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Abstract

Leaf rust, caused by the fungus Puccinia triticina Erikss (Pt), is a destructive disease
affecting wheat (Triticum aestivum L.) and a threat to food security. Developing resis-
tant cultivars represents a useful method of disease control, and thus, understanding
the genetic basis for leaf rust resistance is required. To this end, a comprehensive
bibliographic search for leaf rust resistance quantitative trait loci (QTL) was per-
formed, and 393 QTL were collected from 50 QTL mapping studies. Afterward, a
consensus map with a total length of 4,567 cM consisting of different types of mark-
ers (simple sequence repeat [SSR], diversity arrays technology [DArT], chip-based
single-nucleotide polymorphism [SNP] markers, and SNP markers from genotyping-
by-sequencing) was used for QTL projection, and meta-QTL (MQTL) analysis was
performed on 320 QTL. A total of 75 MQTL were discovered and refined to 15 high-
confidence MQTL (hcmQTL). The candidate genes discovered within the hcmQTL
interval were then checked for differential expression using data from three tran-
scriptome studies, resulting in 92 differentially expressed genes (DEGs). The expres-
sion of these genes in various leaf tissues during wheat development was explored.
This study provides insight into leaf rust resistance in wheat and thereby provides
an avenue for developing resistant cultivars by incorporating the most important
hecmQTL.

1 | INTRODUCTION

Abbreviations: AIC, Akaike information criterion; AUDPC, area under

the disease progress curve; CI, confidence interval; DArT, diversity arrays
technology; DEG, differentially expressed gene; DS, disease severity; EA+,
early aborted colonies, without plant cell necrosis; EA—, early aborted
colonies, associated with plant cell necrosis; EST+, established colonies,
without plant cell necrosis; EST—, established colonies, associated with
plant cell necrosis; GO, gene ontology; hemQTL, high-confidence MQTL;
HR, host reaction; IE, infection efficiency; IR, infection rate; IT, infection
type; LIA, leaf infected area; LP, latent period; LR, leaf rust resistance; LS,

Leaf rust, caused by the fungal pathogen Puccinia triticina
Erikss (Pt), causes a significant reduction in grain yield world-
wide, and thus, it is considered a disease with significant
importance in wheat (Triticum aestivum L.) (Khan et al., 2013;
Kolmer, 2005). Compared with other fungal rust diseases,
such as stem and stripe rust, leaf rust occurs more frequently
and has a wider distribution (Bolton et al., 2008). This wide

lesion size; LTN, leaf tip necrosis; MAS, marker-assisted selection; MDS,

maximum disease severity; MQTL, meta-quantitative trait loci; NEC, all

spread of leaf rust may be because the spores of P. triticina
are transported long distances via wind or humans, thereby

necrotic colonies; PVE, phenotypic variation explained; RLK, receptor-like
kinase; SNP, single-nucleotide polymorphism; SPL, spore production per
lesion; SPS, spore production per unit of sporulating tissue; SSR, simple
sequence repeat.

causing damage to wheat crops outside their environment or
country of origin, as has been observed in various studies in
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North America (Bolton et al., 2008; Kolmer, 2005; Brown &
Hovmgller, 2002). The most economical, efficient, environ-
mentally sustainable, and socially acceptable way to manage
rust disease globally is to grow rust-resistant cultivars (Mcln-
tosh et al., 1995; Wiesner-Hanks & Nelson, 2016). There-
fore, to understand how best to combine genes and effectively
carry out marker-assisted selection (MAS), mapping the tar-
get genes conferring resistance in existing parental stocks is
essential (Kuchel et al., 2007).

Quantitative trait loci (QTL) mapping is an effective ana-
lytical method for studying and manipulating complex traits
in crops (Doerge, 2002; Xin et al., 2020). However, QTL map-
ping has several limitations based on the type of markers, the
influence of the environment, the use of different parents, and
the size of mapping populations. Therefore, little progress has
been made regarding fine mapping and QTL cloning in wheat
because of the paucity of high-resolution linkage maps, as the
use of simple sequence repeat (SSR) markers is constrained
by their inability to saturate the wheat genome (Somers et al.,
2004). Consequently, QTL are frequently present in large
genomic regions, and MAS is restricted to small numbers of
validated markers (Wang et al., 2015). In recent years, a revo-
lution in the QTL analysis of complex traits has occurred via
the introduction of different high-throughput sequencing and
genotyping technologies, thus aiding genetic map construc-
tion and marker development (Wang et al., 2018). Numer-
ous QTL studies have been performed in wheat; however,
the detected QTL often do not overlap either in part or in
whole because of a different combination of parental lines or
studies in multiple environments (Rong et al., 2007). There-
fore, there is a need to detect the most promising consensus
QTL found among studies using different parents that is stable
across environments.

