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Abstract

Consumers are increasingly concerned about the welfare of farm animals, especially during

transportation. The Canadian transport regulations state that weaned cattle require an 8 h

rest after 36 h of transport. There are, however, only a few studies that assess the effect of

rest on the welfare of beef cattle. The aim of this study was to assess the effect of condition-

ing, source and rest on indicators of welfare in 7-8-month-old beef calves during long-dis-

tance transport. Treatments consisted of a 2 × 2 × 2 factorial design where the main factors

were conditioning: conditioned (C; n = 160) or non-conditioned (N; n = 160); source: auction

market (A; n = 160) or ranch direct (R; n = 160); and rest: 0 h (0 h; n = 160) or 8 h (8 h; n =

160). Means of non-esterified fatty acids (NEFA), serum amyloid-A, haptoglobin, creatine

kinase (CK), and percentage of time standing from N calves were greater than C calves (all

p� 0.05). Means of percentage of time standing and CK of R calves were greater than A

calves (both p� 0.05). The mean of NEFA of 0 h calves was greater than the 8 h calves (p <
0.01), while the percentage of time standing of 0 h calves was less than 8 h calves (p <
0.01). Statistically significant differences between means of NEFA and standing percent-

age, were observed between 0 h and 8h calves. Few and inconsistent indicators of reduced

welfare were observed between auction market and ranch direct calves, while non-condi-

tioning was associated with greater physiological and behavioural indicators of reduced wel-

fare. Based on these results, conditioning should be implemented as a management

practice to improve the welfare of transported calves.

Introduction

Consumers are increasingly concerned about the welfare of farm animals being raised for food

consumption [1]. A study assessing the perception of consumers through focus groups and

interviews reported that transport is of particular concern to consumers, even more than pain-

ful husbandry procedures, due to the high visibility of livestock transportation in urban areas

[2]. Livestock trailers in North America are generally not equipped with feeders or drinkers,
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and cattle are unable to lie down during transportation. Providing a rest stop could improve

animal welfare, as it provides an opportunity for animals to eat, drink and lie down, however,

it could also increase the risk of disease due to exposure to pathogens and increased stress asso-

ciated with mixing with other cattle and additional animal handling [3]. Amendments to the

Canadian humane transport regulations came into effect in February of 2020, reducing the

maximum time in transit for weaned cattle from 48 to 36 h before a mandatory rest stop,

which was extended from 5 to 8 h [4]. There are, however, few and contradictory studies that

assess the effect of rest stops on beef cattle welfare. For example, improved welfare was

reported in preconditioned calves that received a 2 h rest [5], while no rest or 5 h of rest was

more beneficial than providing 10 or 15 h of rest in newly weaned calves [6], and no differ-

ences were observed between conditioned calves that received 0, 4, 8 or 12 h of rest [7].

Transport and weaning are stressful management procedures, which have been found to

affect the immune response [8]. Preconditioning is a management practice that reduces stress

by performing husbandry procedures (weaning, dehorning, castration, branding, ear tagging,

vaccination, and adapting calves to a grain feed diet, the feed bunk and water trough) 30 to 45

d prior to transport [9, 10]. Preconditioned calves are characterized by reduced bovine respira-

tory disease related morbidity at the feedlot compared to non-preconditioned calves [11–13].

In a previous study assessing the effect of rest duration, no differences were observed in mor-

bidity, mortality and certain welfare indicators of conditioned calves rested for 0, 4, 8 or 12 h

[7]. Preconditioned calves may be more resilient to transportation related stress, and therefore

may not benefit from a rest. Conversely, calves that are exposed to multiple stressors prior to

transport, such as newly weaned calves, may benefit from a rest stop.

Reducing stressors associated with the marketing of feeder calves is known to reduce the

risk of disease in beef cattle [14, 15]. Calves are sold most commonly to backgrounding or

feedlot operations through auction markets, however the use of video or direct sales is increas-

ing gradually [16]. Auction markets offer the opportunity to sell small lots of cattle, but have

the disadvantage of contributing to calf weight loss (shrink), likely due to transport and limited

or no access to feed, and a higher risk of disease due to comingling with other calves and lim-

ited biosecurity [17]. Video and direct sales are a convenient option for buyers and sellers, as it

minimises shrink and the exposure to pathogens by shipping calves from the ranch of origin

directly to the feedlot operation. Lower risk of developing bacterial bronchopneumonia has

been reported in calves purchased directly from the ranch than calves purchased through the

auction markets [14, 15]. Similar to newly-weaned calves, auction market calves may benefit

from a rest stop because they are exposed to multiple stressors close to the time of transporta-

tion compared to calves sourced directly from a ranch.

Currently, there is a lack of literature on the effect of a rest stop on the welfare of beef cattle

purchased from different sources and different management strategies. Therefore, the aim of

this study was to assess the effect of conditioning, source, and rest, on welfare indicators in 7-

8-month-old beef cattle transported by road.

Materials and methods

This protocol was approved by the Animal Care Committee of Lethbridge Research and

Development Centre (LeRDC) (ACC number 1918). Animals were cared for in accordance

with the Canadian Council of Animal Care [18].

Animal management and transport

Three hundred and twenty crossbred steer calves—Black or Red Angus × Hereford/Simmental

and Black or Red Angus × Charolais, 245 ± 35.7 kg (mean ± SD) of body weight (BW)—were
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sourced from two different locations in southern Alberta, Canada. Treatments consisted of a

2 × 2 × 2 factorial design where the main factors included conditioning: conditioned (C;

n = 160) or non-conditioned (N; n = 160); source: auction market (A; n = 160) or ranch direct

(R; n = 160); and rest: 0 h (0 h; n = 160) or 8 h (8 h; n = 160). Calves were divided into two

groups (group 1 and 2) and each group was transported by road for 36 h, rested, and trans-

ported for an additional 4 h, 8 d apart (Table 1). Samples were collected prior to loading (LO1)

and after unloading (UN1) following the 36-h transport, as well as prior to loading (LO2) and

after unloading (UN2) following the additional 4-h transport. In addition, calves were sampled

on d 1, 2, 3, 5, 14 and 28 after UN2. Calves were randomly assigned to treatments (40 calves/

treatment) and pens (10 calves/pen). To avoid variation in physiological parameters due to the

circadian rhythm, calves were sampled 24 (1 d), 48 (2 d), and 72 (3 d) h after UN2.

Conditioned calves. Twenty to twenty one d prior to LO1 (September 3rd and 11th, 2019),

two groups of eighty calves were weaned and transported for approximately 1 h from the

ranch of origin to the LeRDC. Upon arrival calves were processed, which included receiving a

7-way bovine clostridial vaccine (Ultrabac/Somubac, Zoetis Canada Inc., Kirkland, QC, Can-

ada); a 5-way bovine viral diarrhea, rhinotracheitis, parainfluenza and bovine respiratory syn-

cytial virus vaccine (Pyramid FP 5 + Presponse SQ, Boehringer Ingelheim., Burlington, ON,

Canada); an antibiotic (Draxxin, Zoetis Canada Inc., Kirkland, QC, Canada); an anti-parasitic

agent (Ivomec Pour-on for Cattle, Boehringer Ingelheim, Burlington, ON, Canada); and an

ear tag and a half duplex RFID tag. During the conditioning period (20 to 21 d) calves were

housed in 4 pens (36.7 m × 22.2 m) with a central water trough, with 40 animals per pen.

