

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see

https://doi.org/10.1021/acs.est.1c04656

Document downloaded from:

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1	Modeling the impact of salinity variations on
2	aquatic environments: including negative and
3	positive effects in life cycle assessment
4	Alba Roibás-Rozasª, Montserrat Núñez* ^b , Anuska Mosquera-Corral ^a and Almudena
5	Hospido ^a
6	^a Cross-disciplinary Research Center in Environmental Technologies (CRETUS),
7	Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782
8	Santiago de Compostela, Galicia, Spain.
9	^b Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA),
10	08140 Caldes de Montbuí, Barcelona, Spain.
11	*Corresponding author e-mail: <u>montserrat.nunez@irta.es</u> ; Phone: +34934674040.
12	ABSTRACT
13	Salinity is changing in aquatic systems due to anthropogenic activities (like irrigation or
14	dam management) and climate change. Although there are studies on the effects of

15 salinity variations on individual species, little is known about the effects on overall

$\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 21\\ 22\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 35\\ 37\\ 38\\ 9\\ 41\\ 42\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 54\\ 55\\ 57\\ 59\\ \end{array}$	1 2 3 4 5 6 7 8 9 10 11 12 13	
21 22 23 24 25 26 27 28 20 31 32 33 35 37 38 30 41 42 43 44 50 51 52 53 54 55 57 58 59	15 16 17 18	
$\begin{array}{c} 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 40\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 7\\ 58\\ 59\end{array}$	20 21 22 23 24	
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 950\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 7\\ 58\\ 59\end{array}$	26 27 28 29	
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	31 32 33 34	
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	36 37 38 39	
46 47 48 49 50 51 52 53 54 55 56 57 58 59	41 42 43 44	
51 52 53 54 55 56 57 58 59	46 47 48 49	
57 58 59	51 52 53 54 55	
60	57 58	

16	ecosystems, these impacts being more uncertain in transitional waters such as estuaries
17	or fiords. The few works that do address this topic have considered these impacts using
18	ecotoxicity models. However, these models state that an increase in the concentration of
19	a pollutant generates an increase in the impacts, disregarding the effects of water
20	freshening. The present research work introduces a general framework to address the
21	impacts of salinity variations, including emission-related positive effects. We validated
22	this framework by applying it to an estuarine area in Galicia (northwestern Spain),
23	where sharp drops in the salt concentration have caused mass mortalities of shellfish in
24	recent decades. This research work addresses for the first time the potential effects on
25	the environment derived from a decrease in the concentration of essential substances,
26	where the effects of an emission can also generate positive impacts. Moreover, it is
27	expected that the framework can also be applied to model environmental impacts of
28	other essential substances in life cycle assessment (LCA), such as metals and
29	macronutrients.
30	Keywords: Biodiversity, Climate Change, Ecotoxicity, Life Cycle Impact Assessment
31	(LCIA), Salinity, Species Sensitivity Distribution, Transitional Waters

32 SYNOPSIS

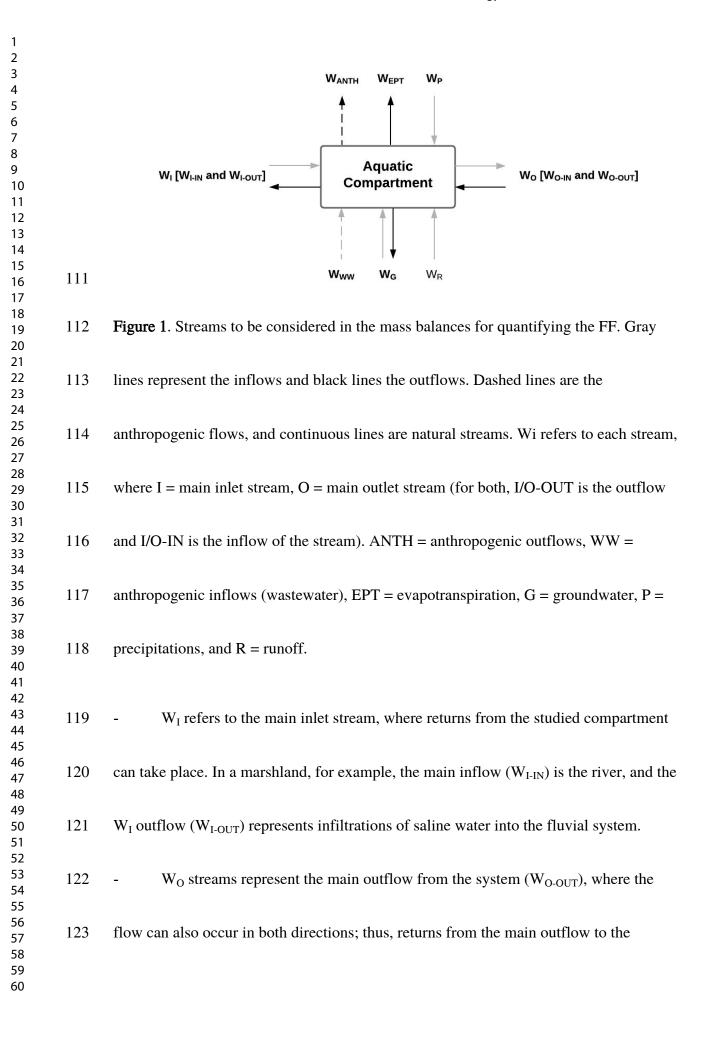
2	
3	
4	
5	
5 6 7 8 9	
0	
7	
8	
9	
10 11 12 13	
11	
12	
12	
13	
14	
12 13 14 15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
16 17 18 19 20 21 22 23 24 25 26 27 28	
24	
25	
26	
27	
27 20	
20	
29 30	
30	
31	
32	
33	
34	
32 33 34 35	
26	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

We propose a new method to evaluate the effects of variations, both increases and
decreases, in the concentration of essential substances in aquatic ecosystems.

35 INTRODUCTION

36	Climate change is altering the biogeochemical cycles on the planet ¹ and shifting water
37	temperature, pH, dissolved oxygen concentration, and salinity ² . In fact, direct
38	relationships between anthropogenic CO_2 release and alterations in the water cycle
39	which result into salinity variations have been already established ^{3–5} . Other direct
40	human activities, such as irrigation ^{6,7} , industrialization and agricultural expansion ⁸ ,
41	effluent disposal ^{9,10} , or dam management ¹¹ , are also behind these salinity variations.
42	These changes and their effects can be even more important in transitional waterbodies,
43	such as estuaries, deltas, or coastal lagoons, which constitute less than 5% of the
44	brackish areas worldwide but provide about half of the global fish catch ⁸ .
45	However, to the best of our knowledge, just five research works have tried to model the
46	impacts of salinity changes on the environment ¹² . Although a new impact category
47	addressing salinity was proposed ^{13–15} , to the best of our knowledge, it has never been
48	included in an LCA study ¹⁶ . Two assessment methodologies focused on soils, modeling
49	salinity impacts according to variations in soil conductivity and linking them with food

1 2
2
4
5
6
7 8
o 9
10
11
12
13
14 15
16
17
18
19
20
21 22
22
24
25
26
27 28
28 29
30
31
32
33
34 35
36
37
38
39
40
41 42
43
44
45
46
47 48
40 49
50
51
52
53
54 55
55 56
57
58
59
60


50	production and crop diversity loss ^{17,18} . Two other methodologies focused on aquatic
51	systems, shaping the effects of salinity variations according to ecotoxicity models for
52	water environments ^{6,9} . The latter were only partially successful for several reasons, as
53	ecotoxicity is currently based on the observation that the sensitivities of different
54	species to a chemical follow a normal distribution, so increased exposure will generate
55	increased impacts ¹⁹ . However, the impact of salinity is not only linked to concentration
56	increases, but also to concentration decreases (systems can become saltier or fresher), so
57	an approach based on ecotoxic models would fail to describe these effects. Moreover,
58	salt is not a pollutant or a toxic, but an essential element, so ecotoxic models might not
59	be valid to describe its behavior. Hence, a critical improvement of these methodologies
60	is necessary. Therefore, the aim of this study is to provide a framework for the
61	evaluation of the impacts of salinity changes in aquatic ecosystems.
62	Estuaries are important ecosystems from an ecological point of view ¹¹ , supporting
63	highly productive communities of arthropods, mollusks, fish, and birds, as well as
64	complex food webs ²⁰ . The Western <i>rías</i> of the northwest Spanish region of Galicia, vital
65	for the local economic and social development, are partially mixed estuaries where
66	partial stratification is maintained by the river discharge in the winter and by solar

1 2 3 4	
5 6 7 8 9	
10 11 12 13 14	
15 16 17 18 19	
20 21 22 23 24	
25 26 27 28 29	
30 31 32 33 34	
35 36 37 38 39	
40 41 42 43 44	
45 46 47 48 49	
50 51 52 53 54	
55 56 57 58 59	
60	

67	heating in the summer ²¹ . Due to their uniqueness, it is common that geography experts
68	call these areas by their name in Galician $(rias)^{22}$. Nevertheless, in the past few decades,
69	events of massive shellfish deaths were reported in these estuaries due to sharp
70	decreases in the concentration of salt in the $rías^{11,23-25}$. These occurrences have been
71	linked to heavy rains, locally managed freshwater releases from river dams, and
72	increased river runoffs, where the frequency of these climatological episodes is
73	supposed to increase in the coming years due to climate change ²⁴ . Among the Galician
74	<i>rías</i> , the biggest and most productive one is the <i>Arousa ría</i> ^{11,24,26} . Therefore, this <i>ría</i> was
75	chosen to test and validate the methodology proposed in the present research work.
76	In sum, we describe in this paper a general model shaping the effects of salt variations
77	in aquatic systems. Then, we apply the model to a case study for the procedure
78	validation. By providing this framework, we expect to expand the current knowledge of
79	transitional water systems, allowing to integrate the evaluation of impacts (positive and
80	negative) in environmental sustainability assessments, and to improve, for example,
81	effluent disposal or dam management control in sensitive areas.
82	MATERIALS AND METHODS

83	Salinity is defined as the concentration of several inorganic ions (including Na ⁺ , Ca ²⁺ ,	
84	Mg ²⁺ , K ⁺ , Cl ⁻ , SO ₄ ²⁻ , CO ₃ ²⁻ , NO ₃ ⁻ and HCO ₃ ⁻) ^{12,16} , where most of these elements are	
85	essential substances needed for organisms to live. In the present research work, salinity	
86	is referred to as the concentration of NaCl, in kilograms per cubic meter (kg/m ³), as it is	
87	abundant in water streams considered saline.	
88	Regarding the methodology, impacts linked to chemical releases are measured as in Eq.	
89	(1), where IS is the impact score, CF is the characterization factor, and M the mass of	
90	substance emitted. Then, the CF is calculated considering the principal cause-effect	
91	chains – thus, through fate, exposure, and effect factors (FF, XF and EF, respectively),	
92	according to Eq. $(2)^{27}$.	
	$IS = CF \cdot M \tag{1}$	
	$CF = FF \cdot XF \cdot EF $ (2)	
93	CFs addressing impacts on ecosystem quality (aka natural environment) at the endpoint	
94	level have units of potentially disappeared fraction of species (PDF)·m ³ ·time/kg. As M	
95	in Eq. (1) is in kilograms, IS has units of PDF·m ³ ·time ²⁷ . FF in Eq. (2) is expressed in	
96	units of time (it represents the mass of a chemical in the environment resulting after an	
97	emission flow, so units are kg/(kg/day), which yields days), XF is dimensionless, and	

2 3 4 5	98	EF is expressed as $PDF \cdot m^3/kg$. The XF represents the availability of the released
6 7 8	99	chemical in a system (the fraction of the pollutant that is dissolved in the water), which
9 10 11 12	100	can be considered as 1 for salt as it is fully dissolved ⁹ .
13 14 15 16 17	101	- FATE FACTOR (FF)
18 19 20	102	The FF is linked to the physical behavior/distribution of the substance in the
21 22 23 24	103	environment and normally expresses its persistence in units of time ^{19,27,28} . However, the
25 26 27	104	FF also represents the predicted mass residence of a substance in a receiving
28 29 30	105	compartment per unit of emission flow into it ¹⁹ , so the FF is calculated by applying
31 32 33 34	106	mass balances to the studied compartment in which degradation and transfer processes
35 36 37	107	are described ²⁸ . Salt do not degrade (i.e. salt's residence time on the environment equals
38 39 40	108	millions of years ⁹), so the mass balances will describe how they are transferred, and the
41 42 43 44	109	relevant flows entering and leaving an aquatic compartment. For the calculation of an
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	110	FF for salinity, the streams considered are shown in Figure 1:

2		
2 3 4 5	124	compartment (W_{O-IN}) can occur. For example, for an open estuary, these flows represent
6 7 8	125	the tidal, so this main outstream would be subjected to bidirectional flows.
9 10 11	126	- W_P , W_{EPT} , W_G , and W_R are climate and water cycle-related streams that
12 13 14 15	127	represent the precipitation, the evaporation, the groundwater, and the runoff of the
16 17 18	128	system, respectively. Note that the groundwater flow could also be bidirectional, as it
19 20 21	129	can feed the compartment, but infiltrations from the system to the groundwater network
22 23 24 25	130	can also occur.
26 27 28	131	- W_{ANTH} and W_{WW} are the anthropogenic outflows and inflows in the system,
29 30 31	132	respectively. W_{ANTH} represents the water taken from the compartment for anthropogenic
32 33 34 35	133	purposes (for example, for irrigation), and W_{WW} is the poured water into the system
36 37 38	134	(normally, treated wastewater).
39 40 41 42	135	Once the streams are identified and quantified, the salt concentration of each flow (S_i ,
43 44 45 46	136	kg NaCl /m ³) is also needed for the calculation of the FF (Eq. (3), in units of time). \overline{S} is
47 48 49	137	the average salt concentration in the system (kg/m ³), \overline{V} the average volume of the
50 51 52 53	138	studied compartment (m ³), and $\overline{F_i}$ the average mass flow of the calculated F_{IN} and F_{OUT}
53 54 55 56	139	(kg salt/time) (Eq. (4)), which represent the total mass of salt in the inlet and outlet
57 58 59 60	140	flows, respectively. F_{IN} should equal F_{OUT} as no accumulation takes place and the model

141 is then valid for steady state, but the FF is quantified using $\overline{F_i}$ (an average) to

142 acknowledge possible discrepancies of experimental data. Additionally, $\overline{F_i}$ can be

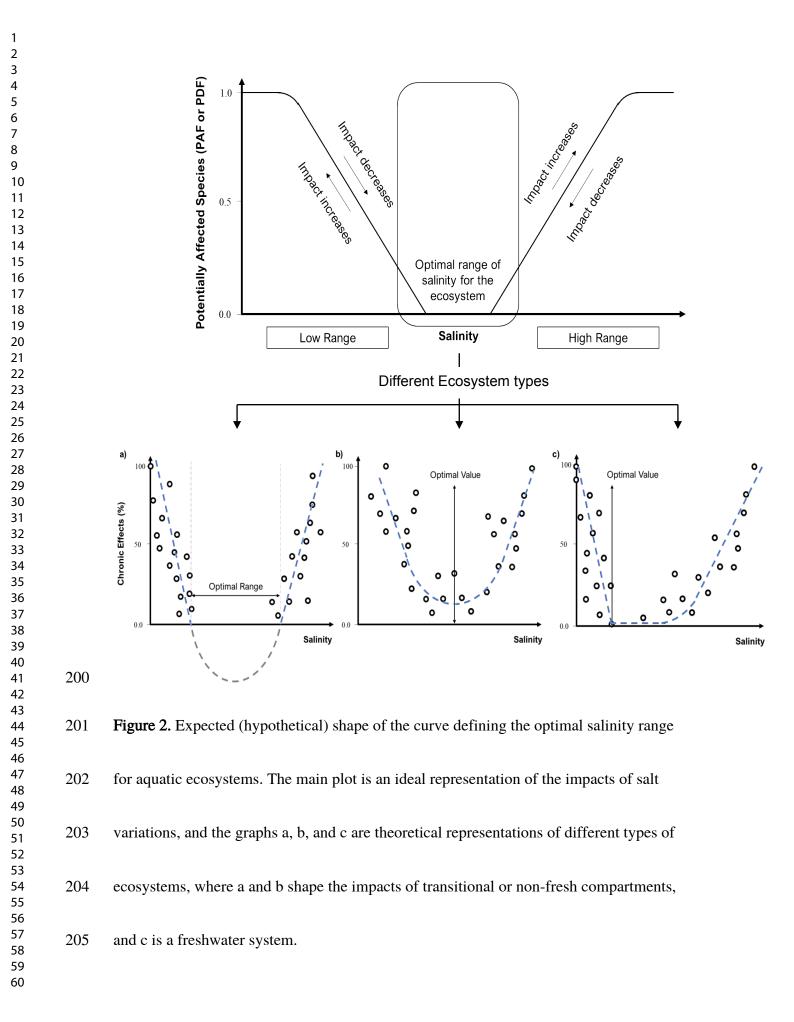
143 calculated yearly, monthly, or seasonally, defining the units of the factor itself.

$$FF = \frac{\overline{S} \cdot \overline{V}}{\overline{F_i}} \tag{3}$$

$$\overline{F_i} = \sum W_{i-IN} \cdot S_{i-IN} = \sum W_{i-OUT} \cdot S_{i-OUT} = F_{IN} = F_{OUT}$$
(4)

145 - EFFECT FACTOR (EF)

The EF quantifies the fraction of living species that are going to potentially disappear in the aquatic ecosystem by the release of a certain chemical^{19,27,28}. The available literature regarding salinity variation effects in aquatic ecosystems models these impacts according to ecotoxic methodologies, such as USEtox^{6,9}. Under that approach, the EF is calculated employing a species-sensitivity distribution (SSD) curve which represents the sensitivity of an entire ecosystem to a substance²⁷. However, it is constructed based on the premise that increased exposures will lead to increased effects¹⁹. Indeed, if the salinity of a fresh aquatic environment increases, the organisms living in the system will be negatively affected^{10,29–32}. However, negative effects in aquatic ecosystems are also


2	
3 4 153 5	5 reported when salinity decreases, such as massive mortalities reported after exposure to
6 7 150 8	low salt concentrations due to climatologic events or anthropogenic actions 11,33,34 .
9 10 157 11	Moreover, some limitations of SSD curves to model ecotoxic impacts due to salinity
12 13 14 158	have been pointed out ³⁵ , and other indicators, such as species richness, have been
15 16 17 159 18	θ proposed for studies assessing the effects of salinity ³¹ .
19 20 21 16() Therefore, variations in the concentration of essential substances can provoke effects in
22 23	Therefore, variations in the concentration of essential substances can provoke effects in
24 25 16 26	several directions, as an increase in the salt concentration can be potentially beneficial
27 28 162 29	2 for an ecosystem and vice versa, meaning that emission-related impacts can be positive
30 31 32 163	in some cases. Moreover, currently, it is considered that a substance provokes toxic
33 34 35 164 36	effects if it enters in an organism and causes poisoning, endocrine disruption, or other
37 38 165 39	5 lethal effects ¹⁹ . This approach might be partially accurate for effects of exposure to high
40 41 42 160	5 salt concentrations, but it fails when defining the observed effects on ecosystems for
43 44 45 16 46	decreases in salinity. This is the reason why the current applied approach (using
40 47 48 168 49	ecotoxic methodologies) to model the impacts due to variations in essential substances
50 51 52 169	9 (such as salts) need to be reconsidered.
53 54 55 56 17(57 58 59	EFFECT FACTOR FOR SALINITY VARIATIONS IN AQUATIC ENVIRONMENTS

1 2 3 4	
5 6 7 8	
9 10 11 12	
13 14 15 16 17	
18 19 20 21	
22 23 24 25	
26 27 28 29 30	
31 32 33 34	
35 36 37 38 39	
40 41 42 43	
44 45 46 47	
48 49 50 51 52	
53 54 55 56	
57 58 59 60	

171	The proposed approach is based on the premise that the species in an ecosystem have an
172	optimal range of salinity for living, and that detrimental effects will be observed if it
173	varies below or above it ³⁶ . Figure 2 shows an ideal representation of a transitional water
174	body, where there is an optimal concentration of salt at which no impact occurs (i.e.,
175	PDF = 0). Please note that this figure represents a theoretical hypothesis to be later
176	verified by the case study application. Then, negative effects will occur if salinity
177	increases above the optimal range or decreases below it. Moreover, positive impacts
178	will occur for increments in the salt concentration for environmental concentrations
179	below the optimal, and vice versa. Note that, for salinity increases in the high range, the
180	function follows a distribution like the classic SSD curve.
181	The first step is then to define the optimal salt concentration range by gathering data of
182	chronic effects for the species of the ecosystem regarding salinity (also needed to
183	quantify the EF itself). If the data are expressed as acute, an acute-to-chronic ratio
184	(ACR), which is generally 2^{28} , can be used by dividing or multiplying the salt
185	concentration by the ACR in the high range or in the low range, respectively. Then,

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

187	that data representing the chronic effects linked to salinity will be shaped like in the
188	examples provided in Figures 2a, 2b, or 2c.
189	For water systems from oligohaline to hyperhaline (see Table S1 at the supporting
190	information (SI)), it is expected that the concentration-to-response curves have a shape
191	like the ones shown in Figure 2a or 2b, where the optimal (environmental) salt
192	concentration can be estimated as a range (the points for which the function has values y
193	< 0, Figure 2a) or a point (the minimum value of y, Figure 2b). For freshwater
194	environments, it is more likely that the impacts in the ecosystem are due to salt
195	concentration increases. For the part of the curve representing salinization, a classic
196	SSD approach might be a fair approximation. Nevertheless, the whole system profile is
197	only provided if both ranges (high and low) are included, where the optimal
198	(environmental) concentration can be found as the intersection of the two functions (a
199	lineal one for the low range and SSD-like for the high range, Figure 2c).

After defining the optimal region, there are two EFs: EF_{LOW} and EF_{HIGH} , both in PDF·m³/kg. They represent the amount of a substance that generates a certain effect on the ecosystem, where the EF is the slope of the concentration-response curve. $HC50_{I,OW}$ and HC50_{HIGH} (both in kg NaCl/m³) represent the salt concentration that generates an effect in 50% of the ecosystem species in the low and high range, respectively; thus, for effects in 50% of the species, EFs are expressed as in Eq. (5) and Eq. (6). HC50s are the geometric mean of the individual species $EC50^{28}$, which is the concentration of pollutant that generates an effect in the 50% of the individuals of a single species. In this sense, an SSD-like approach is still maintained. $EF_{LOW} = \frac{0.5}{HC50_{LOW}}$ (5) $EF_{HIGH} = \frac{0.5}{HC50_{HIGH}}$ (6)

Assuming a classic SSD-like curve (i.e., log-logistic functions), EC50s could be
calculated using to mirrored sigmoidal curves. Moreover, according to our hypothesis
(Figure 2), EC50s could be estimated by fitting the chronic effect data to a quadratic
function (see Figure S1 at the SI). Note that the log-logistic and the quadratic curves
only converge at intermediate ranges of effects, so this approximation might not be
accurate to calculate EFs based on HC10 or HC20, as new trends on ecotoxicity

3 4 5	221	modeling suggest the use of EC10s or EC20s to model the factors ¹⁹ . Finally, the sign of
6 7 8	222	each EF will be established depending on the direction of the change: increasing the salt
9 10 11 12	223	concentration in the low range accounts for a negative EF_{LOW} (impacts decline), and
13 14 15	224	decreasing it accounts for a positive EF_{LOW} (impacts increase), and vice versa for the
16 17 18 19	225	high range.
20 21 22 23 24	226	
25 26 27 28	227	
29 30 31 32	228	
33 34 35 36	229	APPLICATION OF THE METHODOLOGY TO A CASE STUDY
37 38 39 40 41	230	- FATE FACTOR CALCULATION
42 43 44	231	For the case of Arousa ría, Figure 1 is simplified: W_G is neglected due to the
45 46 47 48	232	insignificant contribution of the groundwater to the total flow of the ria^{37} , and W _{I-OUT} is
49 50 51	233	ignored since no infiltrations from the estuary to the river are expected (see Figure S2).
52 53 54 55	234	The remaining streams are quantified in cubic meters per month, covering from 2011 to
56 57 58	235	2018 according to the data availability, as detailed bellow. First, stream flows are
59 60	236	determined:

1 2 3	237	- W _{I-IN} corresponds to the flows of rivers Ulla and Umia, which are monthly
4 5	201	
6 7 8	238	measured and reported by local administrations ³⁸ in several locations along the river
9 10 11 12	239	courses, so the closest point to the <i>ría</i> was chosen.
13 14 15	240	- W_{WW} can be divided into fresh wastewater ($W_{WW-FRESH}$) and salty one ($W_{WW-FRESH}$)
16 17 18	241	$_{SALT}$). It was estimated that the area of <i>Arousa ría</i> is responsible for about 6.6% of the
19 20 21 22	242	total (W_WW) Galician discharges 37,39 and that 82–92% of this amount (yearly variation
23 24 25	243	in 2011-2018) corresponded to fish-canning wastewater ^{37,39} , the latter representing
26 27 28 29	244	virtually all saline emitting sectors ($W_{WW-SALT}$, in cubic meters per year). Then, to
30 31 32	245	obtain monthly data, a distribution was defined based on the shellfish and seafood
33 34 35	246	harvesting and processing seasonal pattern to estimate $W_{\text{WW-SALT}}$ in $\text{m}^3\text{/month}$ (see
36 37 38	247	Table S2). On the other hand, $W_{WW-FRESH}$ (including urban wastewater and fresh
39 40 41 42	248	industrial streams, in cubic meters per year) was estimated as the subtraction of $W_{\ensuremath{WW}\ensuremath{W}\ensur$
43 44 45	249	$_{\rm SALT}$ from the total $W_{\rm WW}.$ Then, to obtain monthly data, it was assumed that fresh
46 47 48 49	250	discharges are evenly distributed along the months of the year (also considering that
50 51 52	251	freshwater streams represent a flow considerably lower than salty streams).
53 54 55	252	- W_{ANTH} is not linked here to irrigation, as estuary water has high salinity and
56 57 58 59 60	253	Galicia is an area with high precipitations, but the local fish-canning industries use

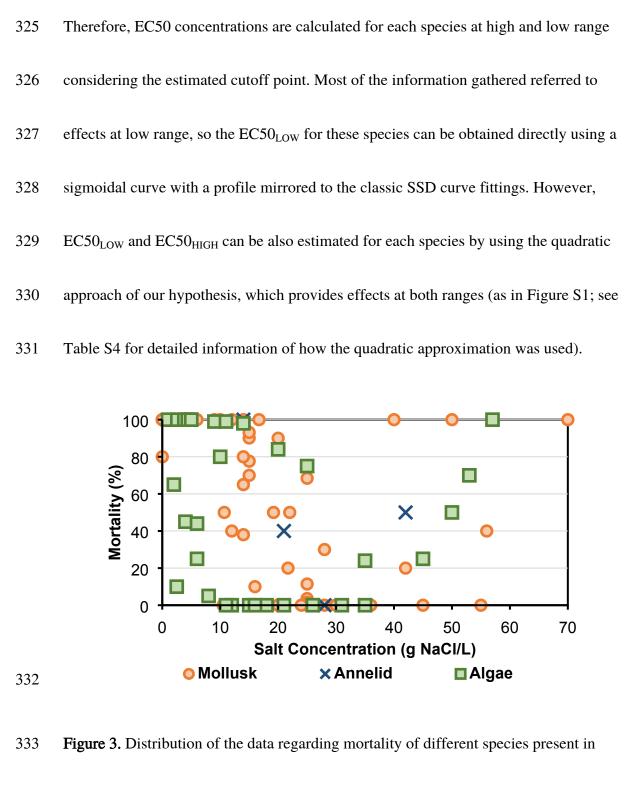
י ר	
2	
3	
4	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	
6	
7	
8	
٥ ٥	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
1/	
18	
19	
20	
21	
22	
22	
24	
23 24 25 26 27 28	
25	
26	
27	
28	
29	
30	
31	
32	
34 35 36 37 38	
35	
36	
37	
38	
39	
40	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

254	seawater for their processes with variable flows. Due to the lack of more precise dat	a,
255	we assumed that 75% of water input for fish-canning processes was saline water and	1
256	25% was freshwater ^{40–43} and that there are no water losses in the process, i.e., inputs	; =
257	outputs, thus $W_{ANTH} = 0.75 \cdot W_{WW-SALT}$.	
258	- Evaporation rates were estimated using empirical correlations as indicated in	ı Eq.
259	(7) ^{44,45} , where W^*_{EPT} is stated in L/m ² ·time (i.e., monthly averages in this case), u ₂ is	s the
260	wind speed (m/s), A is the evaporating area (m ²), v_w^* is the saturated vapor pressure	at
261	the water surface temperature (kPa), and v_a is the partial vapor pressure in the air at	2 m
262	height (kPa) calculated by Eq. (8), where v_a^* is the saturated vapor pressure at air	
263	temperature (kPa) and $\pmb{\varphi}$ is the relative humidity (%). Finally, to obtain W_{EPT} in	
264	equivalent units to the rest of the streams (m^3 /month), Eq. (9) is needed.	
	$W_{EPT}^* = (2.36 + 1.72 \cdot u_2) \cdot A^{-0.05} \cdot (v_w^* - v_a)$	(7)
	$v_a = v_a^* \cdot \phi$	(8)
	$W_{EPT} = \frac{W_{EPT}^* \cdot A}{1000}$	(9)
265	- Average monthly precipitations (W_P) were obtained from the meteorological	l
266	station located in Corón (Vilanova de Arousa) ⁴⁶ .	

267	- W_R (runoff) was taken as the average values of the South West basins of
268	Galicia ⁴⁷ . Being the only data set available, the monthly distribution and expected runoff
269	flow for 2002 were applied to the 2011-2018 period defined.
270	At this point, all the flows, except W_{O-IN} and W_{O-OUT} , which represent the tidal, are
271	quantified, so mass balances must be solved. First, Eq. (10) and Eq. (11) present the
272	general steady state water and the salt balances, respectively, where S_i is the salt
273	concentration (kg NaCl/m ³) of each stream W_i .
	$W_{O-IN} + W_I + W_R + W_P + W_{WW} = W_{O-OUT} + W_{EPT} + W_{ANTH} $ (10)
	$W_{O-IN} \cdot S_{O-IN} + W_I \cdot S_I + W_R \cdot S_R + W_P \cdot S_P + W_{WW} \cdot S_{WW} = W_{O-OUT} \cdot S_{O-OUT} + W_{ANTH} \cdot S_{ANTH} $ (11)
274	Note that Eq. (10) could be written as $W_{IN} = W_{OUT}$, representing the total inflows and
275	outflows in the estuary. Then, to accurately quantify the tidal streams, new mass
276	balances will be stated, representing a system as natural as possible (Eq. (12) and Eq.
277	(13)), where no anthropogenic activity exists:
	$W_{O-IN} + W_I + W_R + W_P = W_{O-OUT} + W_{EPT} $ (12)
	$W_{O-IN} \cdot S_{O-IN} + W_I \cdot S_I + W_R \cdot S_R + W_P \cdot S_P = W_{O-OUT} \cdot S_{O-OUT} $ (13)

Environmental Science & Technology

278	To be able to proceed, the salt concentration of each stream, S_i , needs now to be
279	quantified:
280	- The salt concentration of the ocean (S_{O-IN}) was considered constant at 36 g
281	NaCl/L, as it is the average estimated sea surface salinity measured between 2004 and
282	2013 for this Atlantic area by satellite monitoring ⁴ .
283	- The salt concentration of the estuary (S _{O-OUT} , S _{ANTH} , but also \overline{S} in Eq. (3)) is
284	variable according to the spatial distribution and the tidal intensity. Water is fresher near
285	the river mouth and saltier near the ocean, but the salt concentration also increases with
286	depth because salty water has a higher density ⁴⁸ . Data collected from two buoys
287	(<i>Ribeira</i> , in an intermediate location between the river mouth and the ocean, and
288	<i>Cortegada</i> , near the river mouth; see map in Figure S3) 46 were used to determine the
289	monthly average salinity of the estuary.
290	- Galician rivers are not salinized, presenting low salinity and conductivity ⁴⁹ .
291	Normally, chloride concentrations of Spanish rivers range between 0.010 and 0.030 kg
292	Cl ⁻ /m ³ , and recent studies for Galician rivers near shore areas reported values of 0.0103
293	– 0.0222 kg Cl ⁻ /m ^{3 50} . An average value of 0.020 kg NaCl/m ³ is considered for S_I and
294	S _R .


295	- Chloride concentration in rainwater is generally very low, although it varies
296	worldwide depending on wind intensity and seawater proximity. Measurements of the
297	chloride concentration in rainwater in Spain and Portugal averaged 0.020 kg Cl ⁻ /m ³ , and
298	the value reported for the Galician station, located at around 40 km from the coast, was
299	0.003 kg Cl ⁻ /m ^{3 51} . A slightly greater salinity of 0.005 kg NaCl/m ³ is applied for S_P to
300	consider the effect of sea salt aerosols.
301	- Eq. (14) and Eq. (15) are used to calculate S_{WW} , where $W_{WW-SALT}$ is the yearly
302	flow of industrial fish canning wastewater discharged into the estuary (m ³ /year), and \overline{S}_t
303	is the average salt concentration of the estuary each year (kg/m ³). It was assumed that
304	$S_{\rm WW-FRESH}$ coming from drinkable sources was 0.5 kg NaCl/m 352 , and that $S_{\rm WW-SALT}$
305	contained 75% of estuarine water and 25% of fresh (drinkable) water as previously
306	indicated. The salinity of waste streams poured into the $ria S_{WW}$ can be estimated as an
307	average value as shown in Eq. (15).
	$S_{WW-SALT} = \frac{0.75 \cdot W_{WW-SALT} \cdot \overline{S}_t + 0.25 \cdot W_{WW-FRESH} \cdot 0.5}{W_{WW-SALT}} $ (14)

$$S_{WW} = \frac{W_{WW-SALT} \cdot S_{WW-SALT} + W_{WW-FRESH} \cdot S_{WW-FRESH}}{W_{WW-SALT} + W_{WW-FRESH}}$$
(15)

2	
3	
4	
5	
5	
6 7 8	
/	
8	
9	
9 10 11	
11	
12	
12	
14	
14	
15	
16	
17	
18	
12 13 14 15 16 17 18 19	
20	
21	
20 21 22 23 24 25 26 27 28	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32 33 34 35 36 37 38	
33	
34	
35	
36	
37	
20	
39	
40	
41	
42	
43	
44	
45	
46	
40	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

308	Finally, the FF can be calculated. As already stated, both monthly and yearly results can
309	be obtained, as well as seasonal values, the dry season spanning June, July and August
310	in the case study area, and the remaining months are the wet season. To see detailed
311	monthly/seasonal/yearly results and other detailed information about the calculation
312	procedures, see the Excel file and the Section SIII in the SI (see Table S3).
313	- EFFECT FACTOR CALCULATION
314	To calculate the EFs, data of chronic effects were gathered (for this study, only
315	mortality was considered). Then, the collected data were represented together to find the
316	ecosystem optimal (environmental) salt concentration (Figure 3). Note that this value is
317	not going to be employed in any other further calculation, and it is just used to
318	determine which data will be utilized to generate EF_{LOW} and EF_{HIGH} . In this sense,
319	several fittings could be tested, as shown in Figure 2a and 2b. Different approaches
320	were applied, evaluated, and discussed (see Section SIV of the SI, and Figures from S4
321	to S7) to identify this cutoff point. These strategies pointed out a possible environmental
322	optimal range of 24–36 g NaCl/L, where the average point obtained after testing
323	different fittings is 31.9 ± 1.4 , which will be the cutoff to define the low and high ranges
324	of salt concentration comprising EF_{LOW} and EF_{HIGH} , respectively.

ACS Paragon Plus Environment

Arousa ría. The data used to generate this plot are specified in Table 1 and Table S4 and

335 Section SIV of the SI.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

336	The value of each EC50 (high and low) and both HC50s are shown in Table 1. The
337	numbers in italic indicate that the concentration was obtained by the quadratic fitting
338	using data from the low range of salinity (for V. senegalensis and S. polyschides, the
339	power function had a convex profile, so the data were estimated using the inverse
340	function, see Table S4). The results of EF_{HIGH} and EF_{LOW} (Table 1) fit with the expected
341	system behavior, as biotic diversity in estuaries starts to decline above a salinity of
342	about 40 kg NaCl/m ³ , with most species unable to survive in salinities above 50 kg
343	NaCl/m ^{3 36} .
244	ΟΠΑΡΑΟΤΕΡΙΖΑΤΙΟΝ ΕΛΟΤΟΡΟΔΙΟΙΙ ΑΤΙΟΝ
344	- CHARACTERIZATION FACTOR CALCULATION
344 345	CFs were obtained according to Eq. (2). Here, the EF achieves different values
345	CFs were obtained according to Eq. (2). Here, the EF achieves different values
345 346	CFs were obtained according to Eq. (2). Here, the EF achieves different values according to the level of salinity (high and low), while the FF, which is supposed to be
345 346 347	CFs were obtained according to Eq. (2). Here, the EF achieves different values according to the level of salinity (high and low), while the FF, which is supposed to be the same for both ranges of salinity (the water streams will have the same physical
345346347348	CFs were obtained according to Eq. (2). Here, the EF achieves different values according to the level of salinity (high and low), while the FF, which is supposed to be the same for both ranges of salinity (the water streams will have the same physical distribution regardless of the salt concentration), varies seasonally (wet/dry season).
 345 346 347 348 349 	CFs were obtained according to Eq. (2). Here, the EF achieves different values according to the level of salinity (high and low), while the FF, which is supposed to be the same for both ranges of salinity (the water streams will have the same physical distribution regardless of the salt concentration), varies seasonally (wet/dry season). Therefore, there are six possible CFs to use (Table 1).

353 available for low range). The results are expressed as average ± standard deviation and

		Fate Factors	(month/year)		
Wet (month) Dry (mo		nonth)	Annual (year)		
6.84 ± 1.84 $4.02 \pm$			± 1.52	4.51 ± 1.51	
[1.32,	12.36]	[0, 8	8.59]	[0, 9.05]	
]	Effect Factors, H	IC50s and EC	250s	
Species				EC50 _{LOW}	EC50 _{HIGH}
Ruditapes phil	<i>ipinarium</i> (Japar	ese clam) ^{11,53}		16.0	34.4
Ruditapes deci	ussatus (Grooved	l carpet shell) ^{11,5}	4	15.5	42.9
Cerastoderma	edule (Common	cockle) ^{11,55}		20.4	61.7
Vanerupis corr	<i>rugata</i> (Pullet car	pet shell) ^{11,53}		21.7	37.8
Saccharina lat	<i>issima</i> (Sea belt,	brown algae) ^{56,57}	7	8.6	39.1
Diopatra neap	olitana (Polychae	ete) ⁵⁸		19.0	42.3
Donax truncul	us (Wedge clam)	59		19.3	32.1
Mytilus galloprovincialis (Mediterranean Mussel) ⁶⁰			el) ⁶⁰	9.8	38.2
Scrobicularia plana (Peppery furrow shell)55				10.7	40.4
Saccorhiza polyschides (Furbellow, brown algae)			e) ⁶¹	30.1	40.1
Zostera noltei (Dwarf eelgrass, seagrass) ^{62,63}				1.3	49.6
HC50 (Geometric mean)				12.7	41.1
HC50 arithmetic mean				15.7 ± 7.8	41.7 ± 8.0
		Effect Factors	s (PDF∙m³/kg)	
	EFLOW			EF _{HIGH}	
0.04 ± 0.02			0.01 ± 0.002		
[0, 0.1]			[0.005, 0.02]		
	Chara	cterization Facto	ors (PDF·mon	th∙m³/kg)	
	CFLOW			CF _{HIGH}	
Dry	Wet	Annual	Dry	Wet	Annual
0.27 ± 0.21	0.16 ± 0.14	0.18 ± 0.15	0.08 ± 0.04	$1 0.05 \pm 0.03$	0.05 ± 0.03
[0, 0.89]	[0, 0.57]	[0, 0.62]	[0, 0.20]	[0, 0.13]	[0, 0.14]

355 For the obtained FFs, the standard deviation acknowledges the discrepancy of steady

356 state assumption (see Section SIII of the SI). For the EF, the confidence intervals and

Environmental Science & Technology

Page 26 of 46

357	the standard deviation of the factor were calculated by using the arithmetic average (see
358	Table 1). For all factors, the uncertainty intervals were obtained considering three times
359	the standard deviation, and negative lower bounds were considered zero.
360	CFs are reported as absolute values, but they depend on the direction of the change (i.e.,
361	increase or decrease in salt concentration at low or high range). Therefore, to quantify
362	the effects of a dam release during the wet season which provokes a decrease in the salt
363	concentration, $CF = 0.16 PDF \cdot month \cdot m^3/kg$ (i.e. impact increases); but to quantify the
364	impact of a saline effluent discharge in the same situation (wet season, low salinity), CF
365	= -0.16 PDF·month·m ³ /kg should be used as salinity is already below the optimal, so the
366	increase in salt concentration has a positive effect in the receiving waters. In this
367	example, CF _{LOW} is used instead of CF _{HIGH} because Arousa ría has a salt concentration
368	below the optimal ⁴⁹ .
369	DISCUSSION
370	When evaluating the effects of pollutants' release, it is logic to assume that a rise in the
371	chemical concentration generates an increase in the impacts. However, anthropogenic
372	activities are affecting the planetary biogeochemical cycles, and impacts are now not

373 only due to the release of harmful substances, but also to variations in the environmental

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

374	conditions of ecosystems provoked by unnatural changes. There are some substances
375	(e.g., salt, nitrogen, dissolved oxygen) to which the classic ecotoxic impact approach
376	might just fit partially. Indeed, a drastic increase in the substance concentration will
377	generate adverse impacts. However, at the same time, a certain concentration in the
378	media is needed to support the ecosystem survival.
379	In recent years, concern for salt variations in the different environmental compartments
380	has increased, but the models available to describe their impacts are still scarce and the
381	current literature uses ecotoxicity models to assess these effects ^{6,12,18,64} . For instance, the
382	USEtox model, one of the most used methods to evaluate ecotoxic impacts in LCA, has
383	not addressed effects of salt releases so far ¹² and does not include the coastal seawater
384	and brackish areas as environmental compartments ¹⁹ . Therefore, new approaches are
385	necessary to include essential substances and these critical areas in the impact
386	assessment models, and specific methodological choices must be implemented to
387	develop CFs for essential elements in non-freshwater environments.
388	Regarding the FF, it is expressed in this work in units of time (see the fate factor section
389	in materials and methods). This provides a suitable framework to model the fate of
390	essential substances. The few research works that have assessed the effects of salinity

1 2 4 5 6 7 8 9	
 11 12 13 14 15 16 17 18 19 20 21 22 	
23 24 25 26 27 28 29 30 31 32	
 33 34 35 36 37 38 39 40 41 42 43 44 	
44 45 46 47 48 49 50 51 52 53 54	
55 56 57 58 59 60	

391	variations in aquatic environments solved the FF question from different approaches. In
392	a first study, when evaluating the impacts of brine disposal ⁹ , the different elements
393	present in brine were grouped. NaCl had a high residence time, so the FF was chosen as
394	the residence time of the second most persistent element of the salinity group (Cu ²⁺ , 37
395	days). However, this approximation can have high errors due to the difference in the
396	elements' residence times (from days to millions of years). In another study, when
397	steady-state mass balances were applied to the water streams and the salt in a coastal
398	wetland ⁶ , the units of the FF were g-year/L, yielding in a dimension of time per
399	concentration. This factor was useful to directly link salt variations in the wetland not
400	only with ecotoxic impacts, but also with social and economic effects as crop loss.
401	However, the unit of that FF complicates the comparison of the results obtained there
402	with the present study. Moreover, it hinders the evaluation of the impacts of salinity
403	variations on the ecosystem linked to different impact categories as ecotoxicity.
404	Therefore, to remain coherent and consistent with other impact categories, it is
405	necessary to provide factors that align with the standard units of the impact assessment
406	stage and that are used by other methodologies recommended by the UNEP's Life
407	Cycle Initiative, such as the USEtox. This harmonization aspect also applies to the

ACS Paragon Plus Environment

1 2		
3 4 5	408	measure of the EF, which is PDF in this study because UNEP's Life Cycle Initiative
6 7 8 9	409	recommends to base ecosystem damage estimates on this metric ^{19,65} .
10 11 12	410	As for the EF, the proposed approach copes with the fact that impacts might be due to
13 14 15 16	411	increases but also decreases in the concentration of essential substances, and it
17 18 19	412	acknowledges potential benefits linked to emission-related impacts. In this sense, a
20 21 22 23	413	classic SSD-based methodology (typically used in ecotoxicity) appears as a practical
23 24 25 26	414	and useful tool to predict the possible negative effects of a pollutant's release on
27 28 29	415	ecosystems. However, although some of the limitations linked to the use of SSD curves
30 31 32	416	have been pointed out in the past few years, the principles shaping the methodology
33 34 35 36	417	have remained unchanged for decades ³⁵ . Additionally, the use of classic ecotoxicity
37 38 39	418	methodologies also have some limitations to model impacts due to variations in the
40 41 42	419	concentration of essential substances, since the effects of these variations do not fit the
43 44 45 46	420	classic definition of toxicity (linked to poisoning, endocrine disruption, etc.).
47 48 49	421	For the present study, a quadratic function was used to shape the effects of salinity on
50 51 52 53	422	ecosystems instead of the typical log-normal or log-logistic distribution applied in the
54 55 56	423	SSD-based methods, by applying this approximation for the calculation of EC50s (and,
57 58 59	424	therefore, the EFs). Nevertheless, log-logistic distributions were also applied to the
60		

ACS Paragon Plus Environment

1 2 3 4	
5 6 7 8 9 10	
10 11 12 13 14 15	
16 17 18 19 20	
21 22 23 24 25	
26 27 28 29 30	
31 32 33 34 35	
36 37 38 39 40	
41 42 43 44 45	
46 47 48 49 50	
51 52 53 54 55	
56 57 58 59 60	

425	chronic data gathered for each individual species to test the robustness of the
426	approximation. The differences between the EC50s found applying log-logistic and
427	quadratic fittings averaged 3.82% (data not shown), meaning that the quadratic
428	approach is accurate to estimate effects at intermediate ranges of concentration in an
429	LCA context (but might not be accurate for EC10s or EC20s). This approximation was
430	used to estimate the EC50s and HC50s at both concentration ranges (low and high), but
431	the SSD-based methodology fundamentals are maintained. Thus, the current study does
432	not aim to question the SSD curves themselves, but to expand their scope to understand
433	new ecological features.
433	new ceological features.
433	In fact, this quadratic approximation can be especially useful for systems from
434	In fact, this quadratic approximation can be especially useful for systems from
434 435	In fact, this quadratic approximation can be especially useful for systems from oligohaline to hyperhaline (see Table S1), but it might not be as accurate for freshwater
434 435 436	In fact, this quadratic approximation can be especially useful for systems from oligohaline to hyperhaline (see Table S1), but it might not be as accurate for freshwater systems. Here, the expected effects are linked to salinization, while impacts linked to a
434 435 436 437	In fact, this quadratic approximation can be especially useful for systems from oligohaline to hyperhaline (see Table S1), but it might not be as accurate for freshwater systems. Here, the expected effects are linked to salinization, while impacts linked to a sharp freshening are unlikely. In fact, the most important impacts derived from
434 435 436 437 438	In fact, this quadratic approximation can be especially useful for systems from oligohaline to hyperhaline (see Table S1), but it might not be as accurate for freshwater systems. Here, the expected effects are linked to salinization, while impacts linked to a sharp freshening are unlikely. In fact, the most important impacts derived from anthropogenic activities and climate change in freshwater ecosystems are expected to be

2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38 39	
39 40	
41	
42	
43	
44	
45 46	
46 47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

441	The truth is that the few studies considering the effects of salt variations in aquatic
442	environments considered SSD approaches. In a wetland-related study ⁶ , an SSD curve
443	was constructed considering that anthropogenic activities (irrigation) were provoking
444	salinization, which seems to be a fair approximation considering that the salt
445	concentration in the water body had increased from 2.6 g/L in 1983 to 7.50 g/L in 2008.
446	However, the salinity conditions of the wetland were oligohaline, so impacts related to
447	freshening could also take place (due to rainfalls, for example). Therefore, the
448	approximation was fair to evaluate salinization, but failed at evaluating the effects due
449	to potential freshening.
450	In a brine disposal research work ⁹ , a concentration of 40 kg NaCl/m ³ was chosen as
450 451	In a brine disposal research work ⁹ , a concentration of 40 kg NaCl/m ³ was chosen as EC50. Analogously to the wetland case, this approximation might be fair considering
451	EC50. Analogously to the wetland case, this approximation might be fair considering
451 452	EC50. Analogously to the wetland case, this approximation might be fair considering that desalination plants would discharge their briny effluents in marine waters, and the
451 452 453	EC50. Analogously to the wetland case, this approximation might be fair considering that desalination plants would discharge their briny effluents in marine waters, and the effects of this saline disposal are expected to be negative impacts linked to salinity
451 452 453 454	EC50. Analogously to the wetland case, this approximation might be fair considering that desalination plants would discharge their briny effluents in marine waters, and the effects of this saline disposal are expected to be negative impacts linked to salinity increase. However, the modeling of the system is still not fully comprehensive if the
451 452 453 454 455	EC50. Analogously to the wetland case, this approximation might be fair considering that desalination plants would discharge their briny effluents in marine waters, and the effects of this saline disposal are expected to be negative impacts linked to salinity increase. However, the modeling of the system is still not fully comprehensive if the low ranges of salinity are no included. In fact, a case where a transitional brackish

Environmental Science & Technology

Page 32 of 46

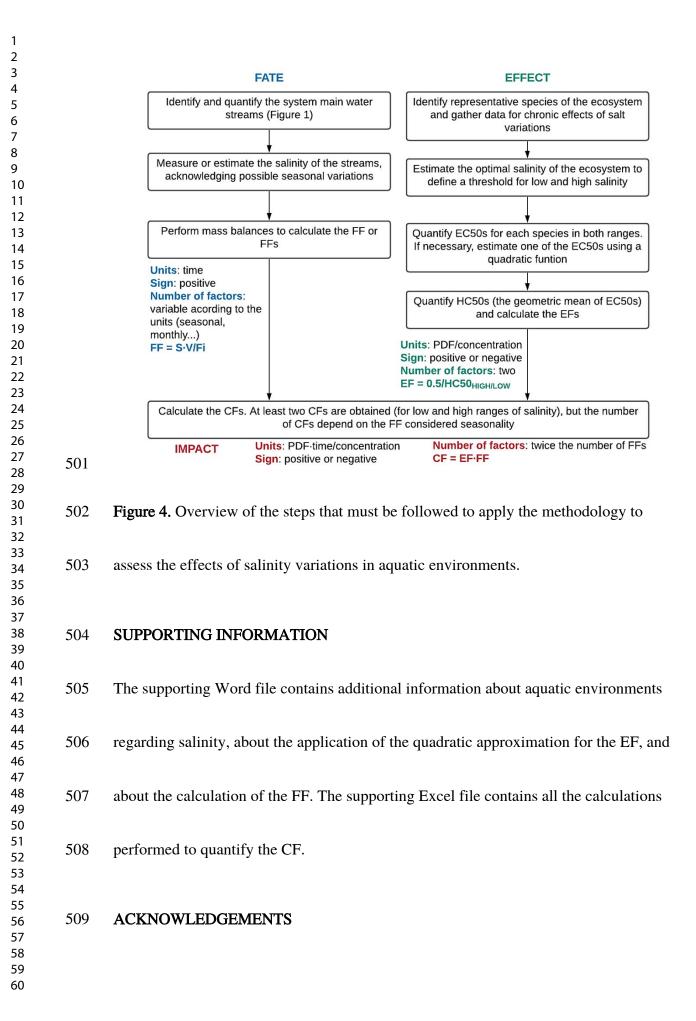
458 disposal), so an approach where this is not considered is lacking some relevant

459 information for the system.

460	Finally, these divergent approaches hinder a discussion of the obtained CF. The wetland
461	and brine CFs, in terms of potentially affected fraction of species (PAF), were 0.32
462	PAF·yr and 0.47 PAF·m ³ ·day/kg, respectively, which are similar to the ranges obtained
463	here $(0.05 - 0.27 \text{ PDF} \cdot \text{m}^3 \cdot \text{day/kg})$. However, for the wetland, the units are not
464	comparable, and, for both cases, the obtained CFs were at the midpoint level (measuring
465	PAF, not PDF), so the discussion is not straightforward. Nevertheless, it is important to
466	point out how the quantification of CFs to measure the effects of salinity variations can
467	be relevant for the management of anthropogenic activities in sensitive ecological areas,
468	such as transitional waters. In fact, the method described and applied here has the
469	potential to support decision-making processes around effluent discharge, industrial
470	stream management, brine disposal control, and dam flow regulation, by providing
471	useful information about when and how to discharge these anthropogenic streams with s
472	minimum or even a positive impact.
473	To apply the CFs developed here, the life cycle inventory (LCI) shall record the mass of

474 salts released to the aquatic environment per functional unit, acknowledging possible

1	
2	
3 4	
5	
6	
6 7 8 9	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
18	
18 19	
20	
21	
22	
22 23 24	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
55 56	
56 57	
58	
59	
60	


475 differences between the wet and the dry season when relevant and if information is476 available.

477 FUTURE OUTLOOK

478	The presented novel approach proposes a model to shape the effects of variations in the
479	concentration of an essential substance in the environment (Figure 4). Here, the effects
480	in the ecosystem might not be always directly proportional to the pollutant
481	concentration. Although the methodology was applied to salt (i.e., NaCl), the same
482	principles can be implemented for other essential substances such as macronutrients,
483	other salts, metals, and even resources such as water. Moreover, as the definition of
484	salinity is broader than just sodium chloride, a comprehensive salinity assessment may
485	shape the effects of varying the concentration of other substances. Furthermore, by
486	including elements such as carbonate, nitrate and sulfate, a comprehensive study of the
487	ecosystem salinity might extend the effects of the observed variations to other
488	environmental categories (such as climate change, eutrophication, or acidification,
489	respectively). In any case, the uniformization of the CFs for salinity impacts (expressed
490	in the consensus units) opens a new pathway where the effects due to variations in the
491	concentration of essential substances can be fully assessed for the first time.

1
2
3
4
5
6
7
8
9
10
11
12
13
14 15
15 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 31
32
33
34
35
36
37
38
39
40
41
42
43 44
44 45
45 46
47
48
49
50
51
52
53
54
55
56
57
58
59 60

492	This pathway has a clear bottleneck, which might hinder its extensive application, and
493	which is not new to the LCA community, i.e., regarding data availability. Fortunately,
494	the access to information is becoming easier as science is becoming more accessible and
495	data is being acquired through more sophisticated means, such as dedicated satellites,
496	which can be more easily managed through advanced computational methods. In this
497	sense, although the provided CF only has local applications, the methodological
498	approach is transferable to any other region. Although some data might be difficult to
499	find, a preliminary guidance for data acquirement in the CF development and
500	application is provided in Section SV of the SI.

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
21 22 23 24 25 26 27	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

510	We want to thank Carola Rodríguez Gómez, Victoriano Urgorri and Ana Basáñez			
511	Mercader from the Universidade de Santiago de Compostela, Marta Seoane from the			
512	Universidade de A Coruña, Jesús de Souza Troncoso and Rula Domínguez from the			
513	Universidade de Vigo, Pedro Montero from INTECMAR, and Jorge Diogene and			
514	Margarita Fernández from IRTA, for their time and knowledge guiding us on the			
515	unfamiliar areas we touched on this research work.			
516	This research was supported by the Spanish Government (AEI) through TREASURE			
517	[CTQ2017-83225-C2-1-R] project. A. Roibás-Rozas, A. Mosquera and A. Hospido			
518	belong to a Galician Competitive Research Group (GRC), a programme co-funded by			
519	the FEDER (EU). M. Nuñez acknowledges the Beatriu de Pinós postdoctoral			
520	programme of the Secretary of Universities and Research (Government of Catalonia),			
521	the CERCA Programme of the Generalitat de Catalonia, and the Consolidated Research			
522	2 Group TERRA (AGAUR, ref 2017 SGR 1290).			
523	REFERENCES			
524	(1) Breitburg, D.; Levin, L. A.; Oschlies, A.; Grégoire, M.; Chavez, F. P.; Conley, D.			
525	J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; Jacinto, G. S.; Limburg, K.			
525 526	E.; Montes, I.; Naqvi, S. W. A.; Pitcher, G. C.; Rabalais, N. N.; Roman, M. R.;			
527	Rose, K. A.; Seibel, B. A.; Telszewski, M.; Yasuhara, M.; Zhang, J. Declining			

528 Oxygen in the Global Ocean and Coastal Waters. *Science (80-.).* **2018**, *359*

1 2			
3 4	529		(6371). https://doi.org/10.1126/science.aam7240.
5 6 7	530	(2)	Bramwell, G.; Schultz, A.; Sherman, C.; Giraudeau, M.; Thomas, F.; Ujvari, B.;
7 8	531		Dujon, A. M. A Review of the Potential Effects of Climate Change on
9 10	532		Disseminated Neoplasia with an Emphasis on Efficient Detection in Marine
11	533		Bivalve Populations. Sci. Total Environ. 2021, 775, 145134.
12 13	534		https://doi.org/10.1016/j.scitotenv.2021.145134.
14 15			
16 17	535	(3)	Helm, K. P.; Bindoff, N. L.; Church, J. A. Changes in the Global Hydrological-
18	536		Cycle Inferred from Ocean Salinity. <i>Geophys. Res. Lett.</i> 2010 , <i>37</i> (18), 2–6.
19 20	537		https://doi.org/10.1029/2010GL044222.
21 22	538	(4)	Durack, P. J. Ocean Salinity and the Global Water Cycle. <i>Oceanography</i> 2015,
23	539		28(1), 20–31. https://doi.org/10.5670/oceanog.2015.03.
24 25			
26 27	540	(5)	Sun, Q.; Du, Y.; Xie, SP.; Zhang, Y.; Wang, M.; Kosaka, Y. Sea Surface
28	541		Salinity Change since 1950: Internal Variability versus Anthropogenic Forcing. J.
29 30	542		<i>Clim.</i> 2021 , <i>34</i> (4), 1305–1319. https://doi.org/10.1175/JCLI-D-20-0331.1.
31 32	543	(6)	Amores, M. J.; Verones, F.; Raptis, C.; Juraske, R.; Pfister, S.; Stoessel, F.;
33 34	544		Antón, A.; Castells, F.; Hellweg, S. Biodiversity Impacts from Salinity Increase
35 36	545		in a Coastal Wetland. Environ. Sci. Technol. 2013, 47(12), 6384-6392.
37	546		https://doi.org/10.1021/es3045423.
38 39	5 4 7		
40 41	547	(7)	Perret, S. R.; Payen, S. Irrigation and the Environmental Tragedy: Pathways
42	548		Towards Sustainability in Agricultural Water Use. <i>Irrig. Drain.</i> 2020 , <i>69</i> (2),
43 44	549		263-271. https://doi.org/10.1002/ird.2404.
45 46	550	(8)	Elliott, M.; Day, J. W.; Ramachandran, R.; Wolanski, E.; Fang, Q.; Sheehan, M.
47	551		R.; Seen, A. J.; Ellison, J. C. A Synthesis: What Is the Future for Coasts,
48 49	552		Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond? In <i>Coasts</i>
50 51	553		and Estuaries: The Future; Wolanski, E., Day, J. W., Elliott, M., Ramachandran,
52	554		R., Eds.; Elsevier Inc., 2019; pp 1–28. https://doi.org/10.1016/B978-0-12-
53 54	555		814003-1.00001-0.
55 56			
57 58	556	(9)	Zhou, J.; Chang, V. W. C.; Fane, A. G. An Improved Life Cycle Impact
59	557		Assessment (LCIA) Approach for Assessing Aquatic Eco-Toxic Impact of Brine
60	558		Disposal from Seawater Desalination Plants. <i>Desalination</i> 2013 , <i>308</i> , 233–241.

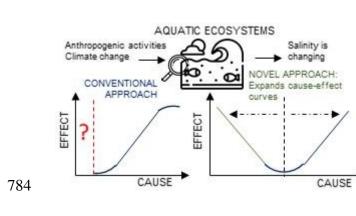
559		https://doi.org/10.1016/j.desal.2012.07.039.	
560	(10)	Böhme, D. Evaluation of Brine Discharge to Rivers and Streams: Methodology	
561		of Rapid Impact Assessment. Limnologica 2011, 41, 80-89.	
562		https://doi.org/10.1016/j.limno.2010.08.003.	
	(11)	Parada, J. M.; Molares, J.; Otero, X. Multispecies Mortality Patterns of	
		Commercial Bivalves in Relation to Estuarine Salinity Fluctuation. <i>Estuaries and</i>	
565		<i>Coasts</i> 2012 , 132–142. https://doi.org/10.1007/s12237-011-9426-2.	
566	(12)	Payen, S.; Basset-Mens, C.; Núñez, M.; Follain, S.; Grünberger, O.; Marlet, S.;	
567		Perret, S.; Roux, P. Salinisation Impacts in Life Cycle Assessment: A Review of	
568		Challenges and Options towards Their Consistent Integration. Int. J. Life Cycle	
569		Assess. 2016, 21 (4), 577–594. https://doi.org/10.1007/s11367-016-1040-x.	
570	(13)	Leske, T.; Buckley, C. Towards the Development of a Salinity Impact Category	
	(10)	for South African Life Cycle Assessments: Part 1 – A New Impact Category.	
		<i>Water SA</i> 2003 , <i>30</i> (2), 253–265. https://doi.org/10.4314/wsa.v30i2.5070.	
512		<i>waler 5/1 2005</i> , <i>50</i> (2), 255–265. https://doi.org/10.4514/wsa.v5012.5070.	
573	(14)	Leske, T.; Buckley, C. Towards the Development of a Salinity Impact Category	
574		for South African Life Cycle Assessments: Part 2 - A Conceptual Multimedia	
575		Environmental Fate and Effect Model. Water SA 2004, 30(2), 241–251.	
576		https://doi.org/10.4314/wsa.v30i2.5070.	
577	(15)	Leske, T.; Buckley, C. Towards the Development of a Salinity Impact Category	
578		for South African Life Cycle Assessments: Part 3 - Salinity Potentials. Water SA	
579		2004 , <i>30</i> (2), 253–265. https://doi.org/10.4314/wsa.v30i2.5071.	
580	(16)	Mosquera-Corral, A.; Campos Gómez, J. L. Treatment and Valorisation of Saline	
581		Wastewater: Principles and Practice; IWA Publishing, 2021.	
582		https://doi.org/https://doi.org/10.2166/9781789060645.	
502	(17)	Faitz A. L. Lundia, C. Sail Solinisation, A. Local Life Cycle Assessment Impact	
	(17)	Feitz, A. J.; Lundie, S. Soil Salinisation: A Local Life Cycle Assessment Impact	
		Category. Int. J. Life Cycle Assess. 2002, 7(4), 244–249.	
282		https://doi.org/10.1007/BF02978880.	
586	(18)	Núñez, M.; Finkbeiner, M. A Regionalised Life Cycle Assessment Model to	
587		Globally Assess the Environmental Implications of Soil Salinization in Irrigated	
	561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 576 577 578 579 580 581 582 581 582 583 584 585	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

1 2					
2 3 4	588		Agriculture. Environ. Sci. Technol. 2020, 54(6), 3082–3090.		
5	589		https://doi.org/10.1021/acs.est.9b03334.		
6 7					
8 9	590	(19)	Owsianiak, M.; Fantke, P.; Posthuma, L.; Saouter, E.; Vijver, M.; Backhaus, T.;		
10	591		Schlekat, T.; Hauschild, M. Chapter 7: Ecotoxicity. In Global Guidance on		
11 12	592		Environmental Life Cycle Impact Assessment Indicators. Volume 2.;		
13 14	593		Frischknecht, R., Jolliet, O., Eds.; UNEP, 2019; pp 138–172.		
14 15 16	594	(20)	Kingsford, R. T.; Brandis, K.; Bino, G.; Keith, D. A. Freshwater Biome of the		
17	595	. ,	World, Elsevier, 2020; Vol. 1. https://doi.org/10.1016/b978-0-12-409548-		
18 19 20	596		9.12479-0.		
20 21	597	(21)	Alvarez, I.; DeCastro, M.; Gomez-Gesteira, M.; Prego, R. Inter- and Intra-		
22 23	598	(=1)	Annual Analysis of the Salinity and Temperature Evolution in the Galician Rías		
24 25	599		Baixas-Ocean Boundary (Northwest Spain). J. Geophys. Res. 2005, 110(4), 1–		
26	600		14. https://doi.org/10.1029/2004JC002504.		
27 28	000		1 h https://doi.org/10.102//2001000025011		
29 30	601	(22)	Carral, L.; Barros, J. J. C.; Fidalgo, H. C.; Fabal, C. C.; Doce, A. M. Greenhouse		
31	602		Gas Emissions and Energy Consumption of Coastal Ecosystem Enhancement		
32 33	603		Programme through Sustainable Artificial Reefs in Galicia. Int. J. Environ. Res.		
34 35	604		Public Health 2021, 18(4), 1–19. https://doi.org/10.3390/ijerph18041909.		
36 37	605	(23)	Parada, J. M.; Molares, J. Natural Mortality of the Cockle Cerastoderma Edule		
38 39	606		(L.) from the Ria of Arousa (NW Spain) Intertidal Zone. 2008, 43(3), 501–511.		
40					
41 42	607	(24)	Domínguez, R.; Vázquez, E.; Woodin, S. A.; Wethey, D. S.; Peteiro, L. G.;		
43 44	608		Macho, G.; Olabarria, C. Sublethal Responses of Four Commercially Important		
45	609		Bivalves to Low Salinity. Ecol. Indic. 2020, 111 (January), 106031.		
46 47	610		https://doi.org/10.1016/j.ecolind.2019.106031.		
48 49	611	(25)	Peteiro, L. G.; Woodin, S. A.; Wethey, D. S.; Costas-costas, D.; Martínez-casal,		
50 51	612		A.; Olabarria, C.; Vázquez, E. Responses to Salinity Stress in Bivalves: Evidence		
52	613		of Ontogenetic Changes in Energetic Physiology on Cerastoderma Edule. <i>Sci.</i>		
53 54	614		<i>Rep.</i> 2018 , No. May, 1–9. https://doi.org/10.1038/s41598-018-26706-9.		
55 56					
57	615	(26)	Roibás-Rozas, A.; Mosquera-Corral, A.; Hospido, A. Environmental Assessment		
58 59	616		of Complex Wastewater Valorisation by Polyhydroxyalkanoates Production. Sci.		
60	617		Total Environ. 2020, 744. https://doi.org/10.1016/j.scitotenv.2020.140893.		

 618 (27) Rosenbaum, R. K.; Hauschild, M. Z.; Boulay, AM.; Pantke, P.; Lauret, A.; 619 Núñez, M.; Vieira, M. Life Cycle Impact Assessment. In <i>Life Cycle Assessment</i>. 7 <i>Theory and Practice</i>.; Hauschild, M. Z., Rosenbaum, R. K., Olsen, S. I., Eds.; 621 Springer, 2018. https://doi.org/10.1007/978-3-319-56475-3_10. 622 (28) Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.; Huijbregts, M.; Jolliet, O.; 623 A., K.; Magaud, V.; Margni, M.; TE., M.; Posthuma, L.; Rosenbaum, R. K.; van 624 decent, D.; Zelm, V. <i>USEtox 2.0 Documentation (Version 1)</i>; Fantke, P., Ed.; 625 2018. https://doi.org/10.11581/DTU:00000011. 626 (29) Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded 627 Running Waters – Fundamentals, Current Positions and Perspectives. <i>Linnologica</i> 2011, <i>41</i> (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005. 629 (30) Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native 630 Macroinvertebrates in France an Indicator of Potential for Their Translocation in 631 a New Area%? <i>Linnologica</i> 2011, <i>41</i> (2), 107–112. 632 https://doi.org/10.1016/j.limno.2010.09.002. 633 (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, 634 S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by 635 Species Sensitivity Distributions Approximates Observed Effects of Salinity on 636 Stream Macroinvertebrates. <i>Environ. Pollut.</i> 2011, <i>159</i>(1), 302–310. 637 https://doi.org/10.1016/j.envpol.2010.08.025. 648 (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; 649 Leuven, R. S. E. W. Sensitivity of Native and Non-Native Molluse Species to 640 Changing River Water Temperature and Salinity. <i>Biol Invas</i>	2			
 Grossensensensensensensensensensensensensen	3 4	618	(27)	Rosenbaum, R. K.; Hauschild, M. Z.; Boulay, AM.; Fantke, P.; Laurent, A.;
 <i>Theory and Practice</i>; Hauschild, M. Z., Rosenbaum, R. K., Olsen, S. I., Eds.; Springer, 2018. https://doi.org/10.1007/978-3-319-56475-3_10. (28) Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.; Huijbregts, M.; Jolliet, O.; A., K.; Magaud, V.; Margni, M.; TE., M.; Posthuma, L.; Rosenbaum, R. K.; van de Meent, D.; Zelm, V. USEtox 2.0 Documentation (Version 1); Fantke, P., Ed.; 2018. https://doi.org/10.11581/DTU:00000011. (29) Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded Running Waters – Fundamentals, Current Positions and Perspectives. <i>Linnologica</i> 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005. (30) Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native Macroinvertebrates in France an Indicator of Potential for Their Translocation in a New Area%? <i>Linnologica</i> 2011, 41 (2), 107–112. https://doi.org/10.1016/j.limno.2010.09.002. (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by Species Sensitivity Distributions Approximates Observed Effects of Salinity on Stream Macroinvertebrates. <i>Environ. Pollut</i> 2011, 159(1), 302–310. https://doi.org/10.1016/j.envpol.2010.08.025. (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; Leuven, R. S. E. W. Sensitivity of Native and Non-Native Molluse Species to (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132. https://doi.org/10.1016/j.scitotenv.2021.145132. (44) Johnson, A. J.		619		Núñez, M.; Vieira, M. Life Cycle Impact Assessment. In Life Cycle Assessment.
 Springer, 2018. https://doi.org/10.1007/978-3-319-36475-5_10. Springer, 2018. https://doi.org/10.1007/978-3-319-36475-5_10. (28) Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.; Huijbregts, M.; Jolliet, O.; A., K.; Magaud, V.; Margni, M.; TE., M.; Posthuma, L.; Rosenbaum, R. K.; van de Meent, D.; Zelm, V. USEtox 2.0 Documentation (Version 1); Fantke, P., Ed.; 2018. https://doi.org/10.11581/DTU:00000011. (29) Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded Running Waters – Fundamentals, Current Positions and Perspectives. <i>Limnologica</i> 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005. (30) Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native Macroinvertebrates in France an Indicator of Potential for Their Translocation in a New Arca%? <i>Limnologica</i> 2011, 41 (2), 107–112. https://doi.org/10.1016/j.limno.2010.09.002. (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by Species Sensitivity Distributions Approximates Observed Effects of Salinity on Stream Macroinvertebrates. <i>Environ. Pollut.</i> 2011, <i>159</i>(1), 302–310. https://doi.org/10.1016/j.envpol.2010.08.025. (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollucs Species to Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– 1199. https://doi.org/10.1007/s10530-011-0148-y. (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, 774, 145132. https://doi.org/10.1016/j.scitotenv.2021.145132. (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of the Scagrass Zostera Marina	7	620		Theory and Practice.; Hauschild, M. Z., Rosenbaum, R. K., Olsen, S. I., Eds.;
 622 (28) Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.; Huijbregts, M.; Jolliet, O.; 623 A., K.; Magaud, V.; Margni, M.; TE., M.; Posthuma, L.; Rosenbaum, R. K.; van 624 de Meent, D.; Zelm, V. USEtox 2.0 Documentation (Version 1); Fantke, P., Ed.; 625 2018. https://doi.org/10.11581/DTU:00000011. 626 (29) Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded 627 Running Waters – Fundamentals, Current Positions and Perspectives. 628 Linnologica 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005. 629 (30) Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native 630 Macroinvertebrates in France an Indicator of Potential for Their Translocation in 631 a New Arca%? Linnologica 2011, 41 (2), 107–112. 632 https://doi.org/10.1016/j.limno.2010.09.002. 633 (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, 634 S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by 635 Species Sensitivity Distributions Approximates Observed Effects of Salinity on 636 Stream Macroinvertebrates. Environ. Pollut. 2011, 159 (1), 302–310. 637 https://doi.org/10.1016/j.envpol.2010.08.025. 638 (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; 639 Leuven, R. S. E. W. Sensitivity of Native and Non-Native Molluse Species to 640 Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187– 641 1199. https://doi.org/10.1016/j.scitotenv.2021.174, 145132. 643 Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after 644 Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shiclds, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of 646 the Sagrass Zostera Marina	9	621		Springer, 2018. https://doi.org/10.1007/978-3-319-56475-3_10.
13 623 A., K.; Magaud, V.; Margni, M.; TE., M.; Posthuma, L.; Rosenbaum, R. K.; van 14 624 de Meent, D.; Zelm, V. USEitox 2.0 Documentation (Version 1); Fantke, P., Ed.; 15 625 2018. https://doi.org/10.11581/DTU:00000011. 16 626 (29) Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded 16 627 Running Waters – Fundamentals, Current Positions and Perspectives. 17 628 Limnologica 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005. 17 630 Macroinvertebrates in France an Indicator of Potential for Their Translocation in 18 631 a New Area%? Limnologica 2011, 41 (2), 107–112. 19 632 https://doi.org/10.1016/j.limno.2010.09.002. 19 633 (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, 19 633 S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by 10 Stream Macroinvertebrates. Environ. Pollut 2011, 159 (1), 302–310. 11 https://doi.org/10.1016/j.envpol.2010.08.025. 12 638 (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; 13 636 Stream Macroi	11	622	(28)	Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.; Huijbregts, M.; Jolliet, O.;
15624de Meent, D.; Zelm, V. USEtox 2.0 Documentation (Version 1), Fantke, P., Ed.;166252018. https://doi.org/10.11581/DTU:00000011.17626(29)18Running Waters – Fundamentals, Current Positions and Perspectives.19627Running Waters – Fundamentals, Current Positions and Perspectives.20628Limnologica 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005.23629(30)Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native26630Macroinvertebrates in France an Indicator of Potential for Their Translocation in27631a New Area%? Limnologica 2011, 41 (2), 107–112.28https://doi.org/10.1016/j.limno.2010.09.002.29633(31)29633(31)20Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,36S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by37634S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by38635Species Sensitivity Distributions Approximates Observed Effects of Salinity on39636Stream Macroinvertebrates. Environ. Pollut. 2011, 159(1), 302–310.40https://doi.org/10.1016/j.envpol.2010.08.025.41639Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to42638(32)Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der;43640Changing River Water Temperature and Salinity.	13	623		A., K.; Magaud, V.; Margni, M.; TE., M.; Posthuma, L.; Rosenbaum, R. K.; van
166252018. https://doi.org/10.11581/DTU:00000011.17626(29)Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded18627Running Waters – Fundamentals, Current Positions and Perspectives.22628Limnologica 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005.23629(30)Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native630Macroinvertebrates in France an Indicator of Potential for Their Translocation in631a New Arca%? Limnologica 2011, 41 (2), 107–112.632https://doi.org/10.1016/j.limno.2010.09.002.73633(31)633(31)Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,84S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by863Species Sensitivity Distributions Approximates Observed Effects of Salinity on863Stream Macroinvertebrates. Environ. Pollut. 2011, 159 (1), 302–310.863https://doi.org/10.1016/j.envpol.2010.08.025.874634(32)864Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der;864Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to864Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187–875644Ju, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive864Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after865Hurricane Harvey. Sci. Total Environ. 2021,		624		de Meent, D.; Zelm, V. USEtox 2.0 Documentation (Version 1); Fantke, P., Ed.;
19626(29)Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded21627Running Waters – Fundamentals, Current Positions and Perspectives.22628Limnologica 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005.24629(30)Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native25629(30)Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native26Macroinvertebrates in France an Indicator of Potential for Their Translocation in27631a New Area%? Limnologica 2011, 41 (2), 107–112.30632https://doi.org/10.1016/j.limno.2010.09.002.31633(31)32Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,33633(31)463Species Sensitivity Distributions Approximates Observed Effects of Salinity on37Species Sensitivity Distributions Approximates Observed Effects of Salinity on38636637https://doi.org/10.1016/j.envpol.2010.08.025.41638639Leuven, R. S. E. W. Sensitivity of Native and Non-Native Molluse Species to640Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187–6411199. https://doi.org/10.1007/s10530-011-0148-y.642(33)Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive653Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after644Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132	16 17	625		2018. https://doi.org/10.11581/DTU:00000011.
21627Running Waters – Fundamentals, Current Positions and Perspectives.22628Limnologica 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005.24629(30)Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native26630Macroinvertebrates in France an Indicator of Potential for Their Translocation in27631a New Area%? Limnologica 2011, 41 (2), 107–112.28632https://doi.org/10.1016/j.limno.2010.09.002.29633(31)Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,38634S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by36635Species Sensitivity Distributions Approximates Observed Effects of Salinity on37636Stream Macroinvertebrates. Environ. Pollut. 2011, 159(1), 302–310.41638(32)Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der;42639Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to45640Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187–4611199. https://doi.org/10.1007/s10530-011-0148-y.47641Glveston Bay Caused by Prolonged Low-Salinity Exposure after48Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.44645https://doi.org/10.1016/j.scitotenv.2021.145132.45646(34)464Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of47647the	19	626	(29)	Ziemann, H.; Schulz, C. Methods for Biological Assessment of Salt-Loaded
22 23628Limnologica 2011, 41 (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005.24 25629(30)Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native Macroinvertebrates in France an Indicator of Potential for Their Translocation in a New Area%? Limnologica 2011, 41 (2), 107–112.26 27631 632https://doi.org/10.1016/j.limno.2010.09.002.31 33633(31)Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by Species Sensitivity Distributions Approximates Observed Effects of Salinity on Stream Macroinvertebrates. Environ. Pollut. 2011, 159(1), 302–310.36Stream Macroinvertebrates. Environ. Pollut. 2011, 159(1), 302–310.41 42 439634S. E. W. Sensitivity of Native and Non-Native Mollusc Species to Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187– 1199. https://doi.org/10.1007/s10530-011-0148-y.44 450 451 451642(33) Ou, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.451 452 453 454644Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme		627		Running Waters – Fundamentals, Current Positions and Perspectives.
25629(30)Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native26630Macroinvertebrates in France an Indicator of Potential for Their Translocation in27631a New Area%? Limnologica 2011, 41 (2), 107–112.30632https://doi.org/10.1016/j.limno.2010.09.002.31633(31)Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,33633(31)Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,34634S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by35635Species Sensitivity Distributions Approximates Observed Effects of Salinity on36Stream Macroinvertebrates. Environ. Pollut. 2011, 159 (1), 302–310.40https://doi.org/10.1016/j.envpol.2010.08.025.41638(32)42638(32)43Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der;44639Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to45640Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187–466411199. https://doi.org/10.1007/s10530-011-0148-y.476410yster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after48644Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.45645https://doi.org/10.1016/j.scitotenv.2021.145132.46646(34)47647idolinorg/10.1016/j.scitotenv.2021.14	22 23	628		<i>Limnologica</i> 2011 , <i>41</i> (2), 90–95. https://doi.org/10.1016/j.limno.2010.09.005.
27630Macroinvertebrates in France an Indicator of Potential for Their Translocation in28631a New Area%? Limnologica 2011, 41 (2), 107–112.30632https://doi.org/10.1016/j.limno.2010.09.002.31633(31)Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,34634S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by365Species Sensitivity Distributions Approximates Observed Effects of Salinity on37636Stream Macroinvertebrates. Environ. Pollut. 2011, 159(1), 302–310.40637https://doi.org/10.1016/j.envpol.2010.08.025.41638(32)Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der;42638(32)Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der;44639Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to45640Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187–461199. https://doi.org/10.1007/s10530-011-0148-y.476411199. https://doi.org/10.1007/s10530-011-0148-y.48642(33)Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive51643Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after53644Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.54https://doi.org/10.1016/j.scitotenv.2021.145132.56646(34)Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; O	25	629	(30)	Piscart, C.; Kefford, B. J.; Beisel, J. Are Salinity Tolerances of Non-Native
 a New Area%? <i>Limnologica</i> 2011, <i>41</i> (2), 107–112. https://doi.org/10.1016/j.limno.2010.09.002. (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by Species Sensitivity Distributions Approximates Observed Effects of Salinity on Stream Macroinvertebrates. <i>Environ. Pollut.</i> 2011, <i>159</i>(1), 302–310. https://doi.org/10.1016/j.envpol.2010.08.025. (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i>, 145132. https://doi.org/10.1016/j.scitotenv.2021.145132. 644 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 		630		Macroinvertebrates in France an Indicator of Potential for Their Translocation in
 https://doi.org/10.1016/j.limno.2010.09.002. (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by Species Sensitivity Distributions Approximates Observed Effects of Salinity on Stream Macroinvertebrates. <i>Environ. Pollut.</i> 2011, <i>159</i>(1), 302–310. https://doi.org/10.1016/j.envpol.2010.08.025. (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– (41) 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i>, 145132. https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 	28	631		a New Area%? Limnologica 2011, 41 (2), 107–112.
 633 (31) Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy, 634 S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by 635 Species Sensitivity Distributions Approximates Observed Effects of Salinity on 636 Stream Macroinvertebrates. <i>Environ. Pollut.</i> 2011, <i>159</i>(1), 302–310. 637 https://doi.org/10.1016/j.envpol.2010.08.025. 638 (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; 640 Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– 641 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive 643 Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after 644 Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i>, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of 647 the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 	30	632		https://doi.org/10.1016/j.limno.2010.09.002.
 S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by Species Sensitivity Distributions Approximates Observed Effects of Salinity on Stream Macroinvertebrates. <i>Environ. Pollut.</i> 2011, <i>159</i>(1), 302–310. https://doi.org/10.1016/j.envpol.2010.08.025. (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– H199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i>, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 		633	(31)	Kefford, B. J.; Marchant, R.; Schäfer, R. B.; Metzeling, L.; Dunlop, J. E.; Choy,
36635Species Sensitivity Distributions Approximates Observed Effects of Salinity on37636Stream Macroinvertebrates. Environ. Pollut. 2011, 159 (1), 302–310.39637https://doi.org/10.1016/j.envpol.2010.08.025.4142638(32)42638(32)43639Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to44639Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187–46640Changing River Water Temperature and Salinity. Biol Invasions 2012, 1187–476411199. https://doi.org/10.1007/s10530-011-0148-y.49642(33)Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive51643Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after53644Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.54645https://doi.org/10.1016/j.scitotenv.2021.145132.55646(34)Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of59647the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme		634		S. C.; Goonan, P.; Victoria, E. P. A. The Definition of Species Richness Used by
 Stream Macroinvertebrates. Environ. Pollut. 2011, 159 (1), 302–310. https://doi.org/10.1016/j.envpol.2010.08.025. (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– (41 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 	36	635		Species Sensitivity Distributions Approximates Observed Effects of Salinity on
 637 https://doi.org/10.1016/j.envpol.2010.08.023. 638 (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; 639 Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to 640 Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– 641 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive 643 Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after 644 Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i>, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of 647 the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 		636		Stream Macroinvertebrates. Environ. Pollut. 2011, 159(1), 302-310.
 42 638 (32) Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der; 43 639 Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to 640 Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– 641 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive 643 Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after 644 Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i>, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of 647 the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 	40	637		https://doi.org/10.1016/j.envpol.2010.08.025.
44639Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to45640Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187–476411199. https://doi.org/10.1007/s10530-011-0148-y.484950642(33)51643Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after53644Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i> , 145132.55645https://doi.org/10.1016/j.scitotenv.2021.145132.565764659647the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme	42	638	(32)	Verbrugge, L. N. H.; Schipper, A. M.; Huijbregts, M. A. J.; Velde, G. Van der;
 Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187– 641 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive 643 Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after 644 Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, 774, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of 647 the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 		639		Leuven, R. S. E. W. Sensitivity of Native and Non-Native Mollusc Species to
 641 1199. https://doi.org/10.1007/s10530-011-0148-y. 642 (33) Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive 643 Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after 644 Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, <i>774</i>, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of 647 the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 		640		Changing River Water Temperature and Salinity. <i>Biol Invasions</i> 2012, 1187–
50642(33)Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive51643Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after53644Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.54645https://doi.org/10.1016/j.scitotenv.2021.145132.5657646(34)59646(34)59647the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme	47 48	641		1199. https://doi.org/10.1007/s10530-011-0148-y.
52643Oyster Kill in Galveston Bay Caused by Prolonged Low-Samity Exposure after53644Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.545564555645https://doi.org/10.1016/j.scitotenv.2021.145132.565758646(34)59647the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme		642	(33)	Du, J.; Park, K.; Jensen, C.; Dellapenna, T. M.; Zhang, W. G.; Shi, Y. Massive
 644 Hurricane Harvey. <i>Sci. Total Environ.</i> 2021, 774, 145132. 645 https://doi.org/10.1016/j.scitotenv.2021.145132. 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 		643		Oyster Kill in Galveston Bay Caused by Prolonged Low-Salinity Exposure after
55645https://doi.org/10.1016/j.scitotenv.2021.145132.565757646576465864659647596475964759647596475964759647596475964759647596475964750647506475151556475651575258525964750545054545455545654565457545854595450545154	53	644		Hurricane Harvey. Sci. Total Environ. 2021, 774, 145132.
 646 (34) Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of 647 the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme 	55	645		https://doi.org/10.1016/j.scitotenv.2021.145132.
⁵⁹ 647 the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme	57	646	(34)	Johnson, A. J.; Shields, E. C.; Kendrick, G. A.; Orth, R. J. Recovery Dynamics of
		647		the Seagrass Zostera Marina Following Mass Mortalities from Two Extreme

ey,
_
ne
ño
[.

1 2	
	(
3 4 5 6 7	(
6 7	(
8 9	(
10	
11 12	(
13	(
14 15	(
16 17	(
18	
19 20	(
20 21 22	(
23	(
23 24 25	(
26 27	(
28	(
29 30	
28 29 30 31 32 33 34	(
33	(
34 35	6
35 36 37	6
38	6
39 40	4
41 42	(
43	(
44 45	(
46 47	(
48	(
49 50	7
51 52	,
53	,
54 55	
56 57	7
58	
59 60	-


676 677 678 679	(44)	 Mcjannet, D. L.; Webster, I. T.; Cook, F. J. Environmental Modelling & Software An Area-Dependent Wind Function for Estimating Open Water Evaporation Using Land-Based Meteorological Data. <i>Environ. Model. Softw.</i> 2012, <i>31</i>, 76–83. https://doi.org/10.1016/j.envsoft.2011.11.017.
680 681 682 683	(45)	Risch, E.; Loubet, P.; Núñez, M.; Roux, P. How Environmentally Significant Is Water Consumption during Wastewater Treatment?: Application of Recent Developments in LCA to WWT Technologies Used at 3 Contrasted Geographical Locations. <i>Water Res.</i> 2014 , <i>7</i> . https://doi.org/10.1016/j.watres.2014.03.023.
684 685 686	(46)	MeteoGalicia. Rede Meteorolóxica https://www.meteogalicia.gal/observacion/estacions/estacions.action?request_loc ale=gl (accessed Mar 30, 2021).
687 688 689	(47)	Fekete, B. M.; Vörösmarty, C. J.; Grabs, W. UNH/GRDC Composite Runoff Fields V1.0 https://www.compositerunoff.sr.unh.edu/index.html (accessed Mar 29, 2021).
690 691 692 693 694	(48)	 Venâncio, A.; Montero, P.; Costa, P.; Regueiro, S.; Brands, S.; Taboada, J. An Integrated Perspective of the Operational Forecasting System in Rías Baixas (Galicia, Spain) with Observational Data and End-Users. In <i>Computational</i> <i>Science - ICCS 2019</i>, Springer: Faro, Portugal, 2019. https://doi.org/10.1007/978-3-030-22747-0.
695 696 697 698	(49)	Estévez, E.; Rodríguez-Castillo, T.; González-Ferreras, A. M.; Cañedo- Argüelles, M.; Barquín, J. Drivers of Spatio-Temporal Patterns of Salinity in Spanish Rivers: A Nationwide Assessment. <i>Philos. Trans. R. Soc. B Biol. Sci.</i> 2019 , <i>374</i> (1764), 1–10. https://doi.org/10.1098/rstb.2018.0022.
699 700 701 702	(50)	Dias, R. da S.; Naves, A.; Pisani, B.; García-Tomillo, A. Comparación de La Concentración y Del Lixiviado de Cloruro y Sulfato En Dos Cuencas Con Diferente Distancia a La Costa. Conference Proceeding, Vol XIV. In <i>Jornadas de</i> <i>la zona no saturada</i> ; Madrid, Spain, 2019; p 10.
703 704 705	(51)	Alcalá, F. J.; Custodio, E. Using the Cl/Br Ratio as a Tracer to Identify the Origin of Salinity in Aquifers in Spain and Portugal. <i>J. Hydrol.</i> 2008 , <i>359</i> (1–2), 189–207. https://doi.org/10.1016/j.jhydrol.2008.06.028.

2			
3 4 5	706	(52)	WHO. WHO Guidelines for Drinking-Water Quality, 2006.
6	707	(53)	Carregosa, V.; Velez, C.; Soares, A. M. V. M.; Figueira, E.; Freitas, R.
7 8	708		Physiological and Biochemical Responses of Three Veneridae Clams Exposed to
9 10	709		Salinity Changes. Comp. Biochem. Physiol. Part B 2014, 177–178, 1–9.
11 12 13	710		https://doi.org/10.1016/j.cbpb.2014.08.001.
14	711	(54)	Gharbi, A.; Farcy, E.; Van Wormhoudt, A.; Denis, F. Response of the Carpet
15 16	712		Shell Clam (Ruditapes Decussatus) and the Manila Clam (Ruditapes
17 18	713		Philippinarum) to Salinity Stress. Biologia (Bratisl). 2016, 71, 551–562.
19 20	714		https://doi.org/10.1515/biolog-2016-0072.
21 22	715	(55)	Verdelhos, T.; Marques, J. C.; Anastácio, P. The Impact of Estuarine Salinity
23 24	716		Changes on the Bivalves Scrobicularia Plana and Cerastoderma Edule,
25	717		Illustrated by Behavioral and Mortality Responses on a Laboratory Assay. Ecol.
26 27 28	718		Indic. 2015, 52, 96–104. https://doi.org/10.1016/j.ecolind.2014.11.022.
29 30	719	(56)	Fiett, P. P. Salinity Tolerance and Osmoregulatory Function of Mannitol in
31 32	720		Danish Ecotype of Saccharina Latissima. 1–24.
33 34	721	(57)	Peteiro, C.; Sánchez, N. Comparing Salinity Tolerance in Early Stages of the
35 36	722		Sporophytes of a Non Indigenous Kelp (Undaria Pinnatifida) and a Native Kelp
37	723		(Saccharina Latissima). J. Mar. Biol. 2012, 38(2), 197-200.
38 39 40	724		https://doi.org/10.1134/S1063074012020095.
41 42	725	(58)	Freitas, R.; Pires, A.; Velez, C.; Almeida, Â.; Wrona, F. J.; Soares, A. M. V. M.;
43	726		Figueira, E. The Effects of Salinity Changes on the Polychaete Diopatra
44 45	727		Neapolitana: Impacts on Regenerative Capacity and Biochemical Markers.
46 47	728		Aquat. Toxicol. 2015, 163, 167–176.
48 49	729		https://doi.org/10.1016/j.aquatox.2015.04.006.
50 51	730	(59)	Reyes-martínez, M. J.; Martínez-pita, I.; Soler-navarro, D.; García-garcía, F. J.
52 53	731		The Impact of Salinity Changes Associated with Size on the Wedge Clam Donax
54	732		Trunculus Linnaeus, 1758 (Mollusca Bivalvia): A Laboratory Assay. Estuar.,
55 56	733		Coast. Shelf Sci. 2020, 241, 106838.
57 58 59	734		https://doi.org/https://doi.org/10.1016/j.ecss.2020.106838.
60	735	(60)	Gaag, M. Van Der; Velde, G. Van Der; Wijnhoven, S. Salinity as a Barrier for

2			
3 4	736		Ship Hull - Related Dispersal and Invasiveness of Dreissenid and Mytilid
5 6	737		Bivalves. Mar. Biol. 2016, 163(7), 1-13. https://doi.org/10.1007/s00227-016-
7	738		2926-7.
8 9			
10	739	(61)	Norton, T. A.; South, G. R. Influence of Reduced Salinity on the Distribution of
11 12	740		Two Laminarian Algae. Nord. Soc. Oikos 1969, 20(2), 320–326.
13 14 15	741	(62)	Salo, T.; Foldager, M.; Boström, C. Population Specific Salinity Tolerance in
15 16	742		Eelgrass (Zostera Marina). J. Exp. Mar. Bio. Ecol. 2014, 461, 425-429.
17 18	743		https://doi.org/10.1016/j.jembe.2014.09.010.
19 20	744	(63)	Fernández-Torquemada, Y.; Sánchez-Lizaso, J. L. Responses of Two
21 22	745		Mediterranean Seagrasses to Experimental Changes in Salinity. <i>Hydrobiologia</i>
23 24	746		2011 , <i>699</i> , 21–33. https://doi.org/10.1007/s10750-011-0644-1.
25			
26 27	747	(64)	Berger, E.; Frör, O.; Schäfer, R. B. Salinity Impacts on River Ecosystem
28	748		Processes: A Critical Mini-Review. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374
29 30 31	749		(1764). https://doi.org/10.1098/rstb.2018.0010.
32	750	(65)	Verones, F.; Bare, J.; Bulle, C.; Frischknecht, R.; Hauschild, M.; Hellweg, S.;
33 34	751		Henderson, A.; Jolliet, O.; Laurent, A.; Liao, X.; Lindner, J. P.; Maia de Souza,
35 36	752		D.; Michelsen, O.; Patouillard, L.; Pfister, S.; Posthuma, L.; Prado, V.; Ridoutt,
37	753		B.; Rosenbaum, R. K.; Sala, S.; Ugaya, C.; Vieira, M.; Fantke, P. LCIA
38 39	754		Framework and Cross-Cutting Issues Guidance within the UNEP-SETAC Life
40 41	755		Cycle Initiative. J. Clean. Prod. 2017, 161, 957–967.
42 43	756		https://doi.org/10.1016/j.jclepro.2017.05.206.
44 45	757		
46 47	758		
48 49			
50 51	759		
52 53	760		
54			
55 56	761		
57 58 59 60	762		

1		
2 3 4	763	
5 6 7	764	
8 9 10	765	
11 12 13	766	
14 15 16	767	
17 18	768	
19 20 21	769	
22 23 24	770	
25 26 27	771	
28 29	772	
30 31 32	773	
33 34 35	774	
36 37	775	
38 39 40	776	
41 42 43	777	
44 45 46	778	
47 48 49	779 780	
50 51	780	
52 53 54	781	For Table of Contents Only
55 56 57	782	I of Fuelo of Contents Offy
58 59 60		
50		

ACS Paragon Plus Environment