Furthermore, recognizing robust and reliable QTL and
refining their intervals can be achieved by meta-QTL (MQTL)
analysis without using expensive resources (Goffinet & Ger-
ber, 2000). The free software BioMercator (Arcade et al.,
2004), used for MQTL analysis, allows the compilation of a
vast number of genetic maps from various sources and can
project QTL to a consensus or reference map (Veyrieras et al.,
2007). Thus, MQTL analysis could identify the consensus
QTL associated with the trait in multiple environments and
genetic backgrounds (Goffinet & Gerber, 2000). Quantitative
trait loci for similar traits may be combined synergistically
into MQTL traits by a single MQTL analysis. The reported
MQTL method can be used for MAS (Maccaferri et al., 2015;
Yuetal., 2014).

Several studies on MQTL analysis for disease resistance in
wheat have been carried out successfully, including those for
tan spot resistance (Liu et al., 2020), Fusarium head blight
resistance (Liu et al., 2009; Loffler et al., 2009; Venske et al.,
2019; Zheng et al., 2020), leaf rust resistance (Soriano &
Royo, 2015), and stem rust resistance (Yu et al., 2014). The

Core Ideas

e Meta-QTL (MQTL) analysis is an effective
approach to synthesize QTL information.

* MQTL analysis reduced the confidence intervals
for leaf rust resistance.

* MQTL allowed the identification of candidate
genes.

first MQTL analysis on leaf rust focused only on identify-
ing consensus genomic regions for the trait. In addition, the
authors did not use single-nucleotide polymorphism (SNP)-
based genetic maps because of the lack of QTL studies in
leaf rust using high-throughput SNP arrays several years
ago. However, in this study, we aimed to delve deeper into
the genetic architecture underlying leaf rust disease by dis-
covering putative candidate genes from the newly released
wheat genome sequence (The International Wheat Genome
Sequencing Consortium et al., 2018), incorporating transcrip-
tomic studies, and studying the function of these in genes in
different tissues.

2 | MATERIALS AND METHODS
2.1 | Bibliographic search for wheat leaf rust
resistant QTL

Using Google Scholar (https://scholar.google.com/) and the
Web of Science (http://www.webofknowledge.com/), an
exhaustive search for publications containing QTL confer-
ring leaf rust resistance in wheat was performed. For each
study, the information collected during the QTL compilation
included the following: (a) the mapping population type of
F,.3, recombinant inbred lines and double haploids; (b) 19
disease resistance traits including disease severity (DS), area
under the disease progress curve (AUDPC), leaf infected area
(LIA), infection type (IT), infection rate (IR), leaf rust resis-
tance (LR), leaf tip necrosis (LTN), latent period (LP), spore
production per unit of sporulating tissue (SPS), spore pro-
duction per lesion (SPL), infection efficiency (IE), lesion size
(LS), early aborted colonies, associated with plant cell necro-
sis (EA—), early aborted colonies, without plant cell necrosis
(EA+), established colonies, associated with plant cell necro-
sis (EST—), established colonies, without plant cell necrosis
(EST+), all necrotic colonies (NEC), maximum disease sever-
ity (MDS), and host reaction (HR); (c) the number of lines in
the mapping population; (d) the logarithm of the odds score;
(e) the R? value, which denotes the percentage of the pheno-
typic variation explained (PVE); and (f) the markers flanking
the QTL position (Supplemental Table S1).
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2.2 | QTL projection on the consensus map
To project the largest number of QTL, the high-density
consensus map developed by Venske et al. (2019) was
used. This consensus map incorporated three marker types:
SNP, diversity array technology [DArT], and SSR markers.
The SNPs were sourced from chip-based markers and
genotype-by-sequencing (Cavanagh et al., 2013; Saintenac
et al., 2013; Wang et al., 2014). The SSR markers, includ-
ing functional markers, were provided from three genetic
maps (Wheat, Consensus SSR 2004, Wheat Composite
2004, and Wheat Synthetic X Opata) obtained from the
GrainGenes database (https://wheat.pw.usda.gov/GG3/).
Wheat consensus map version 4.0, which contains more than
100,000 DArT sequencing markers and nearly 4,000 DArT
markers developed from over 100 genetic maps, was down-
loaded from https://www.diversityarrays.com/technology-
and-resources/genetic-maps. The initial QTL were pro-
jected following the approach described in Chardon et al.
(2004) using BioMercator v4.2 software (Arcade et al.,
2004) (https://urgi.versailles.inra.fr/Tools/BioMercator-V4).
Before projecting onto the consensus map, a confidence
interval (CI) of 95% was homogenized across the different
studies using the following formulas: 530/(N X PVE) for F, 3,
163/(N x PVE) for recombinant inbred lines, and 287/(N X
PVE) for double haploids (Darvasi & Soller, 1997; Guo et al.,
2006), where N is the number of genotypes in the mapping
population, and PVE is the phenotypic variance explained by
the QTL.

2.3 | MQTL analysis and validation using
genome-wide association studies

The MQTL analysis was conducted using the software
BioMercator (Arcade et al., 2004; Sosnowski et al., 2012)
by incorporating two approaches for the analysis. The first
approach, proposed by Goffinet and Gerber (2000), is used
when the QTL count for a chromosome is <10. The sec-
ond approach, proposed by Veyrieras et al. (2007), is used
when the QTL count for a chromosome is above >10. For
the first approach, the lowest Akaike information criterion
(AIC) value was selected as the best fit model. However, the
best model was selected from the AIC, AICc, AIC3, Bayesian
information criterion, and average evidence weight models
from the second approach. Therefore, the model with the low-
est criteria in at least three of the models was selected and
regarded as the best fit model. The sequences of the flank-
ing markers of each MQTL were submitted to BLAST anal-
ysis against the Chinese Spring reference genome (https://
wheat.pw.usda.gov/blast) (The International Wheat Genome
Sequencing Consortium et al., 2018), and their correspond-
ing physical positions were identified. In addition, the MQTL
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found in this study were validated using recent association
studies with different genetic backgrounds and environments
aimed at identifying loci and QTL related to leaf rust resis-
tance in wheat.

2.4 | Establishment of hemQTL and
candidate gene mining

To further refine the MQTL, those with at least five over-
lapping QTL having a physical distance <20 Mb and a
genetic distance <10 cM were selected and called high-
confidence MQTL (hemQTL). The annotated reliable genes
(HighConfidenceGenes v1.1) within the interval of each
hcmQTL were obtained, and their functional annotations
examined (https://wheat-urgi.versailles.inra.fr/Seq-
Repository/Annotations).

were

2.5 | Expression of candidate genes within
hemQTL intervals

To check for the candidate genes that were differen-
tially expressed within the hcmQTL intervals, three expres-
sion datasets, NCBI-ID ERP013983, SRP041017, and
ERP009837 (Dobé6n et al., 2016; Rudd et al., 2015; Zhang
et al., 2014) were used based on experiments reported at
ExpVIP (http://www.wheat-expression.com) (Borrill et al.
et al., 2016). The ERP013983 dataset consists of differen-
tial expression data of wheat resistance cultivar Avocet inoc-
ulated with a PST 87/66 strain, with leaf samples collected
at 0, 1, 2, 3, and 5 d postinoculation. In the second dataset,
SRP041017, the transcriptome of the hexaploid wheat line
NO9134 inoculated with the Chinese Pstrace CYR 31 was com-
pared with the same line inoculated with powdery mildew
(Blumeria graminis f. sp. tritici) race E09 at 1, 2, and 3 d
postinoculation. The third dataset, ERP009837, consists of
differential expression data of the wheat cultivar Riband inoc-
ulated with the fungus Zymoseptoria tritici (Septoria tritici
blotch), and the expression data were collected at 1, 4, 9, 14,
and 21 d postinoculation. The count data of all the expres-
sion data were further analyzed, the log,(fold change) was
obtained using the R package Deseq2, and its correction was
performed using the R package Apeglm (Zhu et al., 2019). For
the DEGs discovered within the refined hcmQTL, gene ontol-
ogy (GO) analysis was performed using the GENEDENOVO
cloud platform (https://www.omicshare.com/tools/).
Subsequently, to identify the expression of the reported
DEGs in the wheat tissues, the transcriptomics data of cul-
tivar Azhurnaya 209-sample RNA sequencing project, which
examined the developmental timeline of commercial cultivars
using a comprehensive array of samples from 24 tissue types
(Ramirez-Gonzalez et al., 2018), were used in this study. The
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stages and their corresponding tissues are as follows: seedling
stage, which includes radicle, coleoptile, stem axis, first leaf
sheath, first leaf blade, first leaf blade, root, and shoot api-
cal meristem; three leaf stage, which includes third leaf blade
and third leaf sheath; tillering stage, which includes first leaf
sheath, first leaf blade, shoot axis, and shoot apical meristem;
full boot, which includes flag leaf sheath and flag leaf blade;
ear emergence, which includes flag leaf sheath and flag leaf
blade; anthesis, which includes flag leaf blade night (—0.25
h) 06:45 and fifth leaf blade night (—0.25 h) 21:45; milk grain
stage, which includes flag leaf sheath, flag leaf blade, and fifth
leaf blade (senescence); dough, which includes flag leaf blade
(senescence); and ripening, which includes flag leaf blade
(senescence). Transcripts per million (TPM) values were used
to assess the candidate genes’ level of expression within the
hemQTL displayed on the heat map using log,(TPM + 1).