Calves received an ad libitum diet consisting of 35% corn silage, 20% alfalfa hay, 12% barley

grain and 3% supplement with vitamins and minerals the first 3 d after arrival to the LeRDC

feedlot and ad libitum feed consisting of 85% corn silage, 12% barley grain and 3% supplement

with vitamins and minerals for the rest of the conditioning and experimental period.

In order for calves to be “preconditioned”, they must be weaned, castrated, dehorned,

branded, vaccinated, ear tagged, and adapted to a grain diet, the feed bunk and/or the water

Table 1. Chronology of sampling for group 1 and 2 of conditioned and non-conditioned, crossbred beef calves,

sourced from an auction or ranch, transported for 36 h and rested for 0 or 8 h.

Samples Group 1 Group 2

A R A R

LO1 Sep 23rd 1525–1735 Sep 24th 1527–1726 Oct 1st 1615–1753 Oct 2nd 1612–1747

0 h 8 h 0 h 8 h

UN1 Sep 26th 0558–0848 Oct 4th 0605–0901

LO2 - Sep 26th 1702–1813 - Oct 4th 1700–18004

UN2 Sep 26th 1131–1253 Sep 26th 2227–0011 Oct 4th 1154–1311 Oct 4th 2217–2342

1 d Sep 27th 1129–1252 Sep 27th 2224–2351 Oct 5th 1136–1305 Oct 5th 2214–2345

2 d Sep 28th 1130–1248 Sep 28th 2225–2343 Oct 6th 1140–1255 Oct 6th 2210–2337

3 d Sep 29th 1127–1256 Sep 29th � Oct 7th 1137–1300 Oct 7th 2212–2330

5 d Oct 1st 0920–1150 Oct 9th 0800–1049

14 d Oct 10th 0802–1040 Oct 18th 0855–1128

28 d Oct 24th 0802–1038 Nov 1st 0802–1046

Values indicate the date and time (24 h clock) sampling took place.

Calves were sampled before (LO1) and after (UN1) the 36h transport, before (LO2) and after (LO2) the additional 4

h transport, as well as on d 1, 2, 3, 5, 14, and 28 after UN2. Calves were sourced from an auction market (A) or ranch

(R) and were provided with either no rest (0 h) or 8 h (8 h) of rest.

�Calves rested for 8 h in group 1 were not sampled on Sep 29th due to a severe snowstorm.

https://doi.org/10.1371/journal.pone.0244854.t001
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trough for 30 to 45 d prior to transportation [9, 10]. In the present study, half of the calves

were weaned, vaccinated, ear tagged, and adapted to the feed, the feed bunk, and the water

trough for a period of 20 to 21 d prior to transport. Therefore, calves in this study will be

referred to as ‘conditioned’ calves, because the suggested preconditioning time period prior to

shipping was not met. A conditioning period of 20 to 21 days was selected to match the meth-

ods of a previous transport study that reported no differences in welfare indicators of rested

and unrested calves [7].

Non-conditioned calves. Prior to LO1 (September 23rd and 24th, and October 1st and 2nd,

2019), four groups of forty calves were separated from their dams and put on a truck and trans-

ported for approximately 1 h from the ranch of origin to the LeRDC. Non-conditioned calves

received an ear tag and an RFID tag during LO1 sampling for identification. Processing (vac-

cine, antibiotic, and anti-parasitic administration) was postponed until UN2 to simulate

industry practices, where calves are processed once they arrived at the feedlot.

Upon arrival to the LeRDC, each group of 40 non-conditioned calves was mixed with 40

conditioned calves (housed at the LeRDC) prior to LO1 sampling. After LO1 and LO2 sam-

pling, calves were sorted into 5 pens, in order for treatments to be equally distributed into one

of the 5 compartments within the trailer.

Auction market calves. Conditioned (n = 80) and non-conditioned (n = 80) calves from

the groups described above were sampled (LO1) and transported for approximately 20 min

(September 23rd and October 1st, 2019) to a local auction market 7.9 km from the LeRDC, off-

loaded and sorted into pens with access to hay and water. Within the 24 h that calves spent at

the auction market, they were moved through the sale ring to mimic auction market condi-

tions. Although it is common for calves to be mixed at the auction market, calves in the present

study were not comingled with calves from other farms due to time and labour limitations.

Ranch-direct calves. The remaining non-conditioned (n = 80) calves and conditioned

(n = 80) calves were mixed and sampled at LO1 on (September 24th and October 2nd, 2019)

prior to the 36 h transport.

Auction market calves were transported to the auction market one day prior to the 36 h

transport so that both auction market and ranch calves from each group were transported at

the same time. Two separate trucks loaded auction market calves and ranch calves (LeRDC) at

1800 h. Calves did not have access to feed and water for 2.5 h prior to LO1, and for 1 h prior to

LO2.

Housing and feeding. Calves were housed in 32 pens (21 × 27 m) with a fence line water

through; 10 animals per pen. Calves received an ad libitum diet consisting of 35% corn silage,

20% alfalfa hay, 12% barley grain, and 3% supplement with vitamins and minerals for the first

3 d after arrival to the LeRDC feedlot. For the remainder of the conditioning and the experi-

mental period, calves received ad libitum feed consisting of 85% corn silage, 12% barley grain

and 3% supplement with vitamins and minerals to meet beef cattle nutrition requirements

[19]. In addition, water was provided ad libitum through a central water trough in the condi-

tioning pens, and through a fence line water trough in the experimental pens.

Transport. Two model 379 Peterbilt trucks and 2018 Merritt feeder cattle tri-axle trailers

bedded with wood shavings were used to transport calves for 36 h and for an additional 4 h

after rest. Calves transported for 36 h left the auction market and the LeRDC at 1800 h (Sep-

tember 24th and October 2nd, 2019), and both trailers arrived to the LeRDC at 0600 h (Septem-

ber 26th and October 4th, 2019). During both transports, calves were placed in the nose (n = 5),

the deck (n = 26), the belly (n = 26), the back (n = 13), and the doghouse (n = 10). Loading den-

sities (nose 1.63, deck 0.71, belly 0.71, back 0.91, and doghouse 1.18 m2/animal) differed

between compartments in order to have an equal representation of treatments per compart-

ment. The two trailers leaving the auction market and the LeRDC on the same day travelled
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together to ensure similar road and environmental conditions. Drivers monitored the calves

when they stopped for rest and made sure that all calves were standing to avoid injuries. The

same experienced drivers transported both group 1 and group 2 calves.

Trailer temperature and humidity were recorded using the DS1923 hygrochron tempera-

ture/humidity logger iButton (Maxim Integrated Products, Sunnyvale, CA, USA). Loggers

were zip tied to the front of the ear tags of a subset of 128 calves, which were equally distributed

by compartment. Relative humidity (RH, %) and temperature (T,˚C) data were collected every

2 minutes during the 36 and 4 h transport and were used to calculate the temperature humidity

index (THI) (Table 2) using the following formula:

0:8� Tþ RH� ðT � 14:4Þ þ 46:4

Sample collection

Weight and rectal temperature were recorded from all experimental calves (n = 320) and a sub-

set of 12 calves/treatment (3 calves/pen) were sampled for physiological and behavioural indi-

cators of welfare. Calves were sampled prior to (LO1) and after (UN1) the 36 h transport, and

prior to (LO2) and after (UN2) the additional 4 h transport. In addition, calves were sampled

on d 1, 2, 3, 5, 14 and 28 after UN2.

