase yield effect and
assessment of the impact that these uncertainties could have on the conclusion

Source of the uncertainty Nature or cause of uncertainty
Impact of the uncertainty on the conclusion on the
level(s) which have growth promotion/increase yield
effect

Form(s) of
antimicrobial used

The specific form of the antimicrobial used in the study (as the ‘(free) base’
substance, its salts or specific products/formulations containing the base
substance) has not been clearly described in several publications. In
summarising the results, the concentrations have been reported as for
‘base’ substance when the form of the antimicrobial is not specified
(conservative assumption).

Underestimation of the concentration which may have shown
growth-promoting effect.

Evidence synthesis and
integration

As described in Section 2.2.3 of the Scientific Opinion Part 1 (see also the
Virtual Issue), the low number of studies retrieved prevented evidence
synthesis.

Underestimation/Overestimation
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