3 | RESULTS
3.1 | QTL compilation and projection on the
consensus map

A comprehensive search for QTL conferring resistance to leaf
rust resulted in 50 articles published from 1999 to 2020 (Sup-
plemental Table S1). A total of 393 QTL widely distributed
across the genome were collected (Supplemental Table S2).

Of the 393 QTL found, only 320 QTL had flanking mark-
ers and were thus used for MQTL analysis, leaving 73 QTL
with no flanking markers on the consensus map (Supplemen-
tal Table S2). The QTL were then projected onto the consen-
sus map constructed by Venske et al. (2019). The highest num-
ber of QTL (264) was projected on the B genome, while the D
genome harbored the lowest number of QTL (59) (Figure 1).
For the A genome, chromosome 2A had the highest number of
projected QTL, while chromosomes 4A and 7A equally had
the lowest (8). Chromosome 1B had the highest number of
projected QTL (41) for the B genome, while chromosomes
4B and 5B both had the lowest (14). The overall number of
QTL projected on the D genome was relatively low compared
with other genomes, with the highest number of QTL (22)
projected on chromosome 2D, while 6D did not harbor any
projected QTL. When the trait was considered, a large pro-
portion of the projected QTL were for disease severity (43%),
followed by AUDPC (24%) (Figure 1). The rest of the trait
categories tagged ‘others,” comprised 11 traits (SPS, SPL, IE,
LS, EA—, EA+, EST—, EST+, NEC, MDS, and HR). The
PVE varied from 0.01 to 0.97, with 69% of the QTL reporting
a PVE value <0.20. Confidence intervals ranged from 1.14 to
173.11 cM, with an average of 63.98 cM. Most of the QTL
reported a CI <20 cM (81%), with 57% of the QTL showing
a CI <10 cM. Only 2% of the QTL showed a CI >50 cM.

3.2 | Unravelling consensus regions via
MQTL analysis

For the MQTL analysis, the Veyrieras approach (Veyrieras
et al., 2007) was used to analyze all the linkage groups except
for chromosomes 1A, 4A, 5A, 7A, 3D, 4D, and 5D because
they had <10 QTL; thus, the approach of Goffinet and Ger-
ber (2000) was used for their analysis. Overall, 75 MQTL
were discovered and distributed across all the chromosomes
(Figure 1; Table 1). For the reported MQTL, the CI ranged
from 0.03 to 25.23 cM with an average of 5.36 cM. For the
A genome, 24 MQTL were found, with the highest number
of MQTL (4) on chromosomes 1A, 5A, and 7A, while chro-
mosomes 2A, 3A, 4A, and 6A harbored three MQTL. For the
B genome, a total of 33 MQTL were found, representing the
genome with the highest number of MQTL. Chromosome 2B
reported the highest number of MQTL (8), followed by six
MQTL on chromosomes 1B and 6B, and chromosomes 3B
and 4B had the lowest number, with three MQTL. For the
D genome, a total of 18 MQTL were found, with chromo-
somes 1D, 2D, and 7D harboring the most MQTL (4), while
chromosomes 3D, 4D, and 5D harbored the fewest MQTL
(2). The physical position of all the MQTL was computed.
The mean physical confidence interval of the MQTL was
27.47 Mb, which ranged from 0.55 (MQTL1D.1) to 765.3
Mb (MQTL2B.7). The MQTL7B.4 incorporated the highest
number of original QTL. From the MQTL discovered, the
physical interval of six MQTL was shown to overlap, namely,
MQTLI1B.2 (636-648 Mb) and MQTL1B.3 (646-662 Mb),
MQTL7B.3 (734-744 Mb) and MQTL7B.4 (724-750 Mb),
and MQTL5B.4 (634-712 Mb) and MQTL5B.3 (685-704
Mb). Interestingly, none of the MQTL whose physical inter-
vals overlapped did it in the genetic map.

3.3 | Association study validation and
colocalization with leaf rust genes

The loci resistant to leaf rust across different genetic back-
grounds and environments identified in recent association
studies (Supplemental Table S3) were used to validate the
MQTL discovered in this study. A total of 51 marker—trait
associations identified were colocalized with 29 MQTL; thus,
some MQTL integrated more than one marker—trait asso-
ciation (Supplemental Table S4; Figure 2). Furthermore,
eight leaf rust genes colocalized with some MQTL found
in this study (Supplemental Table S5; Figure 2), such as
MQTLI1D.2 colocalizing with Lr60 and Lr42 and MQTL7B.3
colocalizing with the Lr68 and Lril4a genes. Additionally,
MQTL1B.4 and MQTL2B.5 colocalized with two leaf rust
genes, Lr46 and Lri3, respectively, conferring adult plant
resistance.
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FIGURE 1

