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Identification of ciguatoxins in 
a shark involved in a fatal food 
poisoning in the Indian Ocean
Jorge Diogène1, Laia Reverté1, Maria Rambla-Alegre1, Vanessa del Río1, Pablo de la Iglesia1, 
Mònica Camp s1, Oscar Palacios2, Cintia Flores2, Josep Caixach2, Christian Ralijaona3, Iony 
Razanajatovo4, Agathe Pirog5, Hélène Magalon5, Nathalie Arnich6 & Jean Turquet7

Severe food poisoning events after the consumption of sharks have been reported since the 1940s; 
however, there has been no clear understanding of their cause. Herein, we report for the first time the 
presence of ciguatoxins (CTXs) in sharks. The identification by mass spectrometry of CTXs, including two 
new analogues, in a bull shark (Carcharhinus leucas) that was consumed by humans, causing the poisoning 
and death of 11 people in Madagascar in 2013 is described. Typical neurotoxic ciguatera symptoms were 
recorded in patients, and toxicological assays on extracts of the shark demonstrated CTX-like activity. 
These results confirm this episode as a ciguatera poisoning event and expand the range of pelagic fish 
species that are involved in ciguatera in the Indian Ocean. Additionally, gambieric acid D, a molecule 
originally described in CTX-producing microalgae, was identified for the first time in fish. This finding can 
contribute to a better understanding of trophic relations within food webs. The present work confirms that 
consumption of sharks from the Indian Ocean should be considered a ciguatera risk, and actions should be 
taken to evaluate its magnitude and risk in order to manage shark fisheries.

Ciguatera is a well-known food poisoning that occurs when fish containing ciguatoxins (CTXs) are consumed. 
These potent neurotoxins are produced by microalgae of the genus Gambierdiscus1–3 and Fukuyoa4, 5. Ciguatoxins 
produced by these microalgae may be transferred along the food web, eventually reaching carnivorous fish like 
barracuda or amberjack. Ciguatera is the main cause of seafood poisoning due to the consumption of fish, and 
estimations point out around 50,000–500,000 people are affected by ciguatera each year6, although these should 
be re-evaluated for a better assessment of the present impact of ciguatera.

Numerous incidences of human poisoning after the consumption of several species of shark have been 
reported since the 1940s. These cases have been proposed to be ciguatera events according to the toxicity in 
animal assays or due to the symptoms in patients7. However, the presence of CTXs has never been confirmed in 
sharks. In Madagascar, a first possible event of ciguatera was described in 1993, after the consumption of shark in 
Manakara (south-east coast) and was noted for its unprecedented severity. Several hundred people (between 200 
and 500 depending on the different authors) were poisoned due to the consumption of a shark, either a bull shark 
(Carcharhinus leucas) or a pigeye shark (C. amboinensis), two species that are difficult to distinguish. This event 
resulted in the death of between 60 and 98 people, depending on the different authors, a fatality rate of 20 to 30%8, 9.  
In this particular event, patients presented almost exclusively neurological symptoms. Boisier et al. identified two 
toxic extracts from the liver of the shark, which were proposed to be the causative agent of the poisoning, and 
tentatively named the new toxins as carchatoxin-A and carchatoxin-B9. However, the toxicity levels of the shark 
flesh did not match that of the liver extracts, and thus, toxicity remained unexplained. No further information 
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regarding the chemical behaviour, structure, toxicity or mechanism of action of carchatoxins has been published 
since then. Another event, occurring between November 14 and 19, 2013 at Fenerive-Est in Madagascar, caused 
the poisoning of 97 people that presented ciguatera symptoms after eating the flesh, the liver or the head of a bull 
shark, 11 of whom died. Our preliminary laboratory results of this particular event were communicated to the 
French “Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail” (ANSES) in 
order to quickly manage the potential risk of food poisoning by shark consumption in the Madagascar area10. 
Further data regarding the epidemiology of this event, described that the major symptoms were neurological and 
digestive11.

We report herein the confirmation of ciguatera, caused by consumption of this bull shark (C. leucas) in 
Madagascar in November 2013. This was based on the evidence of symptoms in patients and in mice, cellular 
toxicity, and unequivocal identification of CTXs by liquid chromatography coupled to high resolution mass spec-
trometry (LC-ESI-HRMS). To the best of our knowledge, this is the first identification of CTXs in sharks.

Results
Poisoning event in Madagascar. In November 2013, an outbreak of fish poisoning following the con-
sumption of shark was reported in the district of Fenoarivo Atsinanana (Fenerive-Est, Madagascar). According 
to the information transmitted to the ANSES by the “French Institute for Public Health Surveillance,” dated 22 
April 2014, 124 people, 11 of whom died, were poisoned after consuming the flesh, liver, head and part of the 
viscera of a shark11. The patients developed symptoms between 2 and 12 h following ingestion of their meal, and 
the predominant neurological signs were paraesthesia of the extremities, dysesthesia, and reversing sensitivity of 
hot and cold. These symptoms were accompanied by headache, dizziness, and arthralgia. The digestive symptoms 
were moderate and inconsistent. The clinical profile was similar to that of patients that had previously been poi-
soned after consumption of shark in Madagascar9. A detailed epidemiological report is presented by Rabenjarison 
et al.11, and additional investigations conducted by agents of the “Institut Halieutique et des Sciences Marines” 
(Tulear, Madagascar) concluded that the shark in question was a female of about 1.5 m in length. Samples of the 
fish implicated in the episode, and used in our study, consisted of salted stomach, three dried fins, and partially 
cooked flesh. The genetic analyses that we performed using 22 microsatellite loci on the five samples demon-
strated that they all belong to the species C. leucas and surely to the same individual (identical multilocus geno-
types; Supplementary Table S1 and Fig. 1).

Toxicity evaluation of shark samples by mouse bioassay (MBA). The MBA performed on the flesh 
samples showed toxicity, although quantification was not possible due to the limited amount of samples. The 
single dose injected corresponds to an amount of 50 g equiv. flesh/mouse. The symptoms observed in the mice 
included: paralysis of limbs, dyspnoea, convulsions, mild diarrhea, and mortality from respiratory failure between 
3 and 4 hours after injection of the extract. Toxicity and symptoms in mice were similar to those previously 
described in the study on shark toxins in Madagascar9. The MBA performed on the stomach sample showed a 
very high toxicity. Even at low doses, when mortalities were observed these were always rapid (survival time less 
than 1.5 h) and otherwise the mice recovered. The symptoms observed were dominated by neurological problems, 
including difficulty with breathing, followed by a severe respiratory arrest. In some mice, hyper-salivation was 
also observed. The lowest dose tested that resulted in the death of mice was estimated at 72 mg equiv. stomach per 
mouse of 20–22 g. Fin samples were not tested by MBA.

Evaluation of ciguatoxin-like activity by Neuro-2a cell-based assay (CBA). Neuro-2a cells exposed 
to Pacific ciguatoxin P-CTX-1 (CTX1B) standard presented the expected dose-response curve with a regression 
factor (R2) of 0.996. The concentration of P-CTX-1 that caused a 50% cell mortality (IC50) was 19.9 pg/mL. The 
limit of detection (LOD), defined as the concentration of P-CTX-1 that causes a 20% of cell mortality (IC20), was 
8.4 pg/mL (Supplementary Figure S2). Considering a maximum exposure concentration of 200 mg/mL for flesh, 
100 mg/mL for stomach and fins 1 and 3, and 50 mg/mL for fin 2 (Supplementary Figure S3), the effective LODs 
(eLODs) for P-CTX-1 in shark samples were 0.04 µg P-CTX-1 equiv./kg for flesh, 0.08 µg P-CTX-1 equiv./kg for 

Figure 1. Toxicity of stomach fractions by cell-based assay (CBA). Toxicity was estimated according to the cell 
viability obtained after exposing cells to 0.27 µL of each fraction/mL. Error bars represent standard deviation 
(SD) values for 3 replicates (n = 3).
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stomach and fins 1 and 3, and 0.17 µg P-CTX-1 equiv./kg for fin 2. Flesh, stomach and fins 1 to 3 crude extracts of 
C. leucas contained 0.06, 92.78, 0.12, 0.79 and 0.17 µg P-CTX-1 equiv./kg matrix, respectively (Table 1).

With the aim of separating the different compounds to better identify the toxin profile of the most toxic 
sample, the stomach extract was fractionated by high-performance liquid chromatography (HPLC). In order 
to identify the distribution of the toxin within the 28 fractions recovered, cells were first exposed to 2.17 µL 
of each fraction/mL. CTX-like activity was observed in fractions F8 to F22. Fractions F8 and F17 to F22 fell 
within the working range (IC20-IC80), and CTX-like content was able to be quantified. The use of lower fraction 
volume (0.27 µL of each fraction/mL) was required to quantify fractions F13 and F14 (Fig. 1). Further dilution 
was required to quantify fractions F9 to F12. Distribution of ciguatoxins after fractionation of the stomach crude 
extract is shown in Table 2.

Confirmation of ciguatoxins (CTXs) by liquid chromatography coupled to high resolution mass 
spectrometry (LC-ESI-HRMS). A liquid chromatography electrospray ionization high-resolution mass 
spectrometry (LC-ESI-HRMS) method was developed for the analysis of CTXs in extracts of C. leucas, based on 
previous LC-MS/MS methods3, 12, 13. The spectra of I-CTXs were dominated by [M+H]+, [M+NH4]+, [M+Na]+, 
[M+H-H2O]+, [M+H-2H2O]+ in accordance with Hamilton et al.13. The adduct ions giving higher signals, spe-
cifically [M+NH4]+ and [M+Na]+, were chosen for confirmation and quantification purposes.

Crude extracts of flesh, stomach and fin 2 were analyzed by LC-ESI-HRMS. The presence of CTX analogues 
was not observed in the flesh nor in the fin 2 crude extracts. A possible explanation is that the LOD attained by 
CBA (0.04 µg P-CTX-1 equiv./kg flesh tissue and 0.17 µg P-CTX-1 equiv./kg fin 2 tissue) is lower than the LOD 
attained by LC-ESI-HRMS (0.5 µg P-CTX-1 equiv./kg tissue). In the stomach crude extract, the CTX analogues 
I-CTX-1&2 and I-CTX-3&4 were detected and quantified (Table 1).

All analogues were confirmed using their theoretical accurate mass (m/z), measured m/z, and mass accuracy 
(ppm): i) I-CTX-1&2 ([C62H92O19NH4]+ and [C62H92O19Na]+): 1158.6571, 1158.6606, <5.49 ppm and 1163.6125, 
1163.6148, <4.93 ppm, respectively; and ii) I-CTX-3&4 ([C62H92O20NH4]+ and [C62H92O20Na]+): 1174.6540, 

Crude 
extract

MBA (µg 
P-CTX-1 
equiv./kg 
tissue)

CBA (µg 
P-CTX-1 
equiv./kg 
tissue)

LC-ESI-HRMS (µg P-CTX-1 equiv./kg tissue)

I-CTX-1&2 I-CTX-3&4 Σ I-CTXs

flesh n.q. 0.06 n.d. n.d. n.d.

stomach 83 92.78 6.54 9.74 16.28

fin 1 — 0.12 — — —

fin 2 — 0.79 n.d. n.d. n.d.

fin 3 — 0.17 — — —

Table 1. Concentration of P-CTX-1 equiv./kg tissue in crude stomach, flesh and fin extracts as determined 
by mouse bio-assay (MBA), Neuro-2a cell-based assay (CBA) and liquid chromatography coupled to high 
resolution mass spectrometry (LC-ESI-HRMS).

Fractions

CBA (% 
P-CTX-1 
equiv.)

LC-ESI-HRMS (% P-CTX-1 equiv.)

I-CTX-1&2 I-CTX-3&4
Σ 
I-CTXs

F8 0.23 n.d. n.d. n.d.

F9 5.15 n.d. 5.67 5.67

F10 5.80 n.d. 29.66 29.66

F11 9.37 13.87 15.75 29.62

F12 8.05 16.12 3.86 19.98

F13 1.79 n.d. n.d. n.d.

F14 1.44 n.d. n.d. n.d.

F15 2.30 n.d. n.d. n.d.

F16 0.62 n.d. n.d. n.d.

F17 0.29 n.d. n.d. n.d.

F18 0.27 n.d. n.d. n.d.

F19 0.33 n.d. n.d. n.d.

F20 0.23 n.d. n.d. n.d.

F21 0.19 n.d. n.d. n.d.

F22 0.12 n.d. n.d. n.d.

Table 2. Distribution of ciguatoxins (CTXs) after fractionation of the stomach crude extract. Percentages of 
P-CTX-1 equiv. recovered in each fraction in relation to the P-CTX-1 equiv. injected, estimated by the Neuro-2a 
cell-based assay (CBA) and liquid chromatography coupled to high resolution mass spectrometry (LC-ESI-
HRMS).
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1174.6565, <6.31 ppm and 1179.6084, 1179.6146, <5.89 ppm, respectively. From a qualitative point of view, 
both LC-ESI-HRMS and CBA showed the presence of P-CTX-1 equiv. in the stomach crude extract. However, 
lower contents of P-CTX-1 equiv. were estimated by LC-ESI-HRMS in relation to the CBA. This difference in the 
quantification could be attributed to the different principles of the techniques: while LC-ESI-HRMS is based on 
structural identification of specific CTX analogues, and may neglect some non-described CTX analogues, CBA 
measures a composite toxicity, which is a global response indicative of the toxic effect of several CTX analogues 
on cells.

Having identified the toxic stomach fractions using the CBA, fractions F8 to F22 were analyzed by 
LC-ESI-HRMS for toxin identification. Fractionation of the stomach crude extract reduced matrix interferences 
and confirmed the presence of I-CTX-1&2 and/or I-CTX-3&4 in fractions F9 to F12, the most toxic ones by CBA 
(Table 2). Extracted ion chromatograms for I-CTX-1&2 and I-CTX-3&4 found in fraction F12 from stomach are 
shown in Fig. 2a and d, respectively. Full HRMS exact mass spectra of I-CTX-1&2 and I-CTX-3&4 (Fig. 2b and e, 
respectively) confirmed the presence of these toxins. The isotopic pattern of each signal was taken into considera-
tion in assigning their molecular formula. In addition, these toxins showed a profile similar to P-CTX-1 according 
to [M+NH4]+ and [M+Na]+. As for the analysis of crude extracts, the percentages of P-CTX-1 equiv. in fractions 
F9 to F12 determined by LC-ESI-HRMS were higher than those obtained by CBA. Nevertheless, both techniques 
concluded that fractions F9 to F12 contained the highest CTX content among all fractions.

Two new CTX analogues (I-CTX-5 and I-CTX-6) were detected by LC-ESI-HRMS (Fig. 2c and f). The identi-
fication of these new CTX analogues related to I-CTXs in the stomach crude extract and fractions was given using 
the restrictive criteria to propose elemental formulae. Ion assignment indicated that the new CTX analogues 
had nearly the same molecular formula as I-CTX-1&2 and I-CTX-3&4 with only 2H less, which corresponds to 
the formation of a double bond. The ring double bond equivalents (RDBEs) for both unknown compounds was 
16.5, which corresponds to the 15.5 RDBE value from CTX analogues (I-CTX-1&2 and I-CTX3&4). Analogues 
were confirmed according to their theoretical accurate m/z, measured m/z, and mass accuracy (ppm): i) I-CTX-5 
([C62H90O19NH4]+ and [C62H90O19Na]+): 1156.6414, 1156.6479, 5.57 ppm and 1161.5968, 1161.6030, 5.29 ppm, 
respectively; and ii) I-CTX-6 ([C62H90O20NH4]+ and [C62H90O20Na]+): 1172.6496, 1172.6381, −1.44 ppm and 
1177.5918, 1177.5953, 3.03 ppm in fraction F12 from stomach, respectively. Full HRMS exact mass spectra of 
both new I-CTXs in Fig. 2c and f confirm the presence of these toxins.

Figure 2. Evidence for the presence of of ciguatoxins (CTXs) and gambieric acid D (GA D) in shark tissues. 
(a) Extracted ion chromatogram of I-CTX-1&2 [M+Na]+ at 1163.6125 and HRMS exact mass spectra of (b) 
I-CTX-1&2 [M+Na]+ at 1163.6125 and (c) I-CTX-5 (C62H90O19) [M+Na]+ at 1161.6070, in fraction F12 
from stomach; (d) extracted ion chromatogram of I-CTX-3&4 ([M+Na]+ at 1179.6084 and HRMS exact mass 
spectra of (e) I-CTX-3&4 [M+Na]+ at 1179.6084 and (f) I-CTX-6 (C62H90O20) [M+Na]+ at 1177.5910, in 
stomach crude; (g) extracted ion chromatogram of GA D [M+NH4]+ at 1216.7354 and (h) HRMS exact mass 
spectra of GA D [M+NH4]+ at 1216.7354, in flesh crude extract, respectively.
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Identification of gambieric acid D (GA D) by liquid chromatography coupled to high resolution 
mass spectrometry (LC-ESI-HRMS). Gambieric acid D (C66H102O19) (GA D), which is also produced 
by Gambierdiscus spp., was identified in the flesh crude extract of the shark using the theoretical accurate m/z, 
measured m/z, and mass accuracy (ppm) of [C66H102O19NH4]+: 1216.7354, 1216.7304, −4.02 ppm at 8.14 min, 
respectively. Quantification by LC-ESI-HRMS was not carried out due to the lack of GA D standard solutions. 
Extracted ion chromatograms (Fig. 2g) and HRMS exact mass spectra (Fig. 2h) confirm the presence of GA D by 
the m/z of most abundant ion peaks [M+NH4]+. No GA D was identified in the stomach or in the fins.

Discussion
The methodology presented in this paper, which combines a multi-disciplinary approach focused on epidemiol-
ogy, toxicology and instrumental analysis, has proved to be effective in the identification of CTXs in seafood and 
contributes to a better characterization of the present incidence of ciguatera.

This is the first evidence of the presence of CTXs in sharks. The identification of CTXs in the shark responsi-
ble for a food poisoning event in Madagascar presented herein, along with additional observations, confirm the 
episode as a ciguatera event and the suspected implication of sharks in ciguatera7. The evidences that support this 
confirmation are: i) the symptoms observed in patients matched those of ciguatera, ii) injection of flesh and stom-
ach crude extracts to mice resulted in symptoms characteristic of CTXs, which were comparable to those reported 
for I-CTX in the bony fish Lutjanus sebae from the Indian Ocean13, iii) neuroblastoma cells exposed to flesh, 
stomach and fin crude extracts showed the characteristic toxicity of CTXs through activation of voltage-gated 
sodium channels, and iv) LC-ESI-HRMS provided the identification of I-CTX- 1&2 and I-CTX-3&4 in the stom-
ach extracts. The stomach was extremely toxic with an estimation of 92.78 µg P-CTX-1 equiv./kg by cell-based 
assay (CBA), a concentration approximately 10,000 times the guidance level concentration of P-CTX-1 causing 
ciguatera in humans, established at 0.01 µg P-CTX-1/kg by the FDA14, and considered by EFSA15 as the level 
expected not to exert effects in sensitive individuals. The estimation of the stomach levels by LC-ESI-HRMS was 
lower than determined by CBA, 16.28 P-CTX-1 equiv./kg; however, this level is well above the FDA guidance 
level. Flesh and fins presented toxicity with an estimation by CBA of 0.06 µg P-CTX-1 equiv./kg in the flesh and 
0.12, 0.79 and 0.17 µg P-CTX-1 equiv./kg in fins 1 to 3, respectively, which are also above the FDA guidance level. 
Identifying CTXs in viscera is significant, since local food habits from the Indian Ocean include eating liver and 
viscera11, some of which are dried and salted. Since the liver of the shark was not available, the possible presence 
of carchatoxins previously described in other shark poisoning events16 could not be studied.

Currently, only four I-CTX analogues (I-CTX-1&2 and I-CTX-3&4) have been described in the literature13. 
As for the already known CTXs, I-CTX-1&2 and I-CTX -3&4, our results obtained in the stomach of shark 
revealed higher amount of I-CTX-3&4 in relation to I-CTX-1&2 (60% vs 40% of the total amount of I-CTXs esti-
mated by LC-ESI-HRMS). Contrarily, in that previous study on Indian CTXs in one fish (Lutjanus sebae), a lower 
amount of I-CTX-3&4 in relation to I-CTX-1&2 was described13. This difference may be explained by the tissue 
evaluated, since in their work the whole fish was analysed13. Additionally, Hamilton and collaborators postulated 
that I-CTXs-1&2 might originate from dinoflagellates and that I-CTX-3&4 would be metabolites produced in 
fish13. Since sharks are higher in the trophic webs than L. sebae, this may explain the higher amounts of I-CTX3&4 
in relation to I-CTX-1&2 obtained in shark stomach. Herein, two new I-CTX analogues have been identified by 
LC-ESI-HRMS in the stomach extract and fractions, I-CTX-5 showing 2H less than I-CTX-1&2 and I-CTX-6 
showing 2H less than I-CTX-3&4, which corresponds to the formation of a double bond. This result widens the 
number of CTXs analogues possibly present in nature3, 12, 13 and this will impact our understanding of ciguatera. 
First, the identification of new CTX analogues may indicate that the metabolism of CTXs may be more complex 
than previously foreseen. Second, these new CTX analogues possibly present in seafood will need to be taken into 
account for a better evaluation of ciguatera risks.

Gambieric acid D (GA D)17 was identified in shark flesh. To the best of our knowledge, this work is the first 
report of GA in any organism other than Gambierdiscus spp.16. The identification of GA D in the flesh of the shark 
evidences, additionally to the presence of CTXs, the link between Gambierdiscus spp. and this particular food 
poisoning event. Identifying GA D in sharks that, as carnivorous pelagic fish are situated at the highest levels of 
the marine food webs, demonstrates how stable these molecules may be throughout their transfer and metabolic 
transformations along the food webs. The identification of molecules produced by microorganisms in animals 
situated at higher trophic levels, such as GA D would constitute, as for the analysis of fatty acids or stable iso-
topes, a good strategy to understand trophic relations in the ecosystems. Gambieric acid A has demonstrated no 
toxicity in mice, while a mixture of GA C and GA D was moderately toxic to mouse lymphoma cells L5178Y18, 19. 
Additionally, GA A has been demonstrated to bind to the voltage gated sodium channels in synaptosomes isolated 
from rat brains20 in the same manner as CTXs, but with much less affinity to these than CTXs, possibly explaining 
its low toxicity. To better understand the potential harmful effects of GAs, and more specifically of GA D, their 
toxicity should be further characterized; however, at this moment reference material for GAs is not commercially 
available. Urgent need exists for the availability of certified standards for CTXs and GAs.

About 100 million sharks are caught each year world-wide21, and the global shark fin trade is estimated to be 
worth US $ 400–500 million a year22. The identification of CTXs in shark from the Indian Ocean may favour the 
re-consideration of local food safety measures that could affect the shark fisheries industry, which is of special 
relevance in areas such Madagascar22. The present work confirms that shark consumption, in this example, a bull 
shark (C. leucas), from the Indian Ocean should be considered a ciguatera risk, and actions should be taken to 
evaluate its magnitude and risk in order to manage shark fisheries. As for the numerous suspicious cases of cigu-
atera involving sharks7, it may be postulated that sharks with CTXs will not be restricted to the species C. leucas 
and to the Indian Ocean. Consequently, other species of shark and other oceans should also be considered for 
ciguatera evaluation, especially to account for the migration of sharks and current changes in the geographical 
distribution of sharks due to fishing pressure and global warming23, 24.
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Methods
Samples. Shark samples were collected and analyzed in the framework of a research and development 
agreement funded by ANSES. Five samples were recovered by the health authorities of Madagascar “Agence de 
Contrôle Sanitaire et de la Qualité des Denrées Alimentaires de Madagascar” (ACSQDA) and were transferred to 
the laboratory by the WHO and the “Pasteur Institute of Madagascar”. The salted stomach, three dried fins and 
partially cooked flesh samples were stored at −25 °C until extraction. Samples of flesh and stomach were crushed 
and homogenized before starting the analyses. Until extraction, they were stored at −25 °C.

Shark species identification through microsatellite genotyping and Dloop sequencing. The 
five samples (flesh, stomach and fins 1 to 3) from elasmobranch tissues, suspected to be from bull shark (C. leu-
cas), were used for identification. Total genomic DNA was extracted using Qiagen DNeasy Blood & Tissue kit 
(Qiagen, Hilden, Germany). The mitochondrial control region (D-loop; 832 bp) was also sequenced using prim-
ers designed previously25, but failed to amplify due to DNA degradation before collection. Therefore, genotyping 
was performed using a total of 22 microsatellite loci [20 loci developed for C. leucas26, one locus (Cli106) for C. 
Limbatus27 and one locus (Gc01) for Galeocerdo cuvier28]. All amplifications were performed as described in the 
literature26. Then, identical multi-locus genotypes (MLGs) were identified using the software GenClone v. 2.029 
and, using the software STRUCTURE v. 2.3.130, assignment tests were performed together with MLGs obtained 
from other carcharhinid shark species (C. leucas, C. obscurus and C. plumbeus) that are known to amplify with 
the same loci.

Toxin standards. Pacific type 1 CTX (P-CTX-1 or P-CTX-1), P-CTX-2 and P-CTX-3 standard solutions 
were provided by Pr. Richard J. Lewis (The Queensland University, Australia). P-CTX-1 standard was used for 
CBA and LC-ESI-HRMS analysis. P-CTX-2, P-CTX-3 standards were used only for LC-ESI-HRMS analysis.

Flesh, stomach and fins extraction. Samples were extracted and purified according to the protocol 
described in the literature31 with minor modifications provided by ANSES. In brief, 10 g ± 0.1 g of flesh, stomach 
or fins homogenates were placed in 50-mL tubes. Samples were extracted in 20 mL of acetone and homogenized 
with an Ultraturrax blender. Samples were heated in the sealed tube at 70 °C for 10 min in a water bath. The super-
natant was recovered by centrifugation at 3,000 g for 10 min at 4 °C and filtered using 0.45-µm nylon filters. The 
sample pellets were re-extracted with acetone and supernatants were pooled and evaporated until dry. Liquid/
liquid partition was then performed twice in the tubes with 20 mL of water/diethyl ether (DEE) (1:4, v-v). The 
DEE upper phase was recovered and pooled with the second DEE partition. Both DEE phases were evaporated 
until dry. The dried extracts were then dissolved in 4 mL of n-hexane and 2 mL of methanol/water (4:1, v-v). The 
hexane upper phase was removed. This liquid/liquid partition was repeated three times and the methanol phases 
were pooled and evaporated until dry. Finally, the resulting residues were re-dissolved in 4 mL of HPLC-grade 
methanol and preserved at −20 °C until analyzed.

Stomach extract fractionation. A total of 2,750 µL of stomach extract were evaporated until dry using 
N2(g), and re-dissolved in 1,000 µL of HPLC-grade methanol. The analytical fractionation of this extract was per-
formed as described before for the chromatographic separation of CTXs3. Once the chromatographic run started, 
fractions were collected every 30 seconds (n = 28). After fractionation, the volume of each tube was evaporated 
to dryness, re-dissolved in 500 µL of HPLC-grade methanol and preserved at −20 °C until analyzed. Stomach 
fractions were analyzed by LC-ESI-HRMS and CBA, but not by MBA.

Mouse bioassay. The protocol used at HYDROREUNION was validated beforehand by the ethics commit-
tee (Protocol agreement n° EU0450 - GIP CYROI - APAFiS - Autor. APAFiS #2641-2015110916009490) and was 
in accordance with the regulations in force. This protocol is based on a standard method developed by ANSES 
(CATNAT-10). The extracts of shark were solubilized in Tween-60 1–5% saline solution, and then injected into 
three mice (male, OF1; 20 ± 2 g) by intraperitoneal (i.p.) route. The mice were observed continuously during 
the first 2 h, and then monitored regularly up to 24 h after injection. The interpretation of the results was based 
on the symptoms observed and the time-to-death of the mice. The typical symptoms of the presence of CTXs 
include profuse diarrhea, piloerection, respiratory disorders, dyspnoea and, when using male mice, transient 
pre-erectional cyanosis of the penis (which can become priapism). With the Indian Ocean toxins, this last symp-
tom is observed only very rarely. It therefore does not appear in the classical description for this region. The 
death of 1 or 2 mice within 24 h was deemed a positive result indicating the presence of CTXs (sample therefore 
non-edible).

Assessment of ciguatoxin-like activity by Neuro-2a cell-based assay. Neuroblastoma mice 
(Neuro-2a cell line: CCL-131) were purchased from the American Type Culture Collection (ATCC) (LGC 
standards S.L.U., Barcelona, Spain). The presence of CTX-like activity in shark tissues extracts was evaluated on 
Neuro-2a cells according to the method based on the use of ouabain and veratridine published by Caillaud and 
co-workers32. Briefly, cells were exposed to the P-CTX-1 standard and to shark extracts for 24 h, and the CTX-like 
activity was measured in the presence of ouabain and veratridine with the MTT colorimetric assay33. Previous 
to the analysis of flesh, stomach and fins crude extracts or stomach fractions by CBA, methanol was removed 
from the extracts/fractions and P-CTX-1 standard solution by evaporation under N2(g) and re-dissolved in RPMI 
medium. CTX-like activity was estimated with respect to P-CTX-1.

Liquid chromatography coupled to high resolution mass spectrometry (LC-ESI-HRMS). An 
Orbitrap-Exactive HCD (Thermo Fisher Scientific, Bremen, Germany) mass spectrometer equipped with heated 
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electrospray source (H-ESI II), a Surveyor MS Plus pump and an Accela Open AS auto-sampler kept isothermal 
at 15 °C (Thermo Fisher Scientific, San Jose, California) were used for the analysis by LC-ESI-HRMS.

The chromatographic separation was performed on a reversed-phase Hypersil Gold C18 (50 mm × 2.1 mm, 
1.9 µm) (Thermo Fisher, Scientific, Bremen, Germany) at a flow rate of 250 µL/min. Mobile phase A was water and 
B was acetonitrile/water (95:5), both containing 2 mM ammonium formate and 0.1% formic acid. The gradient 
elution program for the analysis was: 30% B 1 min, 30–40% B 2 min, 40–50% B 1 min, 50–90% B 5 min, 90% B 
3 min and return to initial conditions for re-equilibrate (11 min 30% B). A 5-µL injection volume was used. The 
total duration of the method was 25 min.

The analyses were carried out in positive electrospray ionization (ESI+) mode, and the instrument was cal-
ibrated daily. P-CTX-1 was used to optimize the source, transmission and HRMS conditions in positive mode. 
The final parameters were: spray voltage of 4.0 kV, capillary temperature of 275 °C, heater temperature of 300 °C, 
sheath gas flow rate of 35 psi and auxiliary gas flow rate of 10 (arbitrary units). In addition, capillary voltage 
of 47.5 V, tube lens voltage of 186 V and skimmer voltage of 18 V were used. Nitrogen (purity > 99.999%) was 
employed as sheath gas, auxiliary gas and collision gas. The mass range was m/z 400–1,500 in full scan acquisition 
mode. The resolution was 50,000 (m/z 200, FWHM) at a scan rate 2 Hz, the automatic gain control (AGC) was 
set as “balanced” (1e6) with a maximum injection time of 250 ms. The data was processed with Xcalibur 2.2 SP1 
software (Thermo Fisher Scientific, Bremen, Germany).

Automatic identification/quantification were performed. The peaks were extracted from the chromatogram 
using the exact mass of both [M+NH4]+ and [M+Na]+ diagnostic ions, the mass accuracy (±10 ppm extraction 
window), and the retention time window. In addition to HRMS and accuracy parameters for identification, in the 
present study, to be confident of the identification and the proposed elemental formulae, the following restrictive 
criteria were applied: elements considered were restricted in accordance with CTXs molecular formulae and 
adduct signals [C 55 to 70, H 64 to 110, O 11 to 25, N 0 to 1, and cations (Na) 0 to 1]; the isotopic pattern was 
matched and the charge, the ring double bond equivalents (RDBEs) and nitrogen rule were taken into account. 
Additionally, the monoisotopic pattern (M+1 ion) of these signals was used to assist in the further confirmation 
of the toxin’s identity. Therefore, in total four diagnostic signals were used for toxin identification. The relative ion 
intensities between [M+NH4]+, [M+Na]+ and their M+1 ions were calculated and matched taking into account 
a tolerance according to the EU Decision 2002/657/EC. The toxins in study are characterised by a vast amount of 
carbon atoms, leading to relative abundances of the 13C isotopic ion higher than 65%. This high sensitivity of M+1 
ion render these signals a high identification potential. The combination of high resolution, AMM and restrictive 
criteria was crucial for identification of both targeted and unknown compounds, as well as precise quantification 
of analytes. An external standard calibration was carried out from 12.5 to 100 ng/mL using P-CTX-1 and showed 
good linearity (R2 = 0.996), with the LOD being 1.25 ng/mL. Due to the lack of proper analytical standards for 
all CTX congeners, in order to calculate concentrations of CTX analogues it was assumed that related analogues 
would give a similar response to that obtained with the P-CTX-1 standard.
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