This document is a postprint version of an article published in Science of the Total Environment © Elsevier after peer review. To access the final edited and published work see https://doi.org/10.3168/jds.2017-14311 - 1 This work has been published in JOURNAL OF DAIRY SCIENCE: - 2 Mahmmod YS, Klaas IC, Svennesen L, Pedersen K, Ingmer H. Communications of - 3 Staphylococcus aureus and non-aureus Staphylococcus species from bovine intramammary - 4 infections and teat apex colonization. J Dairy Sci. 2018 Aug;101(8):7322-7333. doi: - **10.3168/jds.2017-14311.** #### **INTERPRETIVE SUMMARY** ### COMMUNICATIONS OF AUREUS AND NON-AUREUS STAPHYLOCOCCI ### **MAHMMOD** The role of NAS on the risk of acquisition of *S. aureus* IMI is debated. We investigated the distribution patterns of NAS species from milk and teat skin in dairy herds with automatic milking systems. Additionally we examined if the isolated NAS influence the virulence expression of *S. aureus*. *S. epidermidis* and *S. chromogenes* were milk-associated, while *S. equorum* and *S. cohnii* were teat-associated. *S. chromogenes* and *S. xylosus* showed protective effect against *S. aureus*, while *S. epidermidis* and *S. equorum* showed varied effect based on habitat type and herd-associated factors. *S. Sciuri* and *S. vitulinus* showed no effect. | 19 | COMMUNICATIONS OF AUREUS AND NON-AUREUS STAPHYLOCOCCI | |----|---| | 20 | | | 21 | Communications of Staphylococcus Aureus and Non-Aureus Staphylococcus species from | | 22 | Bovine Intramammary Infections and Teat Apex Colonization | | 23 | | | 24 | Yasser Mahmmod *,†,‡ 1 Ilka Klaas*, §, Line Svennesen*, Karl Pedersen*, and Hanne Ingmer* | | 25 | * Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, | | 26 | University of Copenhagen, DK-1870 Frederiksberg C, Denmark | | 27 | † Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig | | 28 | University, 44511-Zagazig, Sharkia Province, Egypt | | 29 | ‡IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat | | 30 | Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain (present) | | 31 | § DeLaval International AB, Tumba, Sweden (present) | | 32 | *National Veterinary Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark | | 33 | | | 34 | | | 35 | | | 36 | | | 37 | ¹ Corresponding author | | 38 | | | 39 | Yasser Mahmmod | | 40 | IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat | | 41 | Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain | | 42 | Email: yasserpcr@gmail.com | | 12 | Mobile: 0024 612567220 | #### **ABSTRACT** 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 The role of non-aureus Staphylococci (NAS) on the risk of acquisition of intramammary infections (IMI) with Staphylococcus aureus (S. aureus) is vague and still under debate. The objectives of this study were to (1) investigate the distribution patterns of NAS species from milk and teat skin in dairy herds with automatic milking systems (AMS), and (2) examine if the isolated NAS influences the expression of S. aureus virulence factors controlled by the accessory gene regulator (agr) quorum sensing system. In eight herds, 14-20 cows with elevated somatic cell count were randomly selected for teat skin swabbing and aseptic quarter foremilk samples from right hind and left front quarters. Teat skin swabs were collected using the modified wet-dry method and milk samples were taken aseptically for bacterial culture. Colonies from quarters with suspicion of having NAS in milk and/or teat skin samples were subjected to MALDI-TOF assay for species identification. To investigate the interaction between S. aureus and NAS, 81 isolates NAS were subjected to a qualitative betagalactosidase reporter plate assay. In total, 373 NAS isolates were identified representing 105 from milk and 268 from teat skin of 284 quarters (= 142 cows). Sixteen different NAS species were identified, 15 species from teat skin and 10 species from milk. The most prevalent NAS species identified from milk were S. epidermidis (50%), S. haemolyticus (15%), and S. chromogenes (11%) accounting for 76%. Meanwhile, the most prevalent NAS species from teat skin were S. equorum (43%), S. haemolyticus (16%), and S. cohnii (14%) accounting for 73%. Using reporter gene fusions monitoring transcriptional activity of key virulence factors and regulators, we found that out of 81 supernatants of NAS isolates; 77% reduced expression of hla, encoding a-hemolysin, 70% reduced expression of RNA-III, the key effector molecule of agr, and 61% reduced expression of spa encoding Protein A of S. aureus, respectively. Our NAS isolates showed three main patterns; (a) downregulation effect such as S. chromogenes (milk) and S. xylosus (milk and teat), (b) no effect such as S. sciuri (teat) and S. vitulinus (teat), and the third pattern (c) variable effect such as S. epidermidis (milk and teat) and S. equorum (milk and - 69 teat). The pattern of cross-talk between NAS species and S. aureus virulence genes varied according - 70 to the involved NAS species, habitat type, and herd factors. The knowledge of how NAS influences - 71 S. aureus virulence factors expression could explain the varying protective effect of NAS on S. - 72 aureus IMI. - 74 Keywords: non-aureus staphylococci; Staphylococcus