Summary information of quantitative trait loci (QTL) projected for meta-QTL (MQTL) analysis. Frequency distribution of the

number of QTL by (a) type of resistance trait conferred by the QTL; (b) phenotypic variation explained (PVE/R?); (c) confidence interval; and (d)

number of QTL per chromosome

3.4 | Candidate gene mining of established
hemQTL

To further improve the quality of the MQTL discovered,
they were further refined to regions termed hcmQTL. The
hemQTL consist of 15 consensus regions (Table 2; Supple-
mental Table S6), having an average CI and physical interval
of 2.9 cM and 12.04 Mb, respectively. Overall, each hcmQTL
cluster contained at least five QTL. The B genome had the
highest number of these hcmQTL (7). Within the B genome,
chromosome 1B contained the highest number of hcmQTL
(3). In addition, hemQTL4B.1 had the smallest physical inter-
val (6.25 Mb), while hcmQTL7A.4 had the largest interval,
covering 19.78 Mb. Afterward, candidate gene mining within
hemQTL revealed 2,240 genes, with hemQTL7A.4 possess-
ing the highest number of candidate genes and hcmQTL2B.4
possessing the lowest number (18) of candidate genes.

3.5 | Discovering DEGs within hemQTL

Owing to the lack of transcriptomic data repositories for leaf
rust in wheat, we decided to use transcriptomic expression
data for three fungal diseases in wheat—stripe rust, pow-
dery mildew, and Septoria tritici blotch—to explore the DEGs
within these hcmQTL. The ERP013983 dataset revealed 541
DEGs with 221 downregulated genes, 255 upregulated genes,

and 65 genes that were downregulated under several condi-
tions and upregulated under others (Supplemental Table S7;
Figure 3). From this dataset, hcmQTL7A.4 had the highest
number of DEGs (59), while hcmQTL2B.4 had the lowest
(12). The SRP041017 dataset revealed 289 DEGs, where 131
genes were downregulated, 154 genes were upregulated, and
four genes were downregulated at one time point and upregu-
lated in others (Supplemental Table S8; Figure 3). From this
dataset, hcmQTL2A.2 had the highest number of DEGs (39),
while hemQTL2B.4 and hcmQTL4B.1 had the fewest DEGs
(4). From the third dataset, ERP009837, a total of 327 DEGs
were discovered, with 125 genes downregulated, 198 genes
upregulated, and four genes downregulated at one time point
and upregulated in others (Supplemental Table S9; Figure 3).
From this dataset, hcmQTL2A.2 had the highest number of
DEGs (34), while hcmQTL2B.4 had the lowest number of
DEGs (3). A total of 92 genes were found to be differen-
tially expressed across the three expression datasets used. The
92 DEGs within the hcmQTL interval were analyzed for GO
enrichment (Table 3). The most significantly enriched GO
terms associated with biological processes were for metabolic
(44 genes) and cellular processes (31 genes) (Supplemental
Table S10; Figure 4). The most significantly enriched GO
terms associated with molecular function were for catalytic
activities (41 genes) and binding (39 genes). In terms of cel-
lular components, the genes were enriched mainly in the cell
membrane and its components.
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FIGURE 2 Distribution of the
meta-quantitative trait loci (MQTL),
marker—trait associations (MTAs), and
colocalized leaf rust genes with reference to the
Chinese Spring genome. The chromosome
coloration correlates to the number of initial
QTL, the lighter color connotes less QTL. The
centromere of each chromosome is represented
by the constriction

D
e

m—L_-tl

X1

oouU U U

J

Low High
H MQTL
~E ® MTA
B A Leafrust genes
M=
= '
e ~
: "‘. ’}‘ M
[ '
-
’\I
4 Ha - -
- ~18 s
- - H -
- -
q ] ln
L
- — m
-
Pt = I
M .
>
B <
< Y L]
~<
s
<
-
2| "
- M
@
! |
- |1, L
- - '_[I
-
! NIt
tm : = i lri =
- .
-
- -
U o O O 0O O O v O U O & U O O ©

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

3.6 | Tissue-specific expression profile of
DEGs within hecmQTL

To analyze the differential expression within the hcmQTL
at different tissues and development stages, three tran-
scriptomics datasets were used: SRP041017, ERP013983,
and ERP009837. Row clustering was applied, and, as a
result, the 92 DEGs fell into two classes based on their
expression patterns (Figure 5). Genes in Class I showed
moderate-to-high expression in the flag leaf blade and fifth
leaf blade at the anthesis stage when compared with other
stages of growth. Moreover, for Class II, more genes were
highly expressed in the first leaf sheath at the tillering stage.
The DEGs in Class II accounted for more than half of
the overall DEGs, and they showed contrasting expression

patterns to those shown by genes in Class I. For Class I,
at the seedling stage, the genes TraesCSID02G003700
(hemQTL1D.2) and TraesCS7B02G421100 (hcmQTL7B.1)
showed moderate expression in the stem axis, while at
the adult stage, TraesCS6A02G072500 (hcmQTL6A.2)
was highly expressed in the fifth leaf blade at the anthe-
stage, and TraesCSID02G017700 (hecmQTL1D.2)
showed high expression in the flag leaf at the dough
stage. Furthermore, at the seedling stage, more Class II
genes were moderately expressed in the radicle and roots,
with only TraesCS7D02G211000 (hcmQTL7D.1) show-
ing expression in the shoot apical meristem. At the adult
stage, the gene TraesCS7D02G220300 (hemQTL7D.1)
was highly expressed in the fifth leaf blade at the anthesis
stage.

sis
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DEGs_SRP041017

FIGURE 3 Venn diagram depicting the
number of differentially expressed genes (DEGs)
from three transcriptomic data sets. The Venn
diagram visually illustrates the number of DEGs
that were identified in three transcriptomic data
sets: ERP013983, SRP041017, and ERP009837

DEGs-ERP013983

DEGs-ERP009837

4 | DISCUSSION

4.1 | Establishment of MQTL regions

To gain deeper insight into the control of leaf rust resistance in
wheat, an MQTL analysis was performed based on the numer-
ous QTL conferring leaf rust resistance identified in the liter-
ature from various independent studies. The first step to iden-
tifying consensus regions via MQTL analysis is the projection
of the original QTL onto a consensus or reference map.

A feature of the consensus map and QTL database was
that the B genome reported the highest marker satura-
tion, and thus, the highest number of QTL was mapped to
this genome, which is in agreement with previous studies
characterizing genetic diversity and unravelling complex traits
for disease resistance in bread wheat (Soriano & Royo, 2015;
Wang et al., 2014). The D genome presented a lower number
of QTL, as previously found in other MQTL analyses for dis-
ease resistance in wheat (Liu et al., 2020; Soriano & Royo,
2015; Venske et al., 2019; Zheng et al., 2020). Furthermore,
no QTL were found on chromosome 6D, as discovered in pre-
vious MQTL analysis studies on leaf rust and Fusarium head
blight diseases in wheat (Soriano & Royo, 2015; Zheng et al.,
2020). A possible explanation for the limited QTL located on
the D genome across various disease studies could be the low
level of polymorphism associated with the D genome. In this
study, a larger number (81.4%) of QTL was projected onto
the consensus map compared with the fewer number of QTL
projected in a previous MQTL analysis for leaf rust (Sori-
ano & Royo, 2015) (44%). A possible reason could be due

to the different consensus maps used. In this study, we used a
high-density consensus map that combined SSRs and markers
obtained from high-throughput genotyping platforms, in con-
trast to the consensus map used in the previous study from
Soriano and Royo (2015). Consequently, the number of con-
sensus genomic regions (MQTL) discovered in this study was
higher than those reported in Soriano and Royo (2015), at 75
and 48, respectively. For the MQTL discovered in CI interval
of the original QTL, ranging from 1.14 to 173.11 cM. In addi-
tion, in the present study, the physical position of the MQTL
was reported because of the release of the wheat genome
sequence (The International Wheat Genome Sequencing Con-
sortium et al., 2018), improving the mapping resolution of the
genome regions and helping the identification of candidate
genes. These analyses enhance the results provided by studies
published prior to the release of the genome sequence. In this
study, we discovered seven MQTL incorporating at least five
original QTL and having a confidence interval of <10 Mb,
making them the most promising for candidate gene identifi-
cation.

4.2 | Colocalization of MQTL with leaf rust
resistance genes and traits

To strengthen the location of MQTL discovered in this study,
a search for colocalization of leaf rust resistance genes and
MQTL was performed. More than 61 leaf rust genes have been
mapped and documented in wheat (Kim et al., 2020), and four
of them have been cloned (Hafeez et al., 2021). A total of six
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Level2 GO Terms

FIGURE 4

leaf rust genes (Lri13, Lri4a, Lr46, Lr68, Lr63, Lr60, Lr42,
and Lr41) were found to colocalize with MQTL. Interestingly,
the colocalization of Lr13, Lr14a, and Lr46 with MQTL2B.5,
MQTL7B.3, and MQTL1B.4 on chromosomes 2B, 7B, and
1B, respectively, in this study was in agreement with the
results obtained by Soriano and Royo (2015). As reported
by these authors, Lr68 was found to have a tight associa-
tion with MQTL33 (colocalized with LrI4a) on chromosome
7B; however, in this study, MQTL7B.3 colocalized with both
leaf rust genes (Lri4a and Lr68), thus confirming the useful-
ness of using highly saturated consensus maps for meta-QTL
analysis. The gene Lrl4a, known to confer seedling resis-
tance, is thought to have evolved from emmer wheat [Triticum
turgidum L. subsp. dicoccon (Schrank) Thell.] ‘Yaroslav’
(McFadden, 1930) and is associated with the stem rust and
powdery mildew resistance genes Sr/7 and PmS5. Lr68, on the
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other hand, confers adult plant resistance to the majority of
P. triticina isolates with low-to-medium infection types and
is linked to small but noticeable leaf tip necrosis (Herrera-
Foessel et al., 2012). Consequently, the MQTL7B.3 region not
only confers seedling and adult plant resistance to leaf rust but
also constitutes a region of multiple disease resistance. Addi-
tionally, MQTL1D.2 colocalized with two leaf rust resistance
genes (Lr60 and Lr42). Hiebert et al. (2008) found that Lr60 is
13.5 cM distal to Lr21, which would position Lr60 and Lr42
approximately 40 cM apart (Huang et al., 2003; Somers et al.,
2004). The association between Lr60 and Lr42 has not been
confirmed, but in this study, we discovered that both genes
were located in the same MQTL, with a CI of 8.8 Mb. This
supports possible linkage between the two genes; however,
a genetic linkage test needs to be carried out to corroborate
this claim. Furthermore, Lr60 is known to confer seedling
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resistance, while Lr42 confers adult plant resistance. Addi-
tionally, MQTL1B.4 colocalized with Lr46, a gene known to
increase the latent period and reduce the frequency of infec-
tion and uredinial size in a similar manner to Lr34 (Drijepondt
& Pretorius, 1989; William et al., 2003). There is also a tight
linkage between Lr46 and a stripe rust gene (Yr29), which
is similar to the linkage between Lr34 and Yri8 (Mclntosh,
1992; Singh, 1992). Consequently, the MQTLI1D.2 region
confers resistance to both leaf and stripe rust in wheat, thus
making this region a hotspot for selecting multiple disease
resistance in wheat.

Most of the MQTL discovered in this study clustered QTL
conferring two or more resistance traits. In another study, Ren
et al. (2012) also discovered that maximum disease severity
had a significant association with the AUDPC across diverse
environments, and this finding was in agreement with previ-
ous studies (Lan et al., 2009; Liang et al., 2006; Wang et al.,
2005). Consequently, this result indicates the possibility of
replacing AUDPC with MDS. A possible explanation for this
could be that when two or more traits are mapped to the same
region, they are most likely under the same genetic control,
as suggested by Lu et al. (2017). Furthermore, effects arising
from tight linkage and pleiotropism could also be a possible
explanation.

4.3 | Candidate genes within hemQTL and
their role in leaf rust resistance

The search for candidate genes was extended to hcmQTL
within 20 Mb, thus yielding 15 hemQTL. The hcmQTL
also have a small CI compared with MQTL, thus making
them more reliable and useful for QTL selection in breeding
programs. Gene annotation of the hcmQTL identified a
total of 2,240 genes, which were narrowed down to 92
DEGs after in silico transcriptomic analysis. Two main
types of disease resistance are used in breeding programs:
seedling resistance and adult plant resistance. Thus, the
analysis of the expression of the candidate genes across
different tissues and developmental stages can inform us
of their potential role in seedling or adult plant resistance.
Five out of the 92 genes expressed across the three tran-
scriptomic data sets—TraesCS7D02G212800, TraesCS6A0-
G073300, TraesCS2B02G104200, TraesCSI1D02G003700,
and TraesCS2D02G021300—showed moderate expres-
sion in the first leaf sheath at the seedling stage.
TraesCS7D02G212800 and TraesCS2B02G104200 encode
a receptor-like kinase (RLK) and protein kinase family
protein, respectively, and both proteins play a crucial role
in contributing to disease resistance in wheat. Plant protein
kinases, as well as RLKs, govern the detection and activation
of diverse developmental and physiological signals, particu-
larly those involved in defense and symbiosis (Rentel et al.,

2004; Abu-Qamar et al. et al., 2008; Fu et al. et al., 2009;
Garcia et al. et al., 2012). Prior studies found that various
RLK genes coding wheat leaf rust kinases were conserved in
wheat, with the most studied member of the wheat leaf rust
kinase family being LRK10, which is genetically linked to
the Lr10 locus (Feuillet et al., 1997, 1998, 2001). Gu et al.
(2020), in a recent study, uncovered an RLK gene that plays
an important role in resistance to P. triticina infection and has
a positive regulatory effect on the hypersensitive reaction cell
death process induced by P. triticina. TraesCS6A02G073300,
encoding a 3-ketoacyl-CoA synthase, has been reported to
harbor quantitative trait nucleotides in close proximity to leaf
rust resistance genes in wheat (Fatima et al., 2020). The 50S
ribosomal protein L28 encoded by TraesCS1D02G003700
belongs to the ribosomal protein family, and members of
this family have been shown to confer tolerance against
fungal pathogens in plants (Yang et al., 2013). Furthermore,
TraesCS7D02G217700, encoding a glycosyltransferase, was
highly and moderately expressed in the first leaf blade and
leaf sheath, respectively, at the seedling stage. According
to Bolton et al. (2008), two pathogen-responsive genes
encoding glycosyltransferases were shown to be upregu-
lated under leaf rust infection. At the adult plant stage,
TraesCS1D02G004600, encoding a cytochrome P450, was
expressed in the flag leaf blade at both the dough and ripening
stages. Different studies have reported the role played by
cytochrome P450 in the host response to disease, which
included the response to Fusarium head blight disease in
wheat (Walter et al., 2008). The pathogen-responsive gene
encoding cytochrome P450 has been shown to be differen-
tially expressed under leaf rust infection in wheat (Bolton
et al., 2008). Additionally, Bolton et al. (2008) reported that
gene models coding for the same protein as some of the
hemQTL discovered in this study were upregulated under
leaf infection. All gene models coding for serine—threonine
protein kinases and cytochrome P450 were upregulated in all
treatments.

4.4 | Breeding implications for leaf rust
resistance

The primary use of MQTL for breeding purposes is the devel-
opment of improved cultivars with enhanced yield that are
resistant to diseases via MAS. Those MQTL with the small-
est CIs have been harnessed effectively for MAS because
they incorporate multiple QTL, as reported for disease resis-
tance in maize (Zea mays L.) (Xiang et al., 2012; Wang
et al.,, 2016), grain yield-associated traits in rice (Oryza
sativa L.) (Wu et al., 2016; Carrijo et al., 2017), seed qual-
ity in soybean [Glycine max (L.) Merr.] (Qi et al., 2017),
and anthesis time in wheat (Griffiths et al., 2009). To this
end, the MQTL were refined to 15 hcmQTL, each of them
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Expression pattern of 90 candidate genes in 24 tissues. All transcriptome data was downloaded from expVIP
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incorporating at least five original QTL and having a physical
interval <20 Mb and a genetic interval <10 cM. In addition,
MQTL analysis can be used to identify regions that confer
resistance to more than one disease, and the marker informa-
tion can be used for MAS (Ali et al., 2013). In this study,
the hemQTL1B.4 region was identified to confer resistance
to leaf and stripe rusts, thus making it a potential region to
exploit for multiple disease resistance in wheat. Furthermore,
breeding for durable resistance is desired in major breed-
ing programs. Durable resistance remains effective against a
pathogen for a significant number of years (Johnson, 1981,
1984). The combination of seedling resistance and adult
plant resistance has been proven to confer prolonged resis-
tance over several years (Kolmer & Oelke, 2006). In addi-
tion, various studies have ascribed durable leaf rust resistance
to adult plant resistance rather than to seedling resistance
(Figlan et al., 2020). Therefore, hcmQTL1D.2, discovered in
this study, can be harnessed to confer durable resistance in
wheat, as it incorporates genes conferring both seedling and
adult plant resistance. Another useful approach that could
be harnessed in breeding for leaf rust resistance in wheat
is gene pyramiding. Gene pyramiding involves incorporating
multiple desired genes into a single cultivar. Gene pyramid-
ing is broadly acknowledged by breeders, plant pathologists,
and farmers to improve disease resistance in wheat (Chen &
Kang, 2017). A major requirement for gene pyramiding is
to identify various QTL or genes conferring resistance and
then incorporate them into a high-yielding cultivar (Singh,
1992). In several instances, this technique has been used in
crops. For instance, long-term resistance was conferred when
diverse genes were pyramided with leaf rust genes (Kolmer,
1996; Bhawar et al., 2011; Aboukhaddour et al., 2020; Babu

et al., 2020). Additionally, in barley (Hordeum vulgare L.),
MAS combined with gene pyramiding has been used to
introgress resistance loci against stripe rust into numerous
lines (Toojinda et al., 1998, 2000; Castro et al., 2003a, 2003b;
Richardson et al., 2006). To this end, the hcmQTL dis-
covered in this study can be used and exploited for gene
pyramiding via MAS to bolster the resistance of wheat
against leaf rust.

4.5 | Concluding remarks

One of the most effective methods for analyzing the wealth
of QTL information available from various studies is MQTL
analysis. In this study, we delineated the genetic architecture
of leaf rust in wheat via MQTL analysis and by integrating
genomics studies. Compared with initial QTL reports, meta-
analysis allowed us to reduce the MQTL CI, thereby facilitat-
ing the search for candidate resistance genes in the databases
available. The result was the discovery of 15 hemQTL, with
each having a potential role in MAS. This result will be useful
for developing resistance to leaf rust through the introgression
of desirable hcmQTL that could confer a high level of resis-
tance during cultivar development. Last, this study can also
help better define the various mechanisms associated with leaf
rust resistance in wheat.
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