Behavioural assessments

Standing and lying. Standing and lying behaviour of a subset of 12 calves/treatment was

recorded with accelerometers (Hobo pendant G, Onset Computer Corporation, Bourne, MA,

USA) attached to the right hind leg of the calves using Vet Wrap (Professional Preference, Cal-

gary, AB, Canada). At LO1, accelerometers were placed, each in a vertical position on the hind

right leg of the respective calf with the X-axis pointing up towards the backbone of the calf,

and set to record data at 1-min intervals. Data from the days when the accelerometers were

placed (d -2 and/or -1) and removed (d 5) from the calves were excluded from the analysis due

to incomplete data. Standing and lying percentage per day, and standing and lying mean bout

duration per day were summarized by day for further analysis.

Calf attitude and gait score. Calf attitude and gait were assessed after UN1 and UN2 as

described previously by Meléndez et al. [7]. An experienced observer assessed calves after exit-

ing the squeeze chute while walking down an alley outside of the handling facilities.

Attitude was evaluated using a 4-point scale [20]. Normal, bright, and alert cattle that hold

their head up and readily move away from the observer receive a score of 0. Cattle that are

slightly depressed but respond quickly to the observer and appear normal receive a score of 1.

Cattle with moderate depression, that stand with their head down, ears drooped, with an abdo-

men that lacks fill and may appear floppy, and move away slowly from observer receive a score

Table 2. Trailer temperature and humidity index within trailers used to transport two groups of 7–8 mo old beef

calves (group 1 and 2) for a 36 h and 8 h period.

Temperature Humidity Index (THI)

Minimum Maximum Average

Group 1
36h 18.9 90.2 53.3

4h 29.8 88.0 53.6

Group 2
36h 18.9 89.4 50.4

4h 39.02 77.9 49.8

https://doi.org/10.1371/journal.pone.0244854.t002
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of 2. Cattle with severe depression, that stand with the head down, are very reluctant to move,

and have very noticeable gauntness of abdomen receive a score of 3.

Gait score was evaluated using a 5-point scale [21]. Cattle that walk normallly, with no

apparent lameness or change in gait are characterized as “walking normally” and receive a

score of 0. Cattle that walk easily and readily, the line of the backbone is normal and bear full

weight on all four limbs, but have an observable gait alteration are characterized as “mildly

lame” and receive a score of 1. Cattle that are reluctant to walk, do so with a short weight-bear-

ing phase of stride, rest the affected limb when standing, and have increased periods of recum-

bency are characterized as “moderately lame” and receive a score of 2. Cattle that lie down

most of time, are reluctant to stand, refuse to walk without stimulus, do not bear weight on the

affected limb therefore “hops” when moving, does not use limb when standing and have an

arched backbone with caudoventral tip to the pelvis are characterized as “severely lame” and

receive a score of 3. Cattle that are recumbent, unable to rise, and where euthanasia is often

indicated are characterized as “non-ambulatory” and receive a score of 4.

Dry matter intake and feeding behaviour. Dry matter intake (DMI; kg/d/h), was deter-

mined by pen feed refusals recorded daily for d 0, 1 and 2 and 3 and weekly (week 1, 2, and 3)

until d 28 after transport for 24 pens. Feed samples were collected on feed refusal days to deter-

mine feed dry matter intake (DMI).

Individual feeding behaviour was monitored in the remaining 8 pens using the GrowSafe

feed bunk monitoring system (GrowSafe Systems, Airdrie, AB, Canada) as previously

described by Melendez et al [7]. Calves were fitted with radio frequency ear tags (RFID, All-

flex Livestock Intelligence, St-Hyacinthe, QC, Canada) and each pen was equipped with two

tubs which recorded individual feed intake during the study period. Feeding data was used

to calculate meal size (kg/meal/day), meal duration (min/meal/day), meal frequency (min/

meal/day), feeding intake (kg/day/day), feeding duration (min/day) and feeding rate (g/

min/day). A meal criterion of 300 s was selected based on previous studies in cattle [22, 23].

Feeding behaviour was evaluated for 1 pen per treatment (10 animals per treatment) for

group 1.

Flight speed. The velocity at which animals exited the chute was collected at LO1, UN1,

LO2, UN2, 1, 2, 3, 5, 14, and 28 d. The time it took an animal to travel a predetermined dis-

tance (2 m) was electronically recorded using two sets of light beams as described previously

by Burrow et al. [24]. Flight speed of each sampling point was added as a covariate to the

model as a negative relationship has been reported previously between flight speed, stress

responses and weight gain [25, 26].

Physiological assessments

Weight and rectal temperature. Calves were weighed while standing in a hydraulic

squeeze chute (Cattlelac Cattle, Reg Cox Feedmixers Ltd, Lethbridge, AB, Canada) equipped

with a weigh scale. Average daily gain (ADG) was calculated for the first week after transport

by subtracting the d 5 BW from the initial (LO1) BW and dividing by the number of days on

trial (A = 8 d and R = 7 d). The ADG of the second week was calculated by subtracting the d 14

BW from the d 5 BW and dividing by the number of days between sampling points (9 d). The

ADG of the third and fourth week was calculated by subtracting the d 28 BW from d 14 BW

and dividing by the number of days between samples (14 d). Shrink percentage was calculated

for the 36 h transport (shrink 1) and the additional 4 h transport (shrink 2), using the formula:

shrink = (1 - (BW after transport / BW before transport)) ×100.

Morbidity and mortality. Morbidity and mortality were recorded for the experimental

calves over a 28-d experimental period.
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Blood samples. Blood samples were collected from a subset of 12 calves/treatment

through jugular venipuncture at LO1, UN1, LO2, UN2, 1, 2, 3, 5, 14, and 28 d after UN2.

Blood samples were collected into 3, 10-mL non-additive tubes (BD vacutainer; Becton Dick-

inson Co., Franklin Lakes, NJ, USA) for osmolality, cortisol, non-esterified fatty acids (NEFA),

haptoglobin (HP), serum amyloid-A (SAA), and creatine kinase (CK) analysis. Blood samples

were also collected into a 7-mL sodium fluoride tube (BD vacutainer; Becton Dickinson Co.,

Franklin Lakes, NJ, USA) for L-lactate analysis, and into a 6-mL EDTA tube (BD vacutainer;

Becton Dickinson Co., Franklin Lakes, NJ, USA) for complete blood cell count (CBC) analysis.

Samples collected into the non-additive tubes and the sodium fluoride tube were left at room

temperature for 1 h prior to centrifugation for 15 min at 2.5 × g at 4˚C. Serum was decanted

and frozen at -80˚C for further analysis, with the exception of osmolality, which was analyzed

immediately after centrifugation.

NEFA were collected as an indicator of fat mobilization due to feed deprivation. NEFA con-

centrations were quantified using a colorimetric assay (HR Series NEFA-HR (2), FUJIFILM

Wako Pure Chemical Corporation, Osaka, Japan). The intra-assay CV was 3.3% and the inter-

assay CV was 3.6%. L-lactate was measured as an indicator of muscle damage using an L-lac-

tate colorimetric assay (Lactate Assay Kit, Cell Biolabs, Inc., San Diego, CA, USA) to quantify

L-lactate concentrations in serum. The intra-assay CV was 3.7% and the inter-assay CV was

1.9%. CK concentrations were quantified as an indicator of muscle damage using a colorimet-

ric assay (EnzyChrom™ Creatine Kinase Assay Kit, BioAssay Systems, Hayward, CA, USA).

The intra-assay CV was 6.0% and the inter-assay CV was 2.3%. HP and SAA were collected as

indicators of stress, inflammation, infection and trauma. HP concentrations were quantified

using a colorimetric assay (Tridelta Development Ltd., Maynooth, Co, Kildare, Ireland), while

SAA concentrations were quantified using an enzyme linked immunosorbent assay (Tridelta

Development Ltd., Maynooth, Co, Kildare, Ireland). The haptoglobin intra-assay CV was 6.2%

and the inter-assay CV was 5.2%. The SAA intra-assay CV was 5.6% and the inter-assay CV

was 5.0%. Complete blood cell count (CBC) was measured as an indicator of immune function

using a HemaTrueHematology Analyzer (Heska, Loveland, Co). Serum cortisol concentra-

tions were collected as an indicator of acute stress and concentrations were quantified using

an immunoassay kit (DetectX Kit, Arbor Assays, Ann Arbor, MI, USA). The intra-assay CV

was 6.8% and the inter-assay CV was 11.3%. Osmolality (mOsm/kg) was collected as an indica-

tor of dehydration and values were determined by freezing point depression (Multi-OSM-

ETTE model 2430, Precision Systems Inc., Natick, MA, USA).

Statistical analysis

The statistical methodology is similar to a previous study described by Melendez et al. [7].

Data were analyzed using mixed models due to the inclusion of fixed effects: conditioning,

source, and time (nested in rest) and random effects: animal and pen. Time was nested in rest

to account for the missing sampling point (LO2) for the 0 h treatment calves, which did not

receive a rest. Data were analyzed using PROC GLIMMIX (SAS, version 9.4, SAS Inst. Inc.,

Cary, NC). Distributions from the exponential family (gamma, inverse Gaussian, log-normal,

normal, exponential, and shifted t) for each variable were tested and selected based on the

Bayesian information criterion (BIC). After selecting the distribution, covariance structures:

compound symmetry (CS), heterogeneous compound symmetry (CSH), variance component

structure (VC), first-order autoregressive (AR1), and heterogeneous first-order autoregressive

(ARH1) were tested and selected based on the BIC value (S1 Table).

Covariates in the model varied depending upon the variable assessed. Group, time of day,

breed, and flight speed were included as covariates in the analysis of NEFA, L-lactate,
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haptoglobin, SAA, cortisol, CK, osmolality, and CBC. Group and breed were included as

covariates for the analysis of BW, ADG, rectal temperature, shrink 1 and shrink 2. Feed intake

and breed were included as covariates for the analysis of a subset of animals for shrink 2. Breed

was included as a covariate for the analysis of GrowSafe data and group was included as a

covariate for the analysis of DMI and accelerometer data. GrowSafe and accelerometer data

collected on d 0 were adjusted to the proportion of time animals were in the pen, as this varied

between the 0 h and 8 h groups. Results are reported as least squares-means (μ) including the

upper (u) and lower (l) limits at a 95% confidence. SAS PROC GLIMMIX iterated 1000 times

at multiple levels of iterations (MAXOPT = 1000; NLOPTIONS MAXITER = 1000). Bonferro-

ni’s correction for multiple comparisons was used.

Statistical significance was p� 0.05. In some cases, the F-test indicated the statistical signifi-

cance of an interaction but there was no statistically significant difference between compari-

sons of interest. In this case interactions are not discussed. Reported differences were limited

to comparisons of interest, such as differences between conditioning (C and N), source (A and

R) and rest stop (0 h and 8 h). For example, comparisons of interest included comparisons

between treatments with the same source and rest effect, but differing conditioning effect (e.g.

C-R-0h vs N-R-0h); the same conditioning and rest effect, but differing source effect (e.g. C-R-

0h vs C-A-0h), or the same conditioning and source effect, but differing rest effect (e.g. C-R-

0h vs C-R-8h) at a particular sampling point.

Data from 3 accelerometers (from the corresponding treatments C-A-8h, C-R-0h and N-A-

0h) were excluded from the analysis due to technical issues and data from the 8h group was

not collected on d 3 due to a severe snowstorm.

Results and discussion

Standing and lying

The three-way interaction of conditioning × source × rest (nested in time) effect (p = 0.01) was

observed for standing during the 36 h transport (Fig 1A; S2 Table). The mean standing per-

centage of the N-R-0h group μ = 91% (u = 124.0, l = 66.6) was greater than the C-R-0h group μ
= 40% (u = 55.4, l = 29.0) at hour 30 of transport. The mean standing percentage of the N-R-

0h group μ = 62% (u = 84.0, l = 46.2) was greater than the C-R-0h group μ = 28% (u = 37.3,

l = 20.5) at hour 32 of transport. The mean standing percentage of the C-A-8h group μ = 44%

(u = 63.4, l = 31.1) was greater than the C-R-8h group μ = 16% (u = 22.2, l = 11.9) at 34 h of

transport, while the mean standing percentage of the C-R-8h group μ = 71% (u = 100.3,

l = 50.8) was greater than the C-A-8h group μ = 28% (u = 39.1, l = 20.6) at hour 35 of transport.

Rest (nested in time) affected (p< 0.01) standing: the mean standing percentage where the 8h

rested group was greater (p = 0.04) standing % than the 0 h unrested group at hour 3 during

the additional 4 h transport (Fig 1B).

These results were surprising because we did not expect animals to lie down during trans-

portation, as cattle have been reported to avoid lying down when the truck is in motion [27].

Loading density may have contributed to calves lying down during the journey as the recom-

mend loading density for 250 kg feeder calves is close to 0.70 m2/animal [28]. In the present

study loading density ranged between 0.71 to 1.63 m2/animal, which may have been more con-

ducive for calves to lie down in compartments with lower loading densities such as the nose,

the back and the doghouse. Nevertheless, in the present study, treatments were equally distrib-

uted by compartments. Differences in loading densities between compartments have been

reported in calves transported in Canada and the USA, where greater densities than recom-

mended were observed in the deck and the belly compartment, while densities lower than rec-

ommended were observed in the nose, back and doghouse compartments [29]. Therefore, it
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Fig 1. Least squares means (± upper and lower limits at 95% confidence) of standing duration (% of time) during

the (A) 36 h transport, (B) additional 4 h transport, (C) first 4 days after transport and (D) lying bout duration of

conditioned (C) and non-conditioned (N), auction market (A) and ranch direct (R) calves rested for 0 (0 h) or 8

(8 h) h.

https://doi.org/10.1371/journal.pone.0244854.g001
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was hypothesized that greater space allowance encourages animals to lie down, as animals at

low and medium stocking densities change footing frequently to maintain balance, compared

to animals transported under conditions of high stocking densities [30]. Treatments differ-

ences were observed towards the end of the 36 h transport. Results observed between the N

and the C group were surprising as we expected the N group to lie down more due to fatigue

because they were handled more prior to the 36 h transport than the C group, but the opposite

was true. Differences observed between the A and R calves at 34 h could also be due to fatigue,

as R calves were weaned and handled twice immediately prior to the 36 h transport than A

calves which spent 24 h at the auction market prior to the 36 h transport. The difference

observed at 35 h could be due to differences in behaviour observed the hour prior. The 8 h

calves were characterized by numerically greater standing percentage than 0 h calves during

the additional 4 h transport, however differences were only seen after 3 h of transport likely

due to the lack of rest that 0 h calves experienced causing them to be more fatigued than the 8

h group.

A rest (nested in time) effect (p< 0.01) was observed for standing percentage after trans-

port. The 8 h calves stood more (p< 0.01) than 0 h calves on d 0 (Fig 1C). This may be

explained by the fact that 8h calves spent more time eating, while 0 h calves preferred to lie

down due to a lack of rest, or that 8 h calves were more unsettled due to handling and transport

than the 0 h calves. Differences could also be attributed to variability in the diurnal behaviour

of the calves because the 0 h calves were loaded at 0900 h while the 8 h calves were loaded at

1800 h for the last 4-h journey. For example, the 0 h calves were transported in the morning,

when calves are usually standing during feeding, while the 8 h calves were transported in the

evening, when calves have been reported to spend more time lying [31]. These results are con-

trary to a previous study reporting calves not receiving a rest were characterized by greater

standing durations than those that were rested [6], and another study that reported no differ-

ences in standing behaviour between conditioned calves transported for 36 h and rested for 0,

4, 8 and 12 h [7]. Interestingly, no differences were observed between treatments on d 1, 2, 3

and 4 after transport. A possible explanation for this is that calves laid down during the 36 and

additional 4 h transport in the previous study [7] and present study, as loading densities were

similar in both studies (0.62 to 1.18 m2/animal; unpublished data from previous study).

A conditioning and a source effect (p< 0.01) were also observed for standing percentage.

Mean standing percentage of the N calves was greater than the C calves, and mean standing

percentage of the R calves was greater than the A calves (p< 0.01). The N calves μ = 45%

(u = 47.6, l = 43.0) may have stood more than C calves μ = 41%(u = 43.1, l = 39.2) because

newly weaned calves typically walk more after weaning, in an attempt to reunite with their

dam [32]. The R calves μ = 44% (u = 47.2, l = 42.6) likely were characterized by greater stand-

ing percentages than A calves μ = 41% (u = 43.4, l = 0.175) because they may have been unset-

tled following weaning, transportation, and sampling (LO1) prior to the 36 h transport, while

the A calves had the opportunity to rest for 24 h after sampling (LO1) and prior to the 36 h

transport. Contrary to our results, we expected R calves to stand less due to greater fatigue

than the A calves that were rested before the 36 h journey. Although differences in standing

percentage were statistically significant, they were relatively small (< 4%) and may lack biolog-

ical relevance. A limitation to our approach is that ‘true’ auction market calves would have

been sourced from different ranches and could have displayed different behaviours compared

to calves in the present study.

A conditioning × rest (nested in time) effect (p = 0.04) was observed for mean lying bout

duration. The N-0h calves were characterized by lower (p< 0.05) mean lying bout durations

than N-8h calves on d 3 (Fig 1D). A possible explanation for the observed differences may be

that N-8h calves were more settled than N-0h calves due to the rest stop they received in

PLOS ONE Conditioning, source, and rest stop

PLOS ONE | https://doi.org/10.1371/journal.pone.0244854 January 12, 2021 10 / 25

https://doi.org/10.1371/journal.pone.0244854


transit. Nevertheless, we would have expected to see similar differences between the C-8h and

the C-0h calves, and similar differences on the days prior to d 3. The shorter bout durations

observed on d 3 may have been caused by a severe snowstorm that took place on that day

which affected Group 1 calves only. Cattle have been previously reported to stand during

snowstorms [33] and avoid lying down in cold conditions unless provided with bedding which

allows cattle to reduce body surface exposure [34]. Therefore, a decrease in lying behaviour

was expected for all treatments, however, the N-8h calves lying bout duration remained similar

to the previous day. These results are contrary to a prior study where no differences were

observed for lying bout duration between calves rested for 4, 8 and 12 h and calves that did not

receive a rest [7].

Attitude score

A rest (nested in time) effect (p< 0.01) was observed for attitude score, where 8 h calves were

characterized by a greater mean attitude score at UN2 μ = 0.30 (u = 0.420, l = 0.17) than UN1

μ = 0.07 (u = 0.185, l = -0.03). We would have expected 8 h calves to exhibit signs of fatigue

after the 36 h transport, rather than after the additional 4 h transport because the transport

duration was much shorter and calves were given the opportunity to rest. A

conditioning × source (p< 0.05) effect was observed for attitude score, where N-R calves μ =

0.3 (u = 0.41, l = 0.16) were characterized by a greater attitude score than C-R calves μ1 = 0.1

(u = 0.21, l = -0.05). These results were expected because C calves are more likely to withstand

transportation related stress than N calves [35]. Nevertheless, differences observed between

treatments were very small (< 0.3) and may lack biological relevance. These results are con-

trary to a previous study where the majority (97%) of calves transported for the same length of

time as the current study were given a score of 0 (normal) for both lameness and attitude [7].

Calves in the previous [7] and present study were evaluated by the same observer so differences

between studies cannot be explained by inter-observer differences. Lack of treatment differ-

ences in lameness and attitude scores in the previous study may have been the result of calves

being conditioned and transported fewer times than calves in the present study.

DMI and feeding behaviour

A conditioning × rest (nested in time) effect (p< 0.01) was observed for the DMI. Both C-0h

and C-8h calves were characterized by greater (p� 0.05) DMI than N-0h and N-8h calves on d

0 and 1 (Fig 2A). The C-8h calves characterized by greater (p< 0.01) DMI than N-8h calves

on d 2. These results are in agreement with the feeding behaviour data where overall, the C

calves were characterized by greater mean feeding durations, intake, feeding rate, meal dura-

tion and meal size than N calves on d 0, 1, and 2. Results were inconsistent between treatments

from d 3 to 28 (S1 File). This is likely due to C calves being adapted to the feed and the feed

bunk.

Body weight

A conditioning × rest (nested in time) effect (p< 0.01) was observed for mean BW, where C-

0h was characterized by greater BW than the N-0h calves and the C-8h calves were character-

ized by greater BW than the N-8h calves BW at each sampling point (p< 0.01) (Fig 2B). This

was expected because conditioned calves were adapted to a grain diet and the feed bunk 20 to

21 days before the start of the trial. Similar results were reported by Bailey et al. [36] where a

linear relationship was observed between BW and days since weaning, and greater BW was

observed in weaned than newly weaned calves prior to transport and during receiving.
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Shrink

A conditioning effect (p< 0.01) was observed for shrink after 36 h of transport, where C calves

μ = 10% (u = 11.9, l = 9.5) characterized by greater shrink than N calves μ = 8% (u = 9.2,

l = 7.4). Conditioned calves likely had more gut fill to lose during transport than N calves that

had been recently weaned and transported from their ranch of origin. These results are con-

trary to a previous study were greater shrink was observed in newly weaned calves compared

to calves weaned 15, 30, 45, and 60 days prior to transport [36]. Differences between studies

could be due to differences in transportation time as in the previous study calves were trans-

ported for 4 h from the ranch of origin to an auction market where they stayed for 14 h, and

Fig 2. Least squares means (± upper and lower limits) of (A) DMI and (B) body weight of conditioned (C) and non-

conditioned (N), auction market (A) and ranch direct (R) calves rested for 0 (0 h) or 8 (8 h) h.

https://doi.org/10.1371/journal.pone.0244854.g002
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were then transported for 1 h to a feedlot. This is substantially less transport time prior to and

after the rest stop than in the present study. Similar results have been reported in previous

studies, where greater shrink was observed when weaning was done closer to the time of trans-

portation [35, 37].

No differences (p> 0.10) were observed between treatment groups for shrink after the

additional 4 h transport. Data from a subset of 1 pen (10 calves/ treatment) housed in feed mon-

itoring pens were analyzed to account for feed intake during the rest period. These results are

similar to a previous study were no differences were observed in shrink after the additional 4 h

of transportation between conditioned calves that received 0 h and 8 h of rest [7]. There are con-

flicting results in the literature on shrink, for example, Marti et al. [6] found no differences in

shrink after 15 h of transport, 0, 5, 10 or 15 h of rest, and an additional 5 h of transport in newly

weaned calves, and Cooke et al. [5] found differences in shrink between preconditioned calves

that received 2 h of rest after 430 km of transport, and calves that did not receive a rest.

ADG

Conditioning and a source effects (p< 0.01) were observed for ADG during the first week

after transportation, where N μ = -0.2 kg (u = -0.10, l = -0.25) were characterized by greater

ADG than C μ = -0.3 kg (u = -0.27, l = -0.42), and R μ = -0.2 kg (u = -0.11, l = -0.27) calves

were characterized by greater ADG than A μ = -0.3 kg (u = -0.25, l = -0.40) calves. Greater

ADG in N calves was likely due to a weight gain caused by a diet change, from an all forage

low energy diet to a higher energy backgrounding (85% forage: 12% grain) diet [38]. Similar

results have been reported where newly weaned calves were characterized by greater ADG

compared to preconditioned calves [38], and conditioned calves after a long-haul transport

[34] during the first 30 d after entry to the feedlot. Contrary to our results, no weight gain dif-

ferences were observed between 20 d conditioned and newly weaned calves during the first 30

d in the feedlot, which the authors attributed to the short (< 45 d) conditioning period [39].

Greater ADG observed in R calves could be due to A calves being exposed to a new environ-

ment (auction market) and extra handling (ring simulation) prior to the 36 h transport, which

could have caused stress and reduced feed consumption, however no feed intake differences

were observed between R and A calves.

A source × conditioning effect (p = 0.03) and a rest effect (p<0.01) were observed for ADG

during the second week. The C-A μ = 0.5 kg (u = 0.56, l = 0.42) and N-R μ = 0.5 kg (u = 0.59,

l = 0.46) calves were characterized by greater (p<0.01) ADG than the C-R calves μ = 0.4 kg (u

= -0.42, l = 0.29 kg). The 8 h calves μ = 0.5 kg (u = 0.58, l = 0.47) were characterized by greater

(p<0.01) ADG than the 0 h calves μ = 0.4 kg (u = 0.50, l = 0.39). Differences between N and C

calves could be due to the observed weight gain in N calves once they started to eat a higher

energy diet containing some grain, similar to the results observed in week 1. Differences

observed between rest treatments could be because of the opportunity (or lack of) to rest and

eat for 8 h prior to the additional 4 h transport. Calves that did not receive a rest may have

been more fatigued and consequently preferred lying down rather than eating after the addi-

tional 4h transport, which could have affected ADG, however, no differences were observed in

feed intake.

A conditioning × rest effect (p< 0.01) was observed for ADG between d 14 and d 28, where

C-8h μ = 0.6 kg (u = 0.69, l = 0.51) and N-0h calves μ = 0.6 kg (u = 0.67, l = 0.51) were charac-

terized by greater ADG than N-8h calves μ = 0.5 kg (u = 0.58, l = 0.41). Contrary to the first

two weeks after transport, C were characterized by greater ADG than N calves and 0 h were

characterized by greater ADG than the 8 h calves. This could be because during the first 2

weeks after transportation the rate of weight gain in N calves would be greater due to the
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change in energy (added grain) in their diet. The combined stress of transport and lack of rest

may have affected the ADG of 0 h calves during the first two weeks after transport, while 8 h

calves benefited from the rest which resulted in greater ADG during the first 2 weeks after

transport. In a previous study, heifers were reported to take 2 weeks to reach a normal DMI

after a period of feed restriction [40]. The authors suggested that this was likely due to a com-

promised reticulo-rumen absorptive function and total tract barrier function. Greater ADG

observed for 0 h calves on weeks 2–4 could be a reflection of the transportation stress which

occurred earlier than in 8 h calves. This is in agreement with a study on transported calves that

found 0 or 5 h rested calves were characterized by greater ADG than those receiving 10 or 15 h

of rest [6]. Nevertheless, the results are contrary to a previous studies that reported no differ-

ences in ADG for conditioned calves transported 36 h and rested for 0, 4, 8 or 12 h over a 28 d

period post-transport [7], or preconditioned calves with or without rest [5]. Differences in

ADG between our study and previous studies could be because previous studies assessed ADG

for a 30 d period instead of weekly, and had different management procedures (conditioned vs

newly weaned) as well as transport and rest time.

Morbidity and mortality

During the experimental period mortality was 0% and morbidity was 5.9%. A total of 19 calves

were treated; 18 due to fever (3 C-R-0h calves, 4 C-R-8h calves, 4 C-A-0h calves, 1 C-A-8h calf,

4 N-R-8h calves and 2 N-A-8h calves), and one due to bloat (C-R-0h). Similar to a previous

study [35], low morbidity in the present study was likely due to calves being purchased from a

single source and not being comingled with other animals, which reduces the exposure to

pathogens. This is in agreement with previous studies that have observed that comingled calves

purchased from multiple sources have an increased risk of BRD [41–43].

NEFA

A conditioning × rest (nested in time) effect (p< 0.01) was observed for mean NEFA concen-

trations. At LO1, N-0h were characterized by greater mean NEFA concentrations than C-0h

calves, and N-8h calves were characterized by greater mean NEFA concentrations than C-8h

calves (p< 0.01) (Fig 3A; S3 Table). Increased serum NEFA concentrations are associated

with food deprivation as the body mobilizes fat to use as an energy source [44]. Greater NEFA

concentrations observed in N calves at LO1 were likely due to the combined effect of weaning

and transport the calves underwent prior to being loaded. Weaning is a routine husbandry

procedure which involves the physical separation of a calf from its dam in order for the dam to

maintain or improve depleted body condition for the next pregnancy and lactation cycle [45].

It is well documented that weaning is stressful and has been shown to increase plasma cortisol

[46], norepinephrine [47], and acute phase protein [48] concentrations as well as reduce

immune function [49], and lying behaviour [32, 50]. Stress activates the sympathetic and

inhibits the parasympathetic nervous system which is associated with activities such as resting

and eating [51]. The combined effect of eliminating the opportunity for calves to suckle as well

as reducing their motivation to graze [50] contributes to an overall reduction in energy intake

(feed deprivation) which partially explains the increased NEFA concentrations observed in N

compared to C calves. Another explanation for the greater NEFA concentrations in weaned

(N) compared to C calves at LO1 is that N calves were transported for 1 h without food or

water from the ranch to the research feedlot which meant they were feed (and water) deprived

for at least 1 h longer, further contributing to the need to mobilize energy reserves.

No differences (p> 0.10) were observed between A and the R calves at LO1. These results

were expected because A calves had access to feed and water at the auction market and so
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would not be more energy depleted than calves transported directly from the ranch. Although

the provision of feed is a common practice at the auction market used in this study it is not a

common practice at most other auctions within Canada as typically only water is provided.

We speculate that under these typical conditions (no feed provided) NEFA concentrations

could be greater in A compared to R calves.

Fig 3. Least squares means of (A) NEFA, (B) SAA, (C) HP and (D, E) CK concentrations of conditioned (C) and non-conditioned (N), auction market (A) and

ranch direct (R) calves rested for 0 (0 h) or 8 (8 h) h.

https://doi.org/10.1371/journal.pone.0244854.g003
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At LO2, N-8h calves were characterized by greater (p< 0.01) mean NEFA concentrations

than C-8h calves. These differences were likely due to N calves not eating or eating less during

the rest stop. To test this theory, data from a subset of 10 animals per treatment were summa-

rized by hour and analyzed to assess feeding behaviour during the 8 h rest period. No treat-

ment differences were observed for feeding time (p> 0.10), meaning that all calves spent an

equal amount of time at the feed bunk, however a conditioning × rest (nested in time) effect

(p = 0.03) was observed for feed intake, where C-8h calves μ = 4.1, 1.9, 1.9, 1.5 kg/h (u = 3.31,

1 = 1.76) were characterized by greater (p� 0.02) feed intake than N-8h calves μ = 1.0, 0.6, 0.9,

0.6 kg/h (u = 1.19, 1 = 0.58) at hour 1, 2, 3, and 5 of the rest period. Although no differences

were observed for feed intake at hours 4, 6, 7, and 8 the C-8h calves μ = 1.4, 1.4, 1.8, 2.0 kg/h

(u = 2.22, 1 = 1.20) were characterized by numerically greater feed intake than N-8h calves μ =
0.8, 0.8, 1.3, 1.4 kg/h (u = 1.45, 1 = 0.76). These results indicate that N calves were eating dur-

ing the rest stop, however, the amount of feed consumed was lower than in C calves, possibly

due to a lack of feed and feed bunk adaptation.

At UN2, N-8h were characterized by greater (p< 0.01) mean NEFA concentrations than

C-8h calves. This is similar to the results observed for LO2, where N calves were characterized

by lower feed intake likely due to a lack of adaptation to the feed and the feed bunk. In con-

trast, no treatment differences (p> 0.10) were observed between N-0h and C-0h calves, likely

because calves did not receive a rest and therefore had no opportunity to eat.

The C-0h calves were characterized by greater (p = 0.01) mean NEFA concentrations

than C-8h calves at UN2 which was expected because C-0h calves did not have the opportunity

to eat prior to the 4 h transport. These results are in agreement with a previous study, where

conditioned calves that received no rest (0h) were characterized by greater mean NEFA con-

centrations at UN2 than calves that received 8 h of rest after 36 h of transport [7]. We would

have expected to see similar results between N-0h and N-8h calves at UN2. Although there

were no differences (p> 0.10) between the groups, N-0h calves did have numerically greater

NEFA concentrations than N-8h calves. One explanation is that N-8h calves may not have

consumed enough feed during the rest period for NEFA concentrations to be different from

the N-0h calves. Even though the amount of feed consumed by N calves was lower than C

calves, we would have expected to see a difference between N-0h and N-8h calves, as NEFA

concentrations have been reported to decrease rapidly when animals are provided feed and

water [52].

SAA and HP

A conditioning × rest (nested in time) effect (p< 0.01) was observed for mean SAA concentra-

tions. The N-0h calves were characterized by greater mean SAA concentrations than C-0h

calves, and N-8h calves were characterized by greater mean SAA concentrations than C-8h

calves, at LO1 and on d 1 (p� 0.01) (Fig 3B). The N-0h calves were also characterized by

greater (p = 0.02) mean SAA concentrations than C-0h calves at UN2. A conditioning × rest

(nested in time) effect (p< 0.01) was observed for mean HP concentrations. The N-0h calves

were characterized by greater (p< 0.01) mean HP concentrations than C-0h calves at UN1,

and on d 1 and 2 (Fig 3C). The N-8h calves were characterized by greater (p< 0.01) mean HP

concentrations than C-8h calves on d 2, 3, and 6.

The acute phase response (APR) has been reported to peak 2 to 3 d after a stimulus that pro-

duces inflammation, tissue damage, infection or trauma [53]. This is in agreement with the dif-

ferences observed in SAA concentrations between N and C calves at UN2 and on d 1, which

corresponds to d 2 and 3 after weaning for the N calves. Similar to our findings, HP and SAA

concentrations have been reported to increase 3 to 5 d post-weaning in 6-week-old Holstein
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calves [54]. Nevertheless, the effect of weaning on the APR response is inconsistent in the liter-

ature. For example, weaning did not affect SAA concentrations, while greater HP concentra-

tions were observed on d 2 and 7 after weaning compared to baseline levels in 8-month-old

calves [55]. In contrast, an association was observed between weaning and fibrinogen, while

no relationship was observed between weaning and HP in 7-month-old calves [47]. Inconsis-

tencies in the APR response in the previous studies could be due to the use of heifers and

steers, which are known to have different temperaments [56] and therefore can react differ-

ently to stressful situations.

In the present study, HP and SAA values were greater than the normal range (HP: < 0.1 g/

L and SAA 1.3 mg/L) for cattle [57] prior to transportation, and an increase was observed for

both SAA and HP concentrations after transport. Contrary to our findings, SAA concentra-

tions have been reported to be greater, while HP concentrations have been reported to be

lower in transported than non-transported calves [58]. Differences in SAA concentrations at

LO1 were unexpected, and may be a result of the combined stress associated with weaning,

transportation and handling, as the APR has been suggested to be activated through the pro-

duction of corticosteroids [59]. Nevertheless, no differences (p> 0.10) were observed in corti-

sol concentrations at LO1 or throughout the study. In addition, we did not expect C calves to

have SAA and HP concentrations above the normal range at LO1. Conditioned calves may

have been stressed when mixed with conditioned calves from other pens and non-conditioned

calves prior to LO1 sampling, however, we would not expect to see an increase in concentra-

tions shortly after a stressor as indicated earlier.

Differences have been reported between SAA and HP responses to the same stimuli [55,

57]. Differences in SAA concentrations for the 0 h and 8 h groups were observed at the same

sampling points (LO1, UN2 and d1), whereas differences in HP were observed earlier in the 0

h calves (UN1, d 1 and 2) and later (d 2, 3 and 6) in the 8 h calves. The HP response may have

been prolonged in the 8 h calves due to a delay in the time of arrival of the calves to their final

destination. High variability (0.95 to 581 μg/mL) was observed for SAA concentrations, so cau-

tion should be taken when interpreting these results.

Creatine kinase

A conditioning × rest (nested in time) effect (p< 0.01) was observed for mean CK concentra-

tions. At LO1, N-0h were characterized by greater mean CK concentrations than C-0h calves,

and N-8h calves were characterized by greater mean CK concentrations than C-8h calves

(p< 0.01) (Fig 3D). Creatine kinase is an enzyme involved in the production of ATP in the

muscle [60], which increases after muscular activity due to a higher utilization of energy [61]

and appears in the plasma as a result of muscle cell damage [62]. Creatine kinase has been pre-

viously used in transport research as an indicator of muscle fatigue, because transported cattle

typically stand over the course of their journey and have to maintain their balance during that

time. Concentrations of CK have been reported to increase progressively with time of trans-

port [27]. Higher CK concentrations in N calves prior to the 36 h transport could be due to

greater physical activity associated with the gathering of the cow-calf pairs at the ranch and

weaning which can increase walking behaviour for calves in an attempt to reunite with the

dams [32, 50]. In addition, calves were transported for 1 h from the ranch of origin to the

research feedlot, while C calves was housed at the research feedlot. The CK results are similar

to those observed for NEFA and SAA.

At UN2, d 1, 2, 3 and 6, N-0h calves were characterized by greater (p< 0.01) mean CK con-

centrations than C-0h calves. On d 1 and 2, N-8h calves were characterized by greater

(p< 0.01) mean CK concentrations than C-8h calves. These results suggest that N calves had
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greater muscle fatigue than C calves, and that differences were observed for a longer period of

time in N-0h compared to N-8h calves, likely due to recovery of the 8h calves during the rest

period. This is contrary to the HP findings where differences in 8h calves were observed at a

later time point than the 0 h calves. Differences between these parameters may be because CK

is associated with muscle fatigue, while HP concentrations can increase due to stimuli that

cause inflammation, infection, stress, or trauma.

A source × rest (nested in time) effect (p = 0.01) was observed for mean CK concentrations.

At UN2, R-0h calves were characterized by greater (p< 0.01) mean CK concentrations than

A-0h calves (Fig 3E). This is likely due to the ranch calves having greater physical activity prior

to the 36 h transport as ranch calves were weaned, transported and sampled, while the auction

market calves were only put through the ring prior to the 36 h transport. Greater CK and

NEFA concentrations and lower muscle glycogen have been reported in bulls mixed with

unfamiliar animals [63], likely due to an increase in physical activity associated with antagonis-

tic behaviours. Nevertheless, we would have expected to see similar differences between the R-

8h and the A-8h calves. Lack of differences could be because R-8h and A-8h calves received a

rest prior to the additional 4 h transport, which allowed calves to eat and recover. Differences

observed between R-0h and A-0h could be due to the lack of rest, as energy deficiency and

muscle glycogen depletion have been associated with muscle fatigue during prolonged exercise

[64].

Osmolality and HCT

A source × conditioning × rest (nested in time) effect (p = 0.05) was observed for osmolality,

however no differences were observed between comparisons of interest. Osmolality is a mea-

sure of the total number of dissolved solute particles in one kilogram of a solution. Plasma

osmolality has been previously used as is an indicator of hydration in cattle [65, 66]. Greater

osmolality would be expected in animals that have not had access to water, as solutes would be

more concentrated in their plasma. Another indicator used to assess hydration is hematocrit,

which is the percentage of blood volume occupied by red blood cells. Vogel et al. [66] sug-

gested that plasma osmolality may be more sensitive to changes in cattle hydration than

hematocrit (HCT) since they found that osmolality was greater in feed and water deprived

slaughter cows than those that had access to feed and water. However, they did not observe

any differences in HCT assessed in the same cows. In the present study, no differences were

observed in osmolality or HCT between treatments of interest. These findings were unex-

pected, as we would have predicted that calves receiving 8 h of rest would have had lower

plasma osmolality than calves not receiving a rest at the UN2 sampling point. However, these

findings are similar to previous studies that observed no clinical signs of dehydration in young

calves after long transport journeys [67–69]. Lack of differences between treatments could be

due to a short additional 4 h transport that may not be long enough to cause a substantial

change in hydration between calves rested 0 or 8 h. Similarly, no differences were observed in

HCT in calves transported either 12 or 36 h and rested for either 0, 4, 8 or 12 h [7]. The authors

suggested that lack of treatment differences in hematocrit could be due to water absorption

from the ruminal contents [62].

L-lactate

A source × conditioning × rest (nested in time) effect (p< 0.01) was observed for L-lactate

concentrations. The C-R-8h calves (UN1 μ = 1.7 mmol/L (u = 1.91, l = 1.40), d14 μ = 1.0

mmol/L (u = 1.23, l = 0.71) were characterized by greater mean L-lactate concentrations than

N-R-8h calves (UN1 μ = 1.1 mmol/L (u = 1.35, l = 0.85), d 14 μ = 0.6 mmol/L (u = 0.86,
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l = 0.35) at UN1 and on d 14 post-transport. L-lactate is an indicator of muscle damage (similar

to CK), however, it can also be produced in other tissues in the body [62]. These findings were

surprising, as L-lactate is an indicator of muscle fatigue related to exercise intensity and there-

fore we expected to observe findings similar to what was observed for CK. Contrary to NEFA,

SAA, HP, and CK, lactate concentrations were greater in C than N calves at UN1 and d 14.

This may be due to lactate not being as muscle specific as CK. Based on these results lactate

may not be a sensitive indicator of muscle fatigue.

Complete blood cell count

A conditioning × rest (nested in time) effect (p = 0.05) was observed for WBC count. The N-

8h calves were characterized by greater (p� 0.03) WBC count than C-8h calves at LO1, and

on d 1 and 2 post-transport (Fig 3F). Interestingly, no differences (p> 0.10) were observed

between N-0h and C-0h calves. WBC counts were higher in all treatments than the reported

normal range (4–12 × 103/μL) for beef calves [70]. Increased WBC count has been associated

with stress, excitation, fear or exercise [71]. Greater WBC counts in N compared to C calves at

LO1 may be explained by stress and fear as well as increased exercise associated with weaning,

and transportation. These results are in agreement with our findings for NEFA, SAA, and CK.

A conditioning × rest (nested in time) effect (p< 0.01) was observed for granulocyte count.

The mean granulocyte count for the C-0h calves was greater (p< 0.01) than the N-0h calves,

and the mean granulocyte count of the C-8h calves was greater (p< 0.01) than N-8h calves at

LO1 (Fig 4A). In addition, the N-8h calves were characterized by greater (p< 0.01) granulo-

cyte counts than C-8h calves on d 1 and 2 post-transport. Similar to the results for WBC

counts, mean granulocyte counts were greater in N calves than C calves except at LO1. This is

contrary to what we expected as N calves were recently weaned and transported and we would

have expected calves to be more stressed than C calves. A source × rest (nested in time) effect

(p< 0.01) was observed for granulocyte counts. The A-0h calves were characterized by greater

(p = 0.01) granulocyte counts than R-0h calves on d 3 post-transport (Fig 4B). Although statis-

tical differences were observed between treatments, the granulocyte counts of all calves fell

within the normal range (1.9–7.9 103/ul) reported for beef cattle [70].

Lack of differences in physiological parameters and CBC between R and A calves in the

present study could be because calves were not comingled at the auction market and were pro-

vided with feed and water. Comingling can cause stress due to mixing with unfamiliar calves,

increasing the risk of disease due to exposure to pathogens [13]. Calves were not comingled in

the present study due to time and labor limitations. Feed deprivation has also been reported to

cause a physiological response [52]. Based on these results, exposure to auction market condi-

tions had little effect on the physiology and behaviour of calves. Future transport studies

should include cattle that have been comingled and feed deprived to assess the effect of auction

market conditions (comingling and feed deprivation) on physiological and behavioural indica-

tors of stress.

Conclusions

Based on the observed physiological and behavioral variables, with the exception of NEFA and

standing %, there were few statistically significant differences between rested and unrested

calves. Few and inconsistent indicators of reduced welfare were observed between auction

market and ranch direct calves, while non-conditioned calves were characterized by greater

physiological and behavioural indicators of reduced welfare than conditioned calves. The lack

of statistically significant differences between the experimental rest durations was attributed to

cattle lying down during transport and the additional 4 h of transport is hypothesized to be
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Fig 4. Least squares-means of (A) WBC and (B and C) granulocyte count of conditioned (C) and non-conditioned

(N), auction market (A) and ranch direct (R) calves rested for 0 (0 h) or 8 (8 h) h.

https://doi.org/10.1371/journal.pone.0244854.g004
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insufficient for rest to affect welfare indicators. The lack of statistically significant effect due to

source may be due to calves not being comingled and the accessibility of feed and water at the

auction market. Based on the findings of this study: conditioning can improve the cattle wel-

fare during transportation, auction markets should provide feed to animals as a management

strategy to minimize stress, and rest did not consistently affect the welfare of beef cattle. Future

studies should assess the effect of rest with a longer transportation time following the rest

period, and the effect of rest on auction market feed deprived and commingled cattle.
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