aureus; microbial interactions; bovine - 75 mastitis; automatic milking system; protective effect #### INTRODUCTION 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Nowadays, non-aureus staphylococci (NAS) are the most common cause of bovine intramammary infections (IMI) in dairy herds worldwide (Braem et al., 2013; Souza et al., 2016). When studying NAS, aggregating NAS as a group without accurate species identification is no longer recommended, as species-specific differences in behavior, epidemiology, ecology, and impact on udder health have been revealed (Vanderhaeghen et al., 2014). Furthermore, NAS species showed great differences in antimicrobial susceptibility and virulence factors (Sawant et al., 2009). Condas et al. (2017) concluded that considering NAS as a single group has undoubtedly contributed to apparent discrepancies among studies as to their distribution and importance in IMI. Previous studies have extensively investigated the epidemiological characteristics of NAS for dairy herds with conventional milking systems. However, knowledge about these characteristics or patterns is sparse for dairy cows in automatic milking systems (AMS) (Supré et al., 2011; De Visscher et al., 2014). Management of udder health in conventional milking systems differs from AMS (Dohmen et al., 2010; Hovinen and Pyörälä 2011). Cows in AMS can be milked up to 5 times daily without any human contact with the udder. The longer milking duration and exposure of the teat skin to disinfectants may affect the teat skin microbiota. Furthermore, there is high risk for teat colonization and subsequently IMI because up to 60 cows are milked several times daily with the same robot (Rasmussen, 2006). The epidemiological and ecological characteristics NAS isolated from milk and surrounding environment of cows differ and are associated with the identified species. Results from research studies on NAS are sometimes conflicting. Vanderhaeghen et al. (2015) reported that S. chromogenes is a bovine-adapted species involved in many cases of IMI, and S. simulans typically causes contagious IMI, while S. xylosus appears to be a versatile species. NAS species originating from distinct habitats showed clear differences that may be related to their diversity in ecology and epidemiological behavior (Souza et al., 2016). These different and contradictory results about NAS characteristics may likely be due to the lack of knowledge about their ecology and epidemiology within and between species (Fry et al., 2014). Therefore, extra efforts are crucial to improve our knowledge on different traits of NAS at the species level in the different habitats for boosting our understanding to their epidemiology in dairy herd context. 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 101 102 103 104 The effects of NAS on the risk of acquiring Staphylococcus aureus (S. aureus) IMI have yielded ongoing debate (Reyher et al., 2012; Vanderhaeghen et al., 2014). Using traditional antibiotics is the most common approach for treatment of S. aureus infections and bovine mastitis in general. However, this approach is associated with adverse consequences including emergence of bacterial resistance and antimicrobial residues in milk (Gomes and Henriques, 2016). Therefore, finding effective non-antibiotic antimicrobials and alternative strategies to substitute the administration of antibiotics for mastitis treatment and control is vital. Painter et al., (2014) reported that the ability of S. aureus to cause a wide range of infections has been ascribed to its armory of various virulence factors, many of which are under the control of the quorum-sensing accessory gene regulator (agr) system of S. aureus. Singh and Ray (2014) demonstrated that agr plays a central role in staphylococcal pathogenesis. The agr system is composed of a two component signal transduction system that in response to a secreted auto-inducing peptide (AIP) controls virulence gene expression depending on cell density. At low cell density cell surface associated adhesion factors are produced, while at high cell density hemolysins and other secreted virulence factors are expressed (Le and Otto, 2015). Originally, the agr system was considered only to monitor the presence of S. aureus cell densities, but several studies have
documented that other staphylococcal species produce AIP-like molecules, which inhibit S. aureus agr and toxin production (Otto et al., 2001; Canovas et al., 2016; Paharik et al., 2017). Therefore, knowledge of the microbial interactions between a variety of NAS species originating from dairy cows and dairy environment on the one hand, and S. aureus on the other hand, may ultimately lead to new ways of controlling infections with S. aureus. To the best of our knowledge, there is no literature available that has investigated the crosstalk between *agr* quorum system of *S. aureus* and NAS isolated from milk as well as teat skin habitats of dairy cows at species level of NAS. The objectives of this study were to (1) investigate the distribution patterns of NAS species on quarter level from aseptic milk and teat skin samples in dairy herds with AMS, and (2) examine if the isolated NAS influences the expression of *S. aureus* virulence factors controlled by the *agr* quorum sensing system. #### MATERIAL AND METHODS # Study population Eight dairy herds with Danish Holstein cows were selected for participating in a project on *Streptococcus agalactiae* and *Staphylococcus aureus* IMI. The herds had to have AMS with ≥ 3 milking robots and Bulk tank milk (**BTM**) PCR cycle threshold (**Ct**) value ≤ 32 for *Streptococcus agalactiae*. About 30 to 40 lactating dairy cows were selected randomly from each herd based on the criteria of having no clinical mastitis, somatic cell count (**SCC**) $\geq 200,000$ cells/mL at the previous milk recording, and not having been treated with antimicrobials during four weeks prior to sample collection. Teat skin swab and aseptic foremilk samples were collected from all quarters of selected cows. In the current study, samples from right hind and left front quarters of cows with an odd laboratory running number were included. Information about herd management practices and characteristics are listed in Table 1. #### Sampling Procedures Each herd was visited once to collect teat swab samples and aseptic quarter foremilk samples for bacterial culture. The farmers were asked to separate the selected cows and were fixed in head lockers or tied. Teat swab samples were collected according to the modified wet-dry method (Paduch et al., 2013). Briefly, the teat skin was sampled after cleaning with dry tissue paper. The first swab (Dakla Pack) was moistened with ¼ Ringer's solution (Oxoid, Denmark) and rotated 360° around the teat about one cm from the teat canal orifice. The same procedure was carried out with the dry swab. Immediately after sampling, the tips of both swabs were transferred into one tube with 2 mL of sterile Ringer's solution. Quarter milk samples were collected directly after harvesting the teat swab samples according to National Mastitis Council (1999) guidelines. Briefly, the teat end was thoroughly disinfected with cotton swabs drenched with ethanol (70%). Individual quarter foremilk samples were then aseptically collected in sterile screw-cap plastic tubes. New latex gloves were worn for each sampling procedure and each cow. Tubes containing the teat swabs and aseptic milk samples were stored in ice boxes and delivered to the microbiological laboratory within 12h. All study activities including farm visits, collection of samples and laboratory examination were carried out during the ### Laboratory Procedures ### Bacterial culture and MALDI-TOF assay period from February to May 2017. Bacterial culture for milk samples was conducted in accordance with National Mastitis Council recommendations (1999). After vortexing, 0.01 mL of the milk sample from each quarter was streaked using disposable calibrated inoculating loops on a quarter of a calf blood agar and another 0.01 mL was streaked on a quarter of a chromogenic agar selective for Staphylococcus species (Sa*Select*, Bio-Rad, Marnes-la-Coquette, France), and incubated at 37°C for 48 h (Dolder et al., 2017). Bacterial culture of teat swab samples was performed according to the procedures of Paduch et al. (2013). Briefly, the teat swab samples were vortexed before removing the swab tips from the tubes. The agar plates were inoculated with 0.1 mL of the swab solution. The inoculum was spread with a sterile Drigalski spatula onto the whole calf blood agar and Sa*Select* agar for each quarter and were incubated at 37°C for 48 h. Staphylococci species were identified on blood agar based on the phenotypic characteristics of their colonies including shape (round, glossy) according to according to National Mastitis Council guidelines (NMC, 2004) and their color on the selective media according to the manufacturer's instructions (Sa*Select*, Bio-Rad, Marnes-la-Coquette, France). We considered only quarter milk samples and teat skin swabs having three different *Staphylococcus* species per sample for further identification at species level. Cut-off ≥ 5 CFU on the plate was regarded as an acceptable cutoff point for definition of NAS IMI and NAS colonization of the teat apex (Thorberg et al., 2009). All isolates of NAS species that were identified on bacterial culture were subcultured on calf blood agar and incubated for 24h at 37 °C to be submitted freshly to MALDI-TOF (Microflex LT, Bruker Daltonics GmbH, Bremen, Germany) for identification. MALDI-TOF assay was conducted according to the manufacturer's instructions and Cameron et al. (2017) and all isolates were tested in triplicate. After two submissions to MALDI-TOF, the unidentified isolates were considered as "no possible identification". Cut-point threshold ≥ 1.7 was regarded as an acceptable and reliable threshold for identification of NAS species (Cameron et al., 2017). All identified NAS species isolates were stored in a sterile 10 % glycerol solution at −80°C for future use. ### Qualitative Beta-Galactosidase Reporter Plate Assay To examine if the NAS influence the expression of *S. aureus* virulence factors controlled by the *agr* quorum sensing system, a set of the identified NAS species was selected to represent all the identified species in milk and teat skin samples from the eight herds. NAS isolates were selected to represent all the identified NAS species (n=16) and to represent NAS isolates from milk and teat skin. *S. aureus* strain 8325-4 (Novick, 1967), which representing *agr* type I was used as a source of AIP-I containing supernatant. For the beta-galactosidase plate assays PC203 (*S. aureus* 8325-4, *spa::lacZ*), PC322 (*S. aureus* 8325-4, *hla::lacZ*), SH101F7 (*S. aureus* 8325-4, rnaIII::lacZ) (Chan and Foster, 1998; Canovas et al., 2016) were used. Strain 2898 of *Staphylococcus schleiferi* (positive control) was used to produce a supernatant that inhibits agr activity (Canovas et al., 2016), while 8325-4 (AIP-I) supernatant was used to induce agr. The reporter assays and analysis of supernatants of NAS cultures were conducted as described by Nielsen et al. (2010) and Canovas et al. (2016). Briefly, bacteria (S. aureus) were grown on tryptone soy agar (TSA) plates containing erythromycin (5µg/mL), and the β-galactosidase substrate, 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal) (150µg/mL). Overnight cultures were made by inoculating a single colony into 10 mL TSB in a glass vial, and let it shake vigorously (~ 200 rpm) at 37°C overnight (16 h). Dilutions in NaCl were made from each overnight culture. About $1000 \times \text{dilution}$ was used where the OD₆₀₀ of the $10 \times$ dilution adjusted to 0.35 before diluting then further to 0.0035. TSA was melted and cooled down in a water bath for approximately 45 minutes to 45°C where X-gal (150µg/mL) and erythromycin (5μg/mL) were added. About 2 mL dilution of cells is mixed with 50 mL of media in Greiner plates. After the cells and the media were mixed well, the plates were let stand on the table to harden, dry in a LAF-bench for 45 min. In total 16 wells (14 test isolates plus one positive and one negative controls, Figure 1) were made manually with a sterile sharp iron drill to make a ring shaped cut through the agar. The little piece of agar in the middle of the ring was then removed using a sterile scalpel. About 20 µL cell-free supernatants of the test NAS strains were added to wells formed in TSA plates containing reporter strains carrying lacZ fusions to either one of the agr controlled virulence genes hla, spa, or rnaIII as well as the β-galactosidase substrate, and X-Gal. The plates were incubated at 37°C for approximately 9 to 36 h until the blue color appeared on the plate. Downregulation was rated according to the presence or absence of the inhibition halo zone around the well. No zone means no effect, while presence of an inhibition halo zone means there is a downregulation effect and the degree of effect depend on the diameter of inhibition zone ranging from slight effect to severe effect. To get the cell-free supernatants of the test strains, an overnight culture of the selected NAS strains was prepared and on the following day, about 2 mL of the cell culture in Eppendorf tube were spin 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 down in a table-top centrifuge at 8000 rpm for three min. We took 20 μ L of the cell-free supernatants and placed them into the respective well. 228 229 230 231 232 233 234 235 226 227 ### Statistical analyses To investigate if teat apex colonization with a specific NAS species increased the odds of IMI with the given species in the corresponding quarter, a logistic mixed regression model with herd and cow treated as random intercept was used. Different models were therefore performed for each of the NAS IMI species recovered from the quarter milk samples. Statistical analysis was carried out in R version 3.3.3 (The R Foundation for Statistical Computing). Results for all analyses were considered significant as those yielding a P-value ≤ 0.05 . 236 238 237 RESULTS # NAS species in Milk
and Teat skin and their association Out of 150 cows considered in this study, eight cows were excluded for the reason of having dry 239 quarters (n=16). In total, 80% (228/284) quarters from 142 cows harbored at least one NAS species. 240 241 In total, MALDI-TOF identified 16 different NAS species. Out of these 16 species, 15 species were identified from teat skin, while only 10 species were identified from milk, and 9 species were 242 identified from both sites, Table 2. 243 244 From milk, 105 isolates of NAS were identified from 94 quarters of 47 cows, while 268 isolates were identified on the teat skin of 190 quarters of 95 cows. The number of quarters with mixed 245 (coinfections) infections (colonization or IMI) of NAS species (at least two different species) in teat 246 skin swabs samples (37%, 70/190) was higher than the number of quarters with mixed infections in 247 248 milk (12%, 11/94). S. equorum and S. haemolyticus were the most common combination of mixed NAS in teat skin (n=21 quarters) while in milk, no specific combination pattern but S. epidermidis 249 was the most common partner (n= 6 quarters). Additionally, 18 isolates of S. aureus were identified 250 as coinfections with the different NAS species from milk (n=4) and teat skin (n=14) samples, Table The most prevalent NAS species identified from milk were *S. epidermidis* (50%, 52/105), *S. haemolyticus* (15%, 16/105), and *S. chromogenes* (11%, 11/105) accounting for 76% of all NAS isolates from milk. On the other hand, