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Abstract: Aquaculture supplies more than 50% of the total fish consumed by the world population.
It is considered by FAO authorities that it will be the main source of fishery products by 2030. These
positive data are contradicted by the fact that aquaculture relies too much on fish oil and fish meal as
essential ingredients for food, which exerts significant pressure on marine ecosystems. The present
study was planned to look for alternative ingredients in aquafeeds and three different ingredients
were evaluated for the first time in juveniles of rainbow trout: (1) House cricket, Acheta domesticus,
meal (DI) as a quality protein source; (2) a mixture of four marine microalgae species (DM), as an
important source of protein and lipids; (3) protein and lipid fraction recovered from cooking water
from canned tuna manufacturing processes (DP&L); and (4) a mix of the three ingredients (DMIX). All
the feeds assayed were compared with a commercial feed (DC). Results showed that the formulated
alternative feeds had different effects on the growth of the fish. DI and DP&L have a similar growth
performance to the control, while the fish fed with DM and the DMix have a slightly lower growth
(p < 0.05). No significant differences were observed in terms of FCR (Feed Conversion Ratio) and
PER (Protein Efficiency Ratio) (p < 0.05). Fish muscle composition did not show any differences in
moisture, protein, lipids and carbohydrates content. Only a significant difference was detected in ash
and in saturated fatty acid (SFA) content (p < 0.05). The hepatosomatic index (HSI) was significantly
reduced in DI compared to that observed for the DC (p < 0.05), whereas the viscerosomatic index (VSI)
was significantly higher in DM. The nutritional value of the rainbow trout muscle at the end of the
study shows that DM fed fish showed the highest PUFA/SFA ratio and the lowest atherogenic index
(AI), whereas DMIX showed the lowest PUFA/SFA and the highest n-3/n-6 and AI. No differences
were observed among diets in the thrombogenic index (TI) values. Any of these ingredients might be
used as alternative sources of protein in feeds for fish aquaculture because no negative effects were
detected on fish growth, muscle composition, fish health or final nutritional value, except in the case
of microalgae, which needs more research to adjust its inclusion rate in the feed.

Keywords: alternative ingredients; insect meal; microalgae; by-products; canning industry; tuna
water cooking; rainbow trout

1. Introduction

According to FAO last report of fisheries and aquaculture production, the aquaculture
sector is growing in a sustained way with a prevision to reach more than 54% of the world
production in 2030 with more than 109 million tons. This prevision assumes an increase of
fish meal (FM) and fish oil (FO) demand because they are considered essential ingredients
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for aquafeed formulations [1]. Both ingredients continue to be very important as feed
ingredients in aquaculture [2].

The demand predicted for FM and FO clashes with the evolution of their production
and the volatility in their price observed during the last decade [3], dealing with a negative
balance between the needs and the expected growth of the aquaculture sector.

New alternative ingredients have been studied and included in aquafeeds during
recent years. Protein and oil derived from plants are the main alternative to FM and FO in
fish feeds driven by their higher abundance and lower price compared to FM and FO [4].
However, protein and oil derived from plants contain anti-nutritional factors that produce
inflammation problems in fish digestive tracts; they also have low protein content and
imbalances in the essential amino acid profile, and low palatability of the feeds. They also
produce a high environmental impact due to the amounts of energy, water and land needed
for cultivation and growing [5–7].

Research on FM and FO alternatives carried out during the last decade were mostly
oriented to soy-derived products [4,8–10], with satisfactory results in terms of growth using
different substitution levels in the feeds for both marine and freshwater fishes. Only 19
of the available publications were oriented to insect meal and only 16% were related to
the use of microalgae, ingredients with a high potential in the aquafeed industry [11–14].
Recently, ingredients derived from food industry by-products are being considered, tak-
ing into account the circular economy actions of the EU and their high availability and
composition [15,16].

The wastes generated in tuna processing plants (heads, fins, bones and red meat)
are generally used to produce fishmeal for the animal feed industry [17]. In the tuna
canning industry, cooking is an indispensable step and the stickwater (SW) generated
represents 60% of the processed fish weight [18,19], and approximately 4% water-soluble
protein [20]. Tuna cooking water, estimated according to production calculations of more
than 1,500,000 m3 in Spain and specifically in the Galicia region, is still being managed
as effluents in the processing plants and their treatment and disposal cost near 2 €/m3.
Few studies have been published considering the recovery and valorization of these efflu-
ents [21].

Data from a previous project carried out in ANFACO-CECOPESCA showed that this
water contains 6% of protein and 1.8% of oil. The quality of the protein, lipids and bioactive
compounds recovered from tuna cooking water were studied by Martinez-Montaño, et al. [22],
showing that more than 70% of the protein and 12% of the lipids were precipitated by
HCl. Thus, treating 10% of the tuna cooking water in Galicia would mean recovering about
60,000 liters of oil and 450,000 kg of organic matter that can be reused as feed ingredients.

The use of novel aquaculture feed ingredients is growing [23] and there is a need
to study their efficiency in fish growth and feed conversion, which is essential for their
industrial implementation. Thus, in this work, sustainable alternatives to the use of
traditional ingredients in rainbow trout feeds were assessed by evaluating: (1) insect meal
as a high quality protein source; (2) microalgal meal as a source of lipids rich in omega-3
fatty acids; (3) protein and lipid fractions recovered from the cooking water of tuna canning
processes; and (4) a diet with a mix of the three previous ingredients.

2. Material and Methods

Manipulations of fish were carried out in compliance with the Guidelines of the
European Union Council (2010/63/UE) and Spanish legislation for laboratory animal use.

2.1. Feed Formulation

Five diets were formulated by DIBAQ aquaculture (Segovia, Spain) and produced
in the facilities of the Technological Center CARTIF (Valladolid, Spain) using the same
facilities and extrusion parameters for all of them. (1) Microalgae diet (DM) with 10%
inclusion, using a mix of four microalgae (Nannochloropsis gaditana, Tisochrysis lutea (CCAP
927/14), Rhodomonas lens (ECC 030) and Isochrysis galbana (CCAP 927/1) were selected due
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to their amino acid and fatty acid content and included at 26, 33, 20% and 21%, respectively,
to cover the amino acid requirements of rainbow trout, and were produced by ANFACO-
CECOPESCA (Vigo, Spain); (2) Insect diet (DI) with 15% inclusion of house cricket, Acheta
domesticus, meal produced by Nutrinsect (Navarra, Spain); (3) Protein and oil from a water
cooking diet (DP&L) with 7 and 8% inclusion, respectively; (4) a mix diet (DMIX) based on
the inclusion of the three ingredients (10% microalgae meal, 15% insect meal, 4% protein
and 8% lipid fraction from tuna canning); and (5) a commercial diet from Dibaq (DC) was
considered as a control. The formulation of experimental feeds was carried out by Dibaq
and the inclusion levels of the new ingredients were adjusted to fulfill the requirements of
rainbow trout juveniles in terms of amino acids, minerals and fatty acids. The formulation
of the feeds is presented in Table 1 whereas the proximate and amino acid composition is
reflected in Table 2 and the fatty acid profile is presented in Table 3.

Table 1. Formulation (%) of rainbow trout diets used in the study. DC: Control diet; DI: Insect meal
diet; DM: Microalgal meal diet; DP&L: Protein and lipid from tuna canning diet; DMIX: diet with all
the ingredients mixed; TWC: Tuna water from canning.

Ingredients DC DI DM DP&L DMIX

Squid meal 1 8.32 - - - 8.87
Fish meal 2 31.59 15.72 16.50 23.83 15.00
Insect meal - 15.00 - - 15.00
Microalgae - - 10.00 - 10.00

Protein (TWC) - - - 7.00 4.00
Oil (TWC) - - - 8.00 8.00

Starch 1 4.50 0.79 8.11 5.75 6.13
Wheat gluten 3 15.00 15.00 18.00 15.00 14.48

Wheat 4 15.60 15.00 5.00 10.00 10.00
Soy bean 5 0.00 14.40 0.00 9.70 0.00
Fish oil 6 4.00 8.00 8.00 - -
Krill oil 4.00 - - - -

Plant oil 4 11.65 9.85 12.03 12.84 6.00
AA mix (Aminopro) 7 3.00 3.00 4.14 5.00 -

Lysine 8 1.00 1.00 1.00 0.66 0.75
Threonine 8 0.42 0.43 0.69 0.70 0.85

Methionine 8 - - - - 0.20
Choline 9 0.16 0.16 0.16 0.16 0.16

Antibacterian 10 0.15 0.15 0.15 0.15 0.15
Antifungal 10 0.02 0.02 0.02 0.02 0.02

Antioxidant 11 0.13 0.13 0.13 0.13 0.13
Attractant 12 0.10 0.10 0.10 0.10 0.10

Anhydrous betaine 13 0.07 0.07 0.07 0.07 0.07
Vitamin Conc. 14 0.10 0.10 0.10 0.10 0.10

Organic mineral Conc. 14 0.10 0.10 0.10 0.10 0.10
Vitamin C 14 0.10 0.10 0.10 0.10 0.10

1: Inproquisa S.A., Madrid, Spain; 2: Sarval Bio Industry, Barcelona, Spain; 3: Soficada Ibérica, Barcelona, Spain;
4: Alforpe S.L. Segovia, Spain; 5: Calidad Pascual, Madrid, Spain; 6: Barna S.A., Vizacaya, Spain; 7: Eurocoyal
S.L. Barcelona, Spain; 8: Pecus Veterinaria, Tarragona, Spain; 9: Cealvet S.L. U., Tarragona, Spain; 10: Adiveter
S.L., Tarragona, Spain; 11: Ecos Metique S. L., Murcia, Spain; 12: Lucta S.A., Barcelona, Spain; 13: Orffa Additives,
Breda, Netherlands; 14: Miavit Nutricion Animal, Tarragona, Spain.

2.2. Experimental Procedure

In this study, 3000 rainbow trout juveniles with an initial weight of 9.15 ± 1.69 g were
distributed in 15 tanks of 300 L (200 fish per tank) connected to a recirculation system
(RAS) under a 12 h L: 12 h D photoperiod. Each tank was provided with continuous
aeration and oxygen. Water conditions were maintained at 15 ± 1.2 ◦C, 0 ‰ salinity and
7 ± 0.7 mg/L dissolved oxygen. RAS parameters were maintained as stable during all the
experiments. Ammonia, nitrate and nitrite were measured each day and kept at 0.0 and 0.1
mg/L, respectively. Fish were fed manually 3 times per day with 2% body weight per day
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(feeding ratio recommended by Dibaq) and 7 days a week. Feed amounts were adjusted
every week according to the theoretical growth of the fish. The trial lasted for 60 days.
Every 15 days all the fish were weighed, and their length measured. Prior to manipulation,
fish were anesthetized with 200 mg/L of 2-phenoxyethanol [24].

Table 2. Proximate composition (% DW), calcium and phosphorus content and main amino acid
content of the feeds used in the study. DC: Control diet; DI: Insect meal diet; DM: Microalgal meal
diet; DP&L: Protein and lipid from tuna canning diet; DMIX: diet with all the ingredients mixed;
TWC: Tuna water from canning.

Composition (% DW) DC DI DM DPL DMIX

Moisture 5.71 6.18 6.49 5.72 6.08
Protein 45.00 45.00 45.00 45.00 45.00

Fat 24.00 24.00 24.00 24.00 24.00
Fibre 0.86 1.67 0.50 1.34 0.47

Calcium 1.09 1.10 1.40 1.25 1.18
Phosphorus 1.01 1.00 1.00 1.03 1.05

Met 1.04 0.83 1.00 0.86 0.90
Met + Cys 1.60 1.34 1.49 1.40 1.30

Lys 3.27 2.89 3.21 2.73 2.70
Thre 1.80 1.80 1.80 1.80 1.80
Arg 2.41 2.16 2.36 2.14 1.95
His 1.09 0.86 0.96 1.04 0.85
Trp 0.40 0.35 0.41 0.37 0.29
Val 2.39 2.10 2.14 2.16 1.80

Table 3. Fatty acid composition (% of Total Fatty Acids) of the diets used in the study. DC: Control
diet; DI: Insect meal diet; DM: Microalgal meal diet; DP&L: Protein and lipid from tuna canning diet;
DMIX: diet with all the ingredients mixed; TWC: Tuna water from canning. SFA: Saturated fatty acids,
MUFA: Monounsaturated fatty acids, PUFA: Polyunsaturated fatty acids, EPA: Eicosapentaenoic acid,
DHA: Docosahexaenoic acid.

Fatty Acids (%TFA) DC DI DM DP&L DMIX

14:0 3.11 2.02 2.85 2.10 2.79
15:0 0.25 0.22 0.59 0.40 0.58
16:0 12.97 14.08 18.12 12.52 17.72
18:0 3.05 3.64 4.42 3.53 4.37

Total saturated (SFA) 21.38 21.28 27.71 19.80 27.16
16:1 3.37 2.53 3.50 2.51 3.41

18:1n-9 20.58 22.09 16.98 19.49 17.09
18:1n-7 3.37 2.98 2.79 2.85 2.90

20:1 0.13 0.52 0.44 0.44 0.43
24:1 0.21 0.21 0.28 0.23 0.30

Total monounsaturated (MUFA) 28.35 28.93 24.81 25.97 24.68
18:2n-6 26.54 27.03 15.99 27.02 15.97
18:3n-6 0.21 0.28 0.32 0.41 0.33
20:4n-6 0.47 0.49 0.51 0.46 0.50

Total n-6 PUFA 27.64 28.19 17.51 28.57 17.49
18:3n-3 6.06 6.71 6.10 5.79 6.04
20:3n-3 0.77 0.81 1.15 0.82 1.13

20:5n-3 (EPA) 4.79 3.30 4.52 3.49 4.47
22:5n-3 0.49 0.44 0.58 0.50 0.57

22:6n-3 (DHA) 4.14 4.17 11.21 8.37 11.14
Total n-3 PUFA 18.92 18.33 26.42 21.59 26.14

Total PUFA 46.94 46.52 44.40 50.54 44.08
n-3/n-6 0.68 0.65 1.51 0.76 1.49

PUFA/SFA 2.20 2.19 1.60 2.55 1.62
EPA + DHA 8.93 7.47 15.73 11.86 15.61



Aquac. J. 2022, 2 41

2.3. Growth Performance and Somatic Indices

At the end of the experiment, growth performance was assessed using the following
parameters:

Specific growth rate (SGR, % body weight/day = (ln final weight− ln initial weight)/days)
× 100);

Feed conversion ratio (FCR = feed intake/increase in biomass);
Protein efficiency ratio (PER = increase in biomass/total protein intake);
elative growth rate (RGR = Final weight − initial weight/initial weight);
Condition Factor (CF = body weight/body length3);
Fish In Fish out (FIFO = FCR * (% fish meal + % fish oil in feed)/(FM ratio + FO ratio) [25].
Ten fish from each tank were sacrificed with an overdose of anesthetic. The liver and

viscera of each fish were dissected and weighed in order to calculate the following indices:
Hepatosomatic index (HSI, % = (100 × [liver weight (g)]/[total body weight (g)]) and

viscerosomatic index (VSI, % = (100 × [viscera weight (g)]/[total body weight (g)])).
Samples of the dorsal muscle and liver (N = 10 each) of the fish were kept at −20 ◦C

until biochemical analysis.

2.4. Biochemical Analyses

Muscle composition was determined according to the standard methods of AOAC [26],
moisture by drying at 104 ◦C for 24 h, ash by incineration at 550 ◦C, protein estimating
crude protein –CP-(N × 6.25) by the Kjeldahl method after acid digestion (Kjeltec 2300 Auto
Analyser; Tecator, Höganas, Sweden), fat by extraction with petroleum ether by the Soxhlet
method using the Soxtec 1043 system HT (Foss Tecator, Sweden) and a fatty acid (FA) profile
using a gas-mass chromatograph following the method based on ISO-1296-4:2015 [27].

Atherogenic index (AI): Indicates the relationship between the sum of the main satu-
rated fatty acids and that of the main classes of unsaturated, the former being considered
pro-atherogenic (favoring the adhesion of lipids to cells of the immunological and circu-
latory system), and the latter anti-atherogenic (inhibiting the aggregation of plaque and
diminishing the levels of esterified acid, cholesterol, and phospholipids, thereby preventing
the appearance of micro- and macrocoronary diseases [28] using the following equation:

AI = ((12:0 + (4 × 14:0) + 16:0))/(MUFAs + PUFAn6 + PUFAn3) (1)

Thrombogenic index (TI): Shows the tendency to form clots in the blood vessels. This
is defined as the relationship between the pro-thrombogenetic (saturated) and the anti-
thrombogenetic fatty acids (MUFAs, PUFAs–n6 and PUFAs–n3) [29]. It was calculated
using this equation:

TI = (C14:0 + C16:0 + C18:0)/(0.50 * MUFA) + (0.5 * PUFA n-6) + (3 * PUFA n-3) + (PUFA n-3/PUFA n-6) (2)

Lipid biomarker analysis was carried out using pools of 10 livers and 10 spleens per tank.
Samples were crushed, homogenized in isopropanol and centrifuged for 5 min at 10,000× g
to obtain the extracts. Cholesterol determination was carried out on the serum samples
using the total cholesterol colorimetric assay kit (Elabscience, E-BC-K109-S). This method is
based on the quantification of free cholesterol and cholesterol esters. The analysis of triglyc-
erides was performed using the ChromaDazzle Triglyceride Assay kit from AssayGenie
(ref: BA0152).

2.5. Statistical Analyses

All data were tested for normality and homogeneity of variances using Levene’s test
before being submitted to a one-way analysis of variance. Data were statistically analyzed
using SPSS v19 (SPSS, Chicago, IL, USA) program and according to the following General
Linear Model, where the tank was considered a fixed factor:

Yij = µ + αi + εij (3)
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where µ is the population mean, α the fixed effect of the tank, and εij the residual error.
One way analysis of variance (ANOVA) was carried out using the SPSS program. The

differences were considered statistically significant when p < 0.05 and the Holm–Sidak post
hoc test was used to perform pair wise comparisons of means between experimental groups.

3. Results
3.1. Effect of Alternative Diets on Growth Performance

At the beginning of the experiment, the juveniles weighed 9.15 ± 1.65 g (mean ± SD),
their length being 9.5 ± 0.68 cm. No significant differences in the initial weight of the
fish were observed among tanks or treatments. At the end of the experiment, significant
differences were observed in the final weight and length among diets (Table 4). Fish fed
DC, DP&L and DI showed a statistically significantly higher weight than those fed DM and
DMIX (ANOVA, p < 0.05). The same trend was observed in the results of SGR and RGR
(p < 0.05).

Table 4. Initial and final weight and length, growth (SGR and RGR, %), condition factor (CF), feed
conversion (FCR) and protein efficiency (PER) ratios and FIFO values of rainbow trout juveniles fed
the experimental diets (Control, DC; Insect meal, DI; microalgal meal, DM; Protein and lipids from
tuna cooking water, DP&L and mixed diet, DMIX). Different letters indicate significant differences
(One-way ANOVA p < 0.05).

DC DI DM DP&L DMIX

Initial weight (g) 9.11 ± 1.54 9.08 ± 1.81 9.27 ± 1.59 9.09 ± 1.83 9.21 ± 1.68
Initial length (cm) 9.61 ± 0.63 9.46 ± 0.71 9.45 ± 0.69 9.52 ± 0.72 9.49 ± 0.64
Final weight (g) 47.8 ± 7.2 b 47.81 ± 7.55 b 42.23 ± 7.5 a 46.79 ± 6 b 44.43 ± 6.65 a

Final length (cm) 15.02 ± 0.8 c 14.53 ± 0.83 b 14.11 ± 0.95 a 14.54 ± 0.68 b 14.47 ± 0.8 b

CF 1.46 ± 0.1 a 1.55 ± 0.12 c 1.49 ± 0.12 ab 1.52 ± 0.11 bc 1.46 ± 0.11 a

SGR (%) 2.67 ± 0.08 c 2.67 ± 0.06 c 2.44 ± 0.04 a 2.64 ± 0.02 c 2.53 ± 0.0 b

RGR (%) 4.24 ± 0.24 c 4.26 ± 0.2 c 3.55 ± 0.13 a 4.14 ± 0.08 c 3.82 ± 0.01 b

PER (%) 3.19 ± 0.13 3.16 ± 0.16 2.98 ± 0.87 3.03 ± 0.10 2.89 ± 0.08
FCR 0.68 ± 0.03 0.7 ± 0.03 0.73 ± 0.02 0.71 ± 0.03 0.74 ± 0.03
FIFO 0.87 ± 0.04 c 0.60 ± 0.03 b 0.65 ± 0.02 b 0.61 ± 0.02 b 0.40 ± 0.01 a

Protein efficiency (PER) and feed conversion (FCR) ratios did not show any significant
difference among diets. However, a trend similar to that obtained in the growth parameters
was observed (Table 4).

FI:FO results showed significant differences among diets (ANOVA, p < 0.05). The high-
est ratio was obtained in the DC diet with almost 0.87 kg of fish needed to produce 1 kg of
trout, whereas the best ratio was for the DMix feed with a value of 0.40.

3.2. Effect of Alternative Diets on Muscle Composition

The biochemical analysis of trout muscle did not show any significant differences in
terms of moisture, protein, lipids and carbohydrates content. Only a significant difference
was detected in ash content (p < 0.05) (Table 5). An antagonistic result between DI and
DP&L groups was found in fillet composition. DI showed the highest lipid (18.38%) and
lowest protein (72.6%) content whereas DP&L fish showed the opposite (15.11 and 75.57%,
respectively). DC, DM and DMIX trout muscle showed intermediate values.

Concerning the FA composition of muscle, no significant differences were observed
among diets except for 18:0 fatty acid where DMIX and DC showed the highest differences
(4.10 and 3.63%, respectively). Total saturated fatty acids (SFA) were significantly higher in
DMIX (23.17%) and lower in DM (20.35%). Fillet of Rainbow trout fed DM feed stood out
with the highest level of PUFA.



Aquac. J. 2022, 2 43

Table 5. Muscle proximate (% DW) and fatty acid (% Total Fatty Acids) composition (Average, AV,
and SD values) of rainbow trout juveniles fed the experimental diets: Control (DC), Insect meal (DI),
Microalgal meal (DM), Protein and Lipid from tuna cooking water (DP&L) and Mixed diet (DMIX).
Different letters indicate significant differences (One-way ANOVA p < 0.05). Atherogenic (AI) and
Thrombogenic (TI) indices are also included.

DC DI DM DP&L DMIX
Composition Av SD Av SD Av SD Av SD Av SD

Moisture (%) 76.33 5.80 76.67 5.80 77.00 0.00 77.33 5.80 77.67 5.80
Protein (%) 73.58 3.60 72.60 2.90 73.72 2.50 75.57 5.30 73.96 2.00

Fat (%) 16.32 0.45 18.38 0.75 15.79 0.40 15.11 0.76 16.58 0.10
Carbohydrates (%) 4.21 0.30 3.42 0.35 4.49 1.15 3.21 0.40 3.26 0.32

Ash (%) 5.89 a 0.10 5.60 b 0.30 6.01 a 0.40 6.11 a 0.20 6.20 a 0.20
Fatty Acids (% TFA)

14:0 2.28 0.32 2.06 0.36 1.88 0.07 1.81 0.04 1.91 0.17
15:0 0.25 0.01 0.28 0.09 0.28 0.05 0.30 0.07 0.34 0.11
16:0 13.37 0.49 13.99 0.47 12.43 0.08 13.30 0.92 14.72 0.65
18:0 3.63 0.06 3.81 0.18 3.57 0.19 3.92 0.19 4.10 0.19
20:0 0.33 0.01 0.32 0.05 0.33 0.02 0.34 0.04 0.32 0.04
24:0 0.12 0.01 0.08 0.07 0.12 0.01 0.13 0.01 0.03 0.06

Total saturated 21.69 ab 0.81 22.24 ab 0.26 20.35 b 0.18 21.43 ab 1.01 23.17 a 1.13
16:1 3.19 0.14 3.13 0.31 2.90 0.28 2.63 0.12 3.16 0.36

18:1n-9 22.02 0.56 21.54 2.14 22.11 1.07 22.03 1.57 21.21 3.22
18:1n-7 2.82 0.21 2.61 0.30 2.52 0.14 2.39 0.05 2.46 0.05

20:1 2.82 0.10 2.82 0.20 2.83 0.15 2.78 0.14 2.69 0.09
24:1 0.38 0.01 0.35 0.03 0.36 0.01 0.38 0.04 0.35 0.02
Total

monounsaturated 32.05 0.43 31.29 1.97 31.52 1.65 31.01 1.78 30.70 2.86

18:2n-6 22.36 0.52 21.46 3.06 24.09 0.52 23.95 0.59 19.50 3.08
18:3n-6 0.37 0.07 0.33 0.06 0.45 0.06 0.39 0.05 0.31 0.08
20:4n-6 0.49 0.01 0.47 0.03 0.47 0.02 0.46 0.02 0.45 0.01

Total n-6 PUFA 24.17 0.64 23.22 3.09 26.05 0.46 25.89 0.60 21.25 3.15
18:3n-3 4.55 0.09 4.74 0.09 4.59 0.21 4.49 0.06 4.60 0.10
20:3n-3 1.11 0.11 1.11 0.17 1.17 0.08 1.04 0.03 1.22 0.17
20:5n-3 3.03 0.22 2.91 0.85 2.69 0.08 2.33 0.26 3.02 0.90
22:5n-3 0.90 0.07 0.85 0.22 0.78 0.03 0.75 0.08 0.86 0.16
22:6n-3 8.56 0.30 9.87 4.08 9.25 1.59 9.61 2.15 11.73 3.63

Total n-3 PUFA 18.15 0.21 17.88 7.38 18.47 1.28 18.21 2.37 19.86 4.46
Total PUFA 43.63 0.89 42.43 4.26 45.85 1.69 45.54 2.68 42.24 2.92

n-3/n-6 0.75 0.02 0.81 0.44 0.71 0.04 0.70 0.08 0.96 0.31
PUFA/SFA 2.01 a 0.12 1.91 ab 0.20 2.25 a 0.07 2.13 a 0.22 1.83 b 0.18
EPA + DHA 11.59 0.19 12.78 4.75 11.94 1.54 11.94 2.39 14.75 4.52

AI 0.3 0.31 0.26 0.27 0.31
TI 0.12 0.13 0.12 0.13 0.12

No significant differences were detected in EPA, DHA, total omega 3 and total omega
6 fatty acids (FAs) content among alternative diets, although DMIX showed the highest
level of EPA, DHA and omega 3 FAs and the lowest level of omega 6 FAs. The use of these
alternative diets seems to reduce EPA content in rainbow trout muscle compared to DC,
except for in the DMIX fed group. An increase in DHA levels from 8.56% in DC to 11.73%
in the DMIX was also observed.

The content of EPA + DHA ranged between 11.59% in DC and 14.75% in DMIX, driven
by DHA content in the muscle.

Lipid health indices such as the PUFA/SFA ratio, n-3/n-6 ratio, AI and TI, show that
DM stands out with the highest PUFA/SFA ratio and the lowest AI, whereas DMIX showed
the lowest PUFA/SFA and the highest n-3/n-6 and AI. No differences were observed
among diets in TI ratio values.

3.3. Effect of Alternative Diets on Fish Health

Figure 1 shows the results of the hepatosomatic (HSI) and viscerosomatic indices (VSI).
HSI was similar in all the groups, except in the case of the fish fed the diet based on insects
(1.29 ± 0.04). In that case, HSI was significantly reduced compared to that observed for
the DC (1.53 ± 0.05) (ANOVA, p < 0.05). In the case of the viscerosomatic index (VSI),
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the results show a statistically significant increase in the fish fed a diet supplemented
with microalgae (12.16 ± 0.18) (p < 0.05). Lipid biomarkers, cholesterol and triglycerides
(Figure 2), did not show differences in rainbow trout liver after being fed the different
alternative ingredients assayed.

Figure 1. Hepatosomatic index (HSI; left panel) and viscerosomatic index (VSI; right panel) of the
fish fed the experimental diets: DC (control diet), DM (Microalgae diet), DP&L diet (Protein and lipid
from tuna water cooking), Insect diet (DI) and Mix diet (DMIX). Different letters indicate significant
differences (ANOVA, p < 0.05).

Figure 2. Cholesterol (mmol/g; left panel) and Triglyceride (mmol/L; right panel) content in the
serum of the fish fed the experimental diets: DC (control diet), DM (Microalgae diet), DP&L diet
(Protein and lipid from tuna water cooking), Insect diet (DI) and Mix diet (DMIX).

4. Discussion

Intensification of aquaculture increased global production from approximately 42 to
117 MTs between 1999 and 2019 [30]. FM and FO are still the main sources of protein and
lipid in aquafeeds [1,2], derived from wild fish and fish processing by-products. The in-
crease in demand, the price fluctuation and the stagnation of FM and FO production in
recent years [31], have driven the market to the substitution of these marine ingredients
with a variety of plant-based ingredients and animal by-products [32,33]. New ingredients
such as insect meal [34–36], micro- and macroalgae [37–39] and brewery-derived byprod-
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ucts [16,40–42] have been recently investigated as aquafeed ingredients in an individual
way with only a few studies assessing the value of alternative ingredients in side-by-side
comparisons [43,44] and none have considered combining all these ingredients in the
same diet.

4.1. Insect Meal

In the present study insect meal and microalgae were used alone or combined with
by-products derived from the canning industry. The results obtained for growth and feed
efficiency confirm previous results obtained in rainbow trout using insect meal [45–47]
and the inclusion of insect meal in DI at the 15% level and a 60% substitution of FM did
not lead to any negative effect on rainbow trout growth or performance. Similar results
were observed by Renna, et al. [48], replacing 20 and 40% of defatted Hermetia illucens
(HI) meal in place of 25 and 50% of FM in the trout diets of adult fish. On the other hand,
St-Hilaire, et al. [45], using an inclusion higher than 15% of a full fat HI prepupae meal,
observed a decrease in growth compared to the control diet. All these results on insect
substitution were obtained using HI. In a recent study carried out with a pre-commercial
product with a mixture of black soldier fly (HI) and meal worm (Tenebrio molitor, TM) by
Acar, et al. [49], the best growth of rainbow trout was obtained with 25 and 50% substitution
of FM by the commercial product. House cricket, Acheta domesticus, was the species selected
in the present study as the source of a non-defatted insect meal due to its easier and
standardized breeding, and the results obtained can be considered new and innovative
because no previous publication using this species in rainbow trout feeds was found in
the literature.

Comparing the growth performance of the fish fed insect meal with those fed the
control diet, no negative effects were observed in growth and feed efficiency except for a
higher fat accumulation in the fillet. Similar results were obtained in rainbow trout by other
authors [48] and differ from those published by Belforti, et al. and Sealey, et al. [50,51],
working with the inclusion of HI and TM meals, respectively. In these studies, the composi-
tion of trout dorsal muscle showed a significant decrease in dry matter, lipid content and in
the levels of fatty acids with respect to the control diet. These differences might be due to
the different insect species used in the studies.

4.2. Microalgae

Microalgae show a high potential for the substitution of FM and FO in feed formulation
due to their levels of protein, fatty acid composition, and mineral profile [7,13,38]. Sev-
eral algae such as Spirulina, Nannochloropsis, Chlorella, Isochrysis, Tetraselmis, Secenedesmus,
and Schizochytrium have shown their good acceptance as ingredients in aquaculture
feeds [52–54]. In the present study, a mix of species was selected due to their high content
in protein, EPA and DHA, amino acids, lipids, and various minerals and the results showed
a significant lower fish growth compared to the control group. In a similar experiment
with rainbow trout using Nanochloropsis and Isochrysis at 9.4% replacement, a reduction of
SGR and an increase of FCR were observed by Sarker, et al. [55]. The authors explained
this growth depression by the low feed intake observed. However, other publications
using microalgae at different inclusion levels such as Arthrospira at 7.5% [56], Scenedesmus
at 5% [52] and Chlorella combined with Spirulina at 12.5 % [57], showed no effect on fish
growth or feed efficiency. Considering the results obtained in the present study it might be
the case that the high inclusion level of microalgae produced a negative effect due to either
a lower feed intake by the fish or to a lower digestibility. Shah, et al. [54] in a review about
the use of microalgae as aquafeed ingredients concluded that the inclusion of microalgae in
feeds need to be evaluated at a species level, not only of the microalgae but also of the fish
species, including studies of digestibility and bioavailability.
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4.3. P&L Diet

Although several publications are available for studying the effect of tuna by-products
included in aquafeeds either as meal or oil [58–60] this is the first study using protein
and oil recovered from tuna water cooking as ingredients in feeds for rainbow trout. The
results in fish growth and feed conversion were similar to those obtained in the DC and
DI fed groups. The same results were also observed when meal obtained from tuna
by-products replaced up to 75% FM in several studies carried out with Korean rockfish
(Sebastes schlegeli) juveniles without affecting growth or feed conversion [61–63]. On the
other hand, a higher inclusion of a meal from tuna by-products included at 50%, 60 and
70% by Tekenay, et al. [64] ended in a reduction of SGR and PER of rainbow trout juveniles
due to the lower palatability and feed acceptance. Thus, depending on the process used
for tuna manufacturing and the inclusion of by-products in fish diets, the effects of these
ingredients in the proximal composition of fish might be different. For example, in a study
carried out by Oncul, et al. [65] with juvenile olive flounder (Paralichthys olivaceus) using
tuna by-product meal no significant differences were observed in their body composition.
Similar results were also observed by Kim, et al. [61], Bae, et al. [66] and Tekenay, et al. [64]
in the moisture, crude protein and ash of Korean rockfish and in rainbow trout fed the tuna
by-product meal, and only lipid content was affected. In the present study, no significant
changes in fillet proximal composition were observed in rainbow trout fed DP&L, although
protein level was slightly increased in parallel to a reduction in the lipid content.

4.4. DMIX Diet

The DMIX diet has shown intermediate results in terms of fish growth, food conversion
and fillet quality probably as a consequence of microalgae inclusion, the worst ingredient
in terms of zootechnical parameters in this trial. Although, this DMIX diet produced the
worst results in PER and FCR without being statistically significant, it is the diet with the
best FI: FO value, a very positive result considering that half of FM and FO was used to
produce the same amount of fish compared to the control. Today it is essential to promote
sustainable aquaculture producing more farmed fish with fewer resources and avoiding
wild fish over-exploitation.

Regarding the organosomatic indices, the HSI of fish fed DI showed the lowest values
compared to the control and the rest of the alternative diets. This trend is similar to that
observed in other studies, where the increasing dietary level of TM involved a decrease in
HSI [50]. The same tendency was also detected when FM was totally or partially substituted
by an insect meal or vegetable proteins [51]. Histopathological biomarkers are considered
useful indicators of the general health of the fish [67], in our case a decrease in the HSI might
indicate a reduction in the energy reserves stored in the liver used for energy production to
support metabolic needs. In the case of VSI only DM fed fish showed a high value. High
lipid levels in the feed usually lead to an excessive fat accumulation in the visceral cavity
and in the liver of the fish although this accumulation may also depend on the fatty acid
composition of the diet. In the present study the high saturated fatty acid (SFA) levels found
in the DM diet may be the direct cause of the high VSI observed, instead of total lipids,
because total lipid content was not the highest among the diets assayed. High levels of SFA
in diets formulated with insect meal was mentioned by Mikolajczak, et al. [68] as the direct
cause of the differences in organosomatic indices observed with different dietary inclusions
of T. molitor and Z. morio. It is well established that lipid metabolism plays a key role in
energy homeostasis in rainbow trout [69]. Changes in parameters such as triglycerides or
cholesterol generally reflect the nutritional state of the animal, the endocrine function as
well as the integrity of vital organs such as the liver [70]. In the present study, the levels of
cholesterol and triglycerides were similar in all the diets, confirming that the alternative
ingredients used in the formulation did not affect the health of the fish or the basics of
lipid metabolism.

No negative effects were observed in the nutritional value of the fish and, indirectly,
on human health, as a consequence of the inclusion of alternative ingredients such as
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insects, microalgae or industry derived by-products in rainbow trout feeds. Omega 3 levels
in the fish muscle were higher than 0.6 g/100 g, considered the standard value of this
species [71]. The fillet composition of DMIX fed fish shows 10% more total omega 3 than
the other groups, probably as a result of the inclusion of microalgae and the oil recovered
from the cooking water, which are rich in omega 3. This increase in total omega 3 fatty
acids, although not significantly different, was accompanied by a decrease in total omega 6,
which significantly affected the omega 3/omega 6 index. In fact, DMIX enhanced the
nutritional quality of the rainbow trout with the highest ratio omega 3/omega 6. The rest
of the alternative ingredients showed the same nutritional value as the control, contrary
to another study where FM substitution with HI showed a consistent increase of omega 6
and a decrease of omega 3 FAs in fish muscle [48] and a decrease in omega 3/omega 6 and
PUFA/SFA ratios [47]. The same tendency was observed using increasing levels of plant
protein concentrate in the feeds for rainbow trout [72].

These positive results were reinforced with the low values of the AI and TI indices
obtained in all the groups and at lower levels than those observed by Renna, et al. [48]
and Belforti, et al. [50] in similar studies. Both indices combine the effects that single fatty
acids might have on human health, specifically in increasing the incidence of pathogenic
phenomenon [73]. Results of AI and TI obtained using these alternative ingredients (insects,
microalgae, industry by-products) confirm that their use in a balanced diet might improve
the nutritional value of rainbow trout especially if the results are compared with those
obtained using plant-based diets.

5. Conclusions

This study shows the effects of the inclusion of new alternative ingredients in rainbow
trout diets. The results obtained using Acheta domesticus meal, P&L recuperated from water
cooking in tuna canning factories and a mix of marine microalgae in diets for rainbow
trout juveniles were satisfactory. Any of these ingredients can be considered an alternative
source of protein in aquafeeds, because no negative effects on growth, feed conversion,
muscle composition, fish health or final nutritional value were observed. In the case of
microalgae, a better adjustment both in terms of feed inclusion level and in microalgae
species combination is needed. The results obtained also need to be verified by detailed
studies using different concentrations of the alternative ingredients separately in the fish
diets. These new alternative ingredients have a lower Fish In: Fish Out ratio than the
control diet used, indicating a higher degree of environmental sustainability, providing
an acceptable zootechnical efficiency. Finally, the DMIX diet formulated with an adequate
percentage of microalgae can be a very good alternative because it was the most suitable,
provided good results in terms of growth and conversion and produced the best fillet
quality in terms of omega-3 content.
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