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Abstract 10 

In this study we used the phenotypic information of 1,499 Duroc pigs, recorded longitudinally in the 11 

age period from 110 to 200 days of age for individual daily feed intake (DFI), backfat thickness (BF) 12 

and live body weight (BW). Our aim was to estimate the genetic parameters for production and feed 13 

efficiency traits during the fattening period, with the objective to define, based on these parameters, 14 

the optimal moment for recording the phenotypes in order to maximize the expected response in a 15 

selection program to improve feed efficiency. Additionally to the aforementioned traits, two other 16 

traits were derived: average daily gain (ADG) and residual feed intake (RFI). The variance components 17 

for these traits were estimated through Bayesian procedures and using a multi-trait random regression 18 

animal model fitting Legendre polynomials of degree one. The estimated heritability patterns along 19 

the fattening were fairly flat, around 0.15(0.04), 0.37(0.05) and 0.34(0.09) for DFI, BF and DWG, 20 

respectively. RFI was the trait with the lowest heritability estimate, below 0.05 from 140d onwards. 21 

The only trait that showed relevant variation in the heritability estimate along the fattening period was 22 

BW, from 0.18(0.05) to 0.32(0.10). The correlations between performance at different moments of the 23 

fattening period and those at 120 days, was not always high. For the case of DFI and RFI these 24 

correlations reached values as low as 0.27(0.18) and -0.26(0.23).    This points to a certain degree of 25 

genetic determinism variation along the studied period. Nonetheless, in particular for the feed 26 
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efficiency trait (RFI), this variation seems irrelevant given the low estimated heritabilities and the low 27 

level of genetic heterogeneity along the fattening period.  28 

Keywords: Electronic feeders, feed efficiency, swine, random regression animal model. 29 

 30 

Highlights 31 

 Feed efficiency related traits exhibit along-fattening genetic heterogeneity 32 

 This heterogeneity is, however, rather limited 33 

 Its consideration in breeding programs is not expected to improve the responses  34 

 Properly modeling such genetic heterogeneity would request large datasets  35 

 36 

1. Introduction 37 

The costs associated with feeding growing pigs is the most important portion of the total production 38 

costs in pig production (Gutierrez and Patience, 2012). Therefore, to reduce daily feed intake (DFI) 39 

while maintaining performance of growing pigs is expected to result in economic benefits and for this 40 

reason such a trait is often considered, either directly or indirectly, in breeding programs for pigs 41 

(Stewart et al., 1990). Any direct consideration of feed efficiency traits (feed conversion ratio (FCR) 42 

or residual feed intake (RFI) (Merks et al., 2012)) would require recording both performance traits 43 

(daily weight gain (DWG), backfat thickness (BF) or live body weight (BW)) as well as feed intake. 44 

Nonetheless, important improvements in feed efficiency can be also achieved by indirect selection of 45 

performance traits genetically correlated with FCR or RFI. In this regard, the role of BF is paramount 46 

and most of the commercial pig breeding programs rely on the reduction of BF to enhance the 47 

efficiency of the growing animals. Reducing BF thickness, in addition, will yield carcasses with 48 

characteristics that better fit the desires of consumers, i.e. with reduced fat content. 49 

The availability of longitudinal records, i.e. multiple measurements recorded throughout the fattening 50 

period, on performance and feed intake traits allows for the study of the evolution of genetic parameters 51 
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involved in the control of these traits, heritabilities and genetic correlation between the traits. There is 52 

already evidence that the genetic correlations between production and feed efficiency traits change 53 

with the age (Cai et al., 2011; Wetten et al., 2012), as well as the genetic variances and the heritabilities 54 

of traits (Shirali et al., 2017; Tran et al., 2017; Chaudhary et al., 2019). This variation in the genetic 55 

parameters along the fattening period could be responsible for the changes in the accuracy of the 56 

estimated breeding values for DWG, DFI, FCR and RFI from early to late ages during the fattening 57 

period (Arthur et al., 2008). The objective of this study was to estimate the changes in genetic 58 

parameters as the pig ages for performance and feed efficiency traits in a Duroc population, with the 59 

additional aim of identifying the optimal moment in which to record performance traits to indirectly 60 

improve overall feed efficiency in the studied population. 61 

 62 

2. Material and Methods 63 

Phenotypic records of 1,499 Duroc pigs were collected in 13 batches from 2007 to 2019 at the 64 

experimental Center of Porcine Evaluation (Monells, Girona, Spain). These batches comprised a total 65 

of 128 pens (pigs per pen averaged 11.8 ± 1.4) with an individual-space IVOG electronic feeding 66 

station (Insentec, Markenesse, the Netherlands) in each pen. The complete known pedigree for these 67 

animals is composed of 6,179 individuals. This Duroc line was founded in 1991 (Tibau et al., 1999) 68 

initially selected as a multipurpose line but later, in around 2005, the line was specialized as a maternal 69 

line focusing on increasing prolificacy while reducing backfat thickness (BF). The average (range) age 70 

at the first live weight control was 70 (53-85) days, while that for the last control was 180 (160-200) 71 

days. Despite this, as the recording of BF only was systematically conducted when the animals were 72 

older than 110 days old, we limited the period of study for all the traits from this age onward, i.e. 90 73 

days from 110 d to 200 d.  74 

During the fattening period, animals were fed ad libitum with a standard diet satisfying their nutritional 75 

requirements. Measurements for individual body weight (BW, kg) and BF (mm) were recorded several 76 

times during the fattening period, there were variations on the number of measurements per animal, 77 
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ranging from 3 – 10 records per animal. BF was measured using ultrasonic techniques (PIGLOG 105, 78 

SFK-Technology, Herlev, Denmark). The individual feed intake (DFI, kg) records were collected 79 

using electronic feeders following the procedure described by Sánchez et al. (2017). Descriptive 80 

statistics of the three raw studied traits are presented in the Table 1. 81 

Table 1 around here 82 

A multi-trait random regression animal model was fitted to DFI, BW and BF. The same model was 83 

considered for the three traits and its equation, in scalar form, is the following: 84 

	Y������� = B�� + S�� +��
� (age��) × �� +��

� (age��) × ��� +��
� (age��) × ��� +��

� (age��) × ���85 

+��
� (age��)× ��� + e�������							, 86 

where the subscript t refers to each one of the three studied traits (DFI, BW and BF), the considered 87 

systematic effects were the batch (B��, 13 levels), the sex (S��, 2 levels: females and castrated males) 88 

and a Legendre polynomial regression of degree three on the age, ��	is a vector that includes, the effects 89 

associated with the four coefficients, ��′(age��), of the Legendre polynomial. These Legendre 90 

coefficients are a function of the age of the animal i when its oth record was obtained. Similarly; pen 91 

(���, 128 levels), litter (���, 562 levels), permanent environmental (���, 1,499 levels) and additive 92 

genetic (���, 6,179 levels) effects were fitted as regression on Legendre functions of degree 1 (two 93 

coefficients) for the age of the animal i when its oth record was obtained.  The residual term (e�������) 94 

was assumed to be heteroskedastic with respect to the age, see below. 95 

Model parameters were estimated using a Bayesian MCMC procedure, thus prior distribution of all 96 

the unknowns had to be specified. Uniform and independent distributions were a priori assumed for 97 

the elements of �, � and �, i.e. batch, sex and regression coefficients on Legendre functions of age. 98 

Pen, litter, permanent environment and additive genetic effects were assumed, a priori, to follow 99 

independent multivariate normal distributions with these specifications: �|��~���(�,�� �) ; 100 

�|��~���(�,�� �); �|��~���(�,�� �) and �|��~���(�,�� �), respectively. The 101 

identity matrices I have dimensions equal to the number of levels of the different factors previously 102 

described and A is the numerator relationship matrix between individuals in the pedigree. ��, ��, �� 103 
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and �� contain the co-variances associated with the two regression coefficients for each one of the 104 

studied traits, i.e. dimension 6.  The operator  denotes the Kronecker product.  As has been stated, 105 

heterogeneous residual variances were assumed, three different residual co-variance matrices were 106 

defined for the intervals 110-140,141-170 and 171-200. The normal prior distribution for the residuals 107 

can be expressed as �|�~���(�,�), where the covariance matrix has the following form: 108 

� = �

��,������� �������� � �

� ��,������� �������� �

� � ��,������� ��������

� 109 

��,�������, ��,������� and ��,������� are 3x3 matrices with the residual (co)variances between traits in 110 

the respective periods; and ��������, �������� and �������� are identity matrices with dimension equal to 111 

the number of records in each period. Similarly with the systematic effects, uniform prior within their 112 

domain were assumed for all the elements of the variance component matrices: ��, ��, ��, ��, 113 

��,�������, ��,������� and ��,�������. 114 

Marginal posterior distribution of the variance components were sampled using the Gibbs Sampling 115 

algorithm using the program gibbsf90test, which is a new version of the gibbs3f90 program (Misztal 116 

et al., 2015). Chains of 1,000,000 samples were run and the first 600,000 iterations were discarded in 117 

order to allow the algorithm to reach convergence to the marginal posterior distributions. Then, one 118 

sample every 10 iterations was saved. We chose this sampling scheme because we observed that 119 

shorter burn-in period did not permit passing the different convergence criteria we considered.  One 120 

such convergence test of the Markov chains was the Geweke test function  in coda R package 121 

(Plummer et al., 2006) applied to the genetic variance components of the model (Table A1 in the 122 

Additional File 1). Another criterion to assess for convergence was just the visual inspection of the 123 

chain trace plots (see Figure A1 and A2 in the Additional File 1). We also ran two chains having the 124 

same random seed but with different starting values, in one of them the starting values were set to the 125 

estimates obtained in a previous EM-REML analysis using the software remlf90 (Misztal et al., 2015). 126 

In the other chain, the starting values were set to those after the first iteration of the EM-REML 127 

algorithm. By comparing the posterior mean obtained with both chains we could assess whether the 128 
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effect of the starting value vanished, in our case this comparison resulted in numerically equivalent 129 

estimates. 130 

From the saved samples of the marginal posterior distribution of the variance components in the 131 

aforementioned model, it was possible to derive variance components of other related traits. One of 132 

these was daily weight gain (DWG), this trait was obtained from the first derivative of the Legendre 133 

polynomial functions of BW for pen, litter, permanent environmental and additive genetic effects. 134 

From the polynomial functions of the different factors for DFI, BW, BF and DWG, variance 135 

components were obtained for all the days under study (110-200 days), this was done for pen, litter, 136 

permanent environmental, additive genetic and residual effects. 137 

Once matrices of (co)variance for all the factors and traits were defined on a daily basis, variance 138 

components for residual feed intake (RFI) were derived using the procedure proposed by Strathe et al. 139 

(2014). This method relies on considering RFI as a DFI conditional on BF, BW and DWG; thus, for 140 

each day (d) along the fattening period it was necessary to obtain the regression coefficient vector (��) 141 

that allows conditioned DFI to be obtained:  142 

�� = [1 b��,� b��,� b���,�] 143 

b��,�, b��,� and b���,� are phenotypic regression coefficients for the day d obtained from the 4x4 144 

phenotypic co-variance matrix on the day d.  145 

�

b��,�

b��,�
b���,�

� = �

σ���,��,�
� σ���,�����,� σ���,������,�

σ���,�����,� σ���,��,�
� σ���,������,�

σ���,������,� σ���,������,� σ���,���,�
�

�

��

�

σ���,������,�

σ���,������,�
σ���,�������,�

� 146 

The phenotypic covariance matrix was obtained as ���� = �� + �� + �� + �� + ��. Pen, litter, 147 

permanent environmental, additive genetic and residual variances for RFI on the day d were defined 148 

as:  149 

σ�,���,�
� = �� × �� × ��

� , 150 
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where �� represents the covariance matrix on day d for either cage (C), litter (L), permanent (P), 151 

genetic (G), and residual (R) effects. 152 

Similarly, covariances between days can be obtained with this general equation: 153 

σ�,���,��,�� = ��� × ���,�� × ���
�  154 

In this context the sub-index x aims to represent any one of the effects in the model: pen, litter, 155 

permanent environmental, additive genetic and residual, as well as the covariance matrix between days 156 

associated with it. In the formula, ���,�� represents the covariances within (in the diagonal) and 157 

between (out of the diagonal) traits for the effects referring to d1 and d2. The phenotypic variance of 158 

RFI on the day d can be defined as σ���,���,�
� = σ�,���,�

� + σ�,���,�
� + 	σ�,���,�

� + 	σ�,���,�
� + 	σ�,���,�

� . 159 

Daily variances for RFI (σ�,���,�
� ) and DWG (σ�,���,�

� ) and covariances between days (for example 160 

for RFI = σ�,���,��,��) can be organized in 90 x 90 matrices (90 = 200 d – 110 d). Again, the sub-index 161 

x refers to any model effect: pen, litter, permanent environmental, additive genetic and residual. We 162 

can name these matrices: ����,���, ����,���, ,����,���,����,���	and ����,��� for RFI; and ����,���, 163 

����,���, ,����,���,����,���	and ����,��� for DWG . 164 

From these matrices we can obtain overall (averages along the whole fattening period) variance 165 

components for the different factors with these quadratic forms 166 

σ�,����
� = � × ����,��� × �′; 167 

σ�,����
� = � × ����,��� × �′; 168 

σ�,����
� = � × ����,��� × �′; 169 

σ�,����
� = � × ����,��� × �′ , and 170 

σ�,����
� = � × ����,��� × �′ 171 

Equivalent expressions of these quadratic forms were used for computing variance components of 172 

oDWG. In these formulae � is a vector weighting the different days along the fattening period we 173 
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assigned the same weight to all the days, thus all the elements of vector � were equal to  
�

��
. Finally, 174 

phenotypic variances of oRFI and oDWG were obtained as: 175 

σ���,����
� = σ�,����

� + σ�,����
� + 	σ�,����

� + σ�,����
� + 		σ�,����

�  , and 176 

σ���,����
� = σ�,����

� + σ�,����
� + 	σ�,����

� + σ�,����
� + 	σ�,����

�  177 

All the above-mentioned computations of parameters for the derived traits were conducted for each 178 

sample of the marginal posterior distribution of the model parameters, thus it was possible to fully 179 

characterize the marginal posterior distribution of genetic parameters for the derived traits. 180 

3. Results  181 

Figure 1 shows the heritability patterns for the studied traits DFI, BW, BF, DWG and RFI. To properly 182 

quantify the magnitude of the estimates for the different moments along the fattening period the 183 

estimates for every 15 days are presented in the Table 2. Fairly constant heritability patterns were 184 

observed for DFI (0.15), BF (0.37) and DWG (0.34). BW is the trait for which the largest differences 185 

in heritability across age were observed, from around 0.18 at 110 d. to around 0.32 at 200 d. The 186 

heritability of RFI also showed a fairly constant pattern but at low values, before 140 d of age, the 187 

estimates were between from 0.08 and 0.12, from this age onward the heritability estimates were as 188 

high as 0.06. The observed broken-line patterns for the heritabilities are a consequence of the assumed 189 

heterogeneous residual variance pattern, with peaks at 140 and 170 days. This pattern gets translated 190 

to the phenotypic covariance structure and thus, if the transition from one period to the other is not 191 

smooth then it could be possible to observe it in the phenotypic variance pattern, i.e. the denominator 192 

of the heritability.  193 

Figure 1 around here 194 

Regarding the heritability of the overall growth and the overall RFI we observed that the marginal 195 

posterior mean (marginal posterior standard deviation) of oRFI and oDWG were 0.07(0.01) and 196 

0.34(0.09), respectively. 197 
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In order to assess the magnitude of the genetic correlations within each trait across the fattening period 198 

we reported in Table 3 the marginal posterior mean (standard deviations) of the genetic correlations 199 

between the trait recorded at different days along the fattening period and the trait recorded at day 120 200 

of age. High correlations were observed for BF and BW, the lowest values being 0.82 and 0.71, 201 

respectively. In the case of DFI and also for RFI, the genetic correlations with the respective trait at 202 

120 d, reached much lower values at the end of the fattening period. For both traits the correlation 203 

between the performance recorded at 200 days and that recorded on day 120 cannot be said to be 204 

statistically different from zero. The genetic correlations between ADG and oADG were equal to one 205 

as a consequence of the definitions of these traits, ADG was the first derivative of BW and oADG is 206 

the integral of ADG along the fattening period. 207 

The pattern of daily genetic correlations between performance and RFI are shown in Figure 2. To 208 

quantitatively assess the magnitude of these correlations we also show the values (posterior means 209 

(posterior standard deviations)) of these correlation estimates every 15 days in the Table 4. All the 210 

patterns are fairly flat, i.e. constant along the fattening period, and the only genetic correlation that 211 

seems to show a pattern statistically different from zero is that with DFI; for the other three traits, those 212 

conditioning the DFI when computing RFI, the patterns always lay around zero.  213 

Figure 2 around here 214 

It would be relevant to assess the genetic correlation of overall measurements of daily RFI (oRFI)  and 215 

growth (oDWG)  with other performance traits (Figure 3 and Table 5). 216 

Figure 3 around here 217 

The correlation patterns of oRFI with the other traits (Figure 3 panel B) can be said to be fairly similar 218 

to those observed with the daily measurements of RFI, i.e. constant along the fattening period and only 219 

different from zero with DFI, and also with BF at the latest ages. The patterns for the correlations with 220 

oDWG (Figure 3 panel A), on the contrary, clearly showed a non-constant trend along the fattening 221 

period, from around 150 days onward, the patterns are flat at around 0.90, 0.85 and 0.60 for the 222 

correlations between oDWG, and DFI, BW and BF, respectively. Before this age, linearly increasing 223 
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patterns are observed for the three correlations, starting on 0.32, 0.15 and 0.08 at 110 days of age, for 224 

the genetic correlations with DFI, BW and BF, respectively.    225 

To finish with the description of the genetic correlation patterns, presentation of the correlations along 226 

the fattening period between the performance traits is needed. These traits could be seen as the major 227 

criteria driving any indirect selection procedure aiming to improve the feed efficiency of the 228 

population. Figure 4 (Table 6) shows these patterns for the correlations between DFI and the 229 

performance traits (BW, BF and DWG) as well as the patterns for the genetic correlations between 230 

BW and, BF and DWG; and between BW and BF. Only those correlations involving DWG can be said 231 

to show a non-constant pattern along the fattening period. These patterns are fairly linear for the 232 

correlations between BF and DWG and BW and DWG, changing from 0.08 and 0.15 at 110 days of 233 

age, respectively; to 0.62 and 0.89 for the same parameters at 200 d. The genetic correlation pattern 234 

between DFI and DWG was not linear, from about 140 d onward a high correlation estimate was 235 

obtained (0.85-0.90), before that age the pattern shows a linear trend, starting with an estimate value 236 

of 0.32 at 110 days of age. The other two genetic correlations involving DFI showed relatively flat 237 

patterns, around 0.65 and 0.70 for those between DFI and BF, and DFI and BW, respectively. 238 

Similarly, the genetic correlation between BF and BW had a constant pattern around 0.5 for the whole 239 

fattening period. 240 

Figure 4 around here 241 

4. Discussion 242 

The estimated heritabilities for DFI, BF and DWG are in the range of previous estimates obtained from 243 

the same population based on studies using single-measure traits (Herrera-Cáceres et al., 2020). With 244 

regard to RFI, the only study that reported an heritability estimate for RFI in the current Duroc 245 

population was the work by Sánchez et al. (2017). In this study the estimate was based on a 246 

repeatability model, and the obtained value was around 0.12, relatively close to the estimate we found 247 

in this study for the average RFI along the fattening period (oRFI) (0.07). Other FE definitions, like 248 

for example feed conversion ratio (feed intake / growth) (FCR) were estimated to have a clearly higher 249 
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heritability, around 0.21 (Herrera-Cáceres et al., 2020). We initially tried to estimate parameters for 250 

FCR, and we did it by approximating the ratio using linear index, in the same way as Lin (1980) did. 251 

We finally decided not to formally describe the results from this approximation since some artifacts 252 

on the daily genetic correlation patterns were evidenced. We show them Figure A3 of the Additional 253 

File 1. The correlation estimates change from high negative to high positive values along the fattening 254 

period. We believe this behavior is a consequence of the fact that DWG was obtained as the first 255 

derivative of the BW polynomial function, and this implies two points: i) Constant variance 256 

components for the DWG along the fattening period, ii) Null residual variance for the DWG, the 257 

residual variance for BW was a piecewise constant function; thus, its first derivative will be zero. In 258 

spite of this fitting artifacts, most likely associated with the reduced degree of the used polynomial 259 

functions, when FCR was averaged along the fattening period, oFCR, computed in a similar way as 260 

oRFI, the estimated heritability value was 0.20(0.10), a value close to the estimate reported by Herrera-261 

Cáceres et al., (2020). 262 

The estimated high correlations (as low as 0.7 (Table 3)) between measurements on different days for 263 

BF and BW  (Table 3), jointly with the constant heritability (except for BW) patterns along the 264 

fattening period (Figure 1) are indications of a common genetic control of the traits along the fattening 265 

period. In the case of DFI, and consequently also for RFI, there is, however, a certain degree of genetic 266 

heterogeneity along the fattening period (Table 3), however this heterogeneity seems rather irrelevant 267 

since the heritability of this FE trait is very low. As a consequence of this a certain degree of the genetic 268 

heterogeneity along the fattening period for DFI and BW the genetic correlations between oRFI and 269 

BF seems also to show a non-constant pattern along the fattening period, and something similar 270 

happens with the correlations involving oDWG and the other performance traits: DFI, BW and BF 271 

(Figure 3). In previous studies (Huisman et al., 2002; Coyne et al., 2017) a general result or conclusion, 272 

similar to ours, is that there is a certain degree of variation on the genetic control along the fattening 273 

period for some of the FE-component traits as well as for certain FE definitions.  274 

Our results could be said to be highly dependent on the fact that a polynomial of degree one was 275 

considered in the random regression. This reduced degree imposes the constraint that only quadratic 276 
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changes in the variance components could be evidenced. In other published studies (Cai et al., 2011) 277 

a higher degree was assumed, increasing the flexibility of the functions. We decided to keep the 278 

polynomial function to its minimum degree in order to avoid a number of artifacts that were evidenced 279 

when a higher degree was employed. We assumed that these artifacts were a consequence of the 280 

reduced number of records available for this study, which prevented a good quality for the Markov 281 

chains, i.e. extremely low effective sample sizes and falling to pass convergence diagnosis tests.  282 

In general, the observed patterns for the genetic correlation between the different traits (DWG, BF and 283 

BW) and RFI (Figure 2 and Table 4) make sense according to the definition of this FE trait. RFI was 284 

generated as the residual of a linear regression, at phenotypic level, between DFI and a number of 285 

performance traits (BW, BF and DWG). This definition imposes the constraint of null phenotypic 286 

correlations between RFI and the traits conditioning DFI, but it does not guarantee the genetic 287 

correlations to also be null, nonetheless low values would be expected. In our case, only between BF 288 

and RFI at around 170 days of age the genetic correlation was declared to be statistically different from 289 

zero (Table 4). When the FE trait was averaged along the whole fattening period (oRFI) this positive 290 

genetic correlation between RFI and BF was a bit more evident, being statistically positive from 150 291 

days of age onward. No previous estimates for the correlation between RFI and BF were reported in 292 

the population under study, in other populations (Gilbert et al., 2007; Cai et al., 2008 and Shirali et al., 293 

2018)  when the analyses were based on single measurement traits, in agreement with the expected 294 

null phenotypic correlations also null genetic correlations were estimated between RFI and BF. We 295 

did not find any previous report in the literature on the correlation pattern between RFI and BF along 296 

the fattening obtained using longitudinal models. 297 

In this study, we aimed to assess whether it would be possible to take advantage of any variation in the 298 

genetic control along the fattening period of feed efficiency, performance, and intake traits. The 299 

existence of such variation could allow us to define the traits of interest at ages so that the biological 300 

constraints in the genetic correlation structures that exist between the traits that could be considered in 301 

an index to indirectly improve feed efficiency could be partially alleviated. One example of such 302 

biological constraint is the unfavorable correlation between BF and BW or BF and growth (Herrera-303 
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Cáceres et al., 2020; Sanchez et al., 2017). Our results indicate that although a certain degree of genetic 304 

determinism exists in the control of the traits along the fattening period, it does not seem to be high 305 

enough to take advantage of it. At the latest ages the correlation between BF and BW was estimated 306 

to be around 0.6 (Table 6) while at the lowest ages (at around 120 d) this correlation is still clearly 307 

positive 0.4. Given that this correlation still being positive at low ages, a marginal advantage, probably 308 

not paying off the effort of controlling animals at two ages, could be expected if for example BF is 309 

recorded at the end of the fattening period, while BW would be recorded at early ages. Also note that 310 

the genetic correlation between BW at early ages (120 d) and at the end of the fattening period, is still 311 

relatively high (0.7) (Table 3).  312 

Previous longitudinal studies of FE and performance traits in pigs conclude that the genetic control of 313 

this type of traits, to some extent, varies with the age (Cai et al., 2011; Wetten et al., 2012; Shirali et 314 

al., 2017; Tran et al., 2017; Chaudhary et al., 2019). It has to be clarified that in these studies, 315 

polynomials of higher degree were used, which allows for further flexibility for the genetic parameter 316 

patterns. In this regard, we have been cautious in reducing the degree of the polynomial to its minimum 317 

to omit estimation artifacts associated with our limited data set size. In some of the previously indicated 318 

studies data sets of similar size to ours were used; and in some cases, suspicious patterns of parameters 319 

are reported. In spite of this, the authors, based on these patterns, positively conclude there is a strong 320 

genetic heterogeneity of the traits under study along the fattening period. We, on the contrary, want to 321 

prevent about the difficulty of using random regression models with limited amount of phenotypic 322 

data.  323 

 324 

5. Conclusions 325 

Our initial hypothesis of the performance, intake and feed efficiency traits having a heterogeneous 326 

genetic determinism along the fattening period, at least for the period we have considered, can be 327 

confirmed. Nonetheless, it seems to be difficult to take advantage of this genetic heterogeneity to 328 

improve the responses in a selection process for feed efficiency. On one hand, because of the 329 
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magnitude of such heterogeneity, which is low; and also due to the reduced heritability of the FE trait 330 

we have explored, i.e. longitudinal RFI.  331 
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Tables 414 

Table 1.- Descriptive statistics for the studied traits in three different periods along fattening.  415 

 DFI (kg/d)  BW (kg)  BF (mm) 
Period MEAN SD N  MEAN SD N  MEAN SD N 

110 d - 140 d 2.58 0.63 28,266  66.03 10.47 2,402  10.75 2.57 1,666 
141 d - 170 d 2.96 0.73 37,985  92.49 12.67 2,784  14.98 3.85 1,827 
171 d - 200 d 2.96 0.85 15,081  117.85 14.04 1,581  20.0 4.6 1,486 

DFI: daily feed intake, BW: live body weight, BF: backfat thickness, N: number of records. 416 

 417 

Table 2.- Marginal posterior Mean(SD) of the heritabilities for production and feed efficiency traits 418 
at different ages during the fattening period. 419 

Age 
(d) 

DFI BW BF DWG RFI 

110 0.14(0.04) 0.18(0.05) 0.26(0.04) 0.34(0.09) 0.12(0.04) 
125 0.14(0.04) 0.20(0.07) 0.34(0.05) 0.34(0.09) 0.08(0.02) 
140 0.12(0.03) 0.24(0.08) 0.36(0.05) 0.34(0.09) 0.03(0.01) 
155 0.16(0.04) 0.27(0.09) 0.39(0.06) 0.34(0.09) 0.03(0.01) 
170 0.13(0.03) 0.29(0.10) 0.36(0.05) 0.34(0.09) 0.02(0.01) 
185 0.16(0.04) 0.31(0.10) 0.37(0.06) 0.34(0.09) 0.04(0.01) 
200 0.19(0.04) 0.32(0.10) 0.38(0.06) 0.34(0.09) 0.06(0.02) 

DFI: daily feed intake, BW: live body weight, BF: backfat thickness, DWG: daily weight gain, RFI: 420 
residual feed intake. 421 

 422 

Table 3.- Marginal posterior Mean(SD) of the genetic correlation between each trait at different ages 423 
and that particular trait at 120 days of age. 424 

Age 
(d) 

�(���,������) �(��,�����) �(��,�����) �(���,������) �(���,������) 

110 0.97(0.02)* 0.98(0.01)* 0.98(0.01)* 1.00(0.00)* 0.99(0.01)* 
125 0.99(0.00)* 1.00(0.00)* 1.00(0.00)* 1.00(0.00)* 1.00(0.00)* 
140 0.87(0.05)* 0.95(0.02)* 0.96(0.01)* 1.00(0.00)* 0.91(0.04)* 
155 0.68(0.11)* 0.88(0.05)* 0.92(0.02)* 1.00(0.00)* 0.57(0.15)* 
170 0.50(0.15)* 0.81(0.08)* 0.88(0.03)* 1.00(0.00)* 0.15(0.23) 
185 0.37(0.17)* 0.76(0.10)* 0.84(0.04)* 1.00(0.00)* -0.12(0.23) 
200 0.27(0.18) 0.71(0.11)* 0.82(0.04)* 1.00(0.00)* -0.26(0.23) 

DFI: daily feed intake, BW: live body weight, BF: backfat thickness, DWG: daily weight gain, RFI: 425 
residual feed intake. 426 
  427 
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Table 4.- Marginal posterior Mean(SD) of the genetic correlation between production and feed 428 
efficiency traits at different ages during the fattening period. 429 

Age 
(d) 

�(���,���) �(���,��) �(���,��) �(���,���)

110 0.63(0.15)* -0.14(0.21) 0.14(0.16) -0.12(0.19) 
125 0.47(0.18)* -0.19(0.20) 0.06(0.15) -0.11(0.18) 
140 0.4(0.16)* -0.17(0.18) 0.16(0.14) -0.02(0.17) 
155 0.42(0.14)* -0.10(0.16) 0.21(0.12) 0.09(0.16) 
170 0.51(0.14)* 0.04(0.17) 0.25(0.13)* 0.17(0.17) 
185 0.57(0.14)* 0.09(0.19) 0.22(0.15) 0.20(0.19) 
200 0.60(0.14)* 0.11(0.20) 0.21(0.16) 0.20(0.20) 

DFI: daily feed intake, BW: live body weight, BF: backfat thickness, DWG: daily weight gain, RFI: 430 
residual feed intake. *Probability of the correlation being greater than 0 > 0.95 or < 0.05. 431 
 432 

 433 

Table 5. Marginal posterior Mean(SD) of the genetic correlations between production traits at 434 
different ages and overall RFI.  435 

Age 
(d) 

�(����,���) �(����,�� �(����,��) �(����,��� �(����,���) �(����,��) �(����,��) �(����,���) 

110 0.22(0.19) -0.22(0.16) -0.20(0.14) 0.08(0.16) 0.32(0.20) 0.15(0.22) 0.08(0.15) 1.00(0.00)* 
125 0.33(0.17)* -0.18(0.16) 0.00(0.13) 0.08(0.16) 0.60(0.13)* 0.41(0.19)* 0.31(0.14)* 1.00(0.00)* 
140 0.40(0.14)* -0.14(0.16) 0.13(0.12) 0.08(0.16) 0.82(0.07)* 0.61(0.14)* 0.44(0.13)* 1.00(0.00)* 
155 0.41(0.14)* -0.10(0.16) 0.21(0.12)* 0.08(0.16) 0.92(0.03)* 0.73(0.10)* 0.52(0.11)* 1.00(0.00)* 
170 0.40(0.14)* -0.07(0.16) 0.27(0.11)* 0.08(0.16) 0.93(0.03)* 0.81(0.07)* 0.57(0.10)* 1.00(0.00)* 
185 0.38(0.14)* -0.05(0.16) 0.31(0.11)* 0.08(0.16) 0.91(0.04)* 0.86(0.05)* 0.60(0.10)* 1.00(0.00)* 
200 0.36(0.14)* -0.03(0.16) 0.33(0.11)* 0.08(0.16) 0.88(0.05)* 0.89(0.04)* 0.62(0.09)* 1.00(0.00)* 

DFI: daily feed intake, BW: live body weight, BF: backfat thickness, DWG: daily weight gain, oRFI: 436 
overall residual feed intake. *Probability of the correlation being greater than 0 > 0.95 or < 0.05. 437 

 438 

Table 6. Marginal posterior Mean(SD) of the genetic correlation between production and feed 439 
efficiency traits at different ages during the fattening period. 440 

Age 
(d) 

�(���,��) �(���,��) �(���,���)�(��,���) �(��,��) �(��,���)

110 0.55(0.14)* 0.57(0.17)* 0.32(0.20) 0.08(0.15) 0.44(0.13)* 0.15(0.22) 
125 0.62(0.11)* 0.63(0.15)* 0.60(0.13)* 0.31(0.14)* 0.42(0.14)* 0.41(0.19)* 
140 0.67(0.08)* 0.69(0.11)* 0.82(0.07)* 0.44(0.13)* 0.46(0.13)* 0.61(0.14)* 
155 0.67(0.08)* 0.71(0.10)* 0.92(0.03)* 0.52(0.11)* 0.50(0.12)* 0.73(0.10)* 
170 0.64(0.08)* 0.72(0.09)* 0.93(0.03)* 0.57(0.10)* 0.54(0.11)* 0.81(0.07)* 
185 0.61(0.09)* 0.71(0.10)* 0.91(0.04)* 0.60(0.10)* 0.57(0.10)* 0.86(0.05)* 
200 0.59(0.10)* 0.70(0.10)* 0.88(0.05)* 0.62(0.09)* 0.59(0.10)* 0.89(0.04)* 

DFI: daily feed intake, BW: live body weight, BF: backfat thickness, DWG: daily weight gain, RFI: 441 
residual feed intake. *Probability of the correlation being greater than 0 > 0.95 or < 0.05. 442 
 443 

 444 

  445 
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Figures 446 

 447 
Figure 1 Heritability patterns along the fattening period for daily feed intake (DFI), live body weight 448 
(BW), backfat thickness (BF) and daily weigh gain (DWG) and residual feed intake (RFI). The solid 449 
lines represent posterior means, and the colored transparent areas represent 95HPD regions. 450 
 451 

 452 

Figure 2 Pattern along the fattening period of the estimated genetic correlations between production 453 
(DFI: daily feed intake, BW: live body weight, BF: backfat thickness and DWG: daily weight gain) 454 
and feed efficiency trait (RFI: residual feed intake). The solid lines represent posterior means, and the 455 
colored transparent areas represent 95HPD regions. 456 

 457 
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Figure 3 Pattern along the fattening period of the genetic correlations between daily traits (DFI: feed 458 
intake, BW: live body weight, BF: backfat thickness and DWG: weight gain) and average along the 459 
fattening period of residual feed intake (oRFI) and daily weight gain (oDWG). The solid lines represent 460 
posterior means and the colored transparent areas represent 95HPD regions 461 
 462 

 463 

  

Figure 4 Pattern along the fattening period of the genetic correlations between production traits (DFI: 464 
daily feed intake, BW: live body weight, BF: backfat thickness and DWG: daily weight gain). The 465 
solid lines represent posterior means and the colored transparent areas represent 95HPD regions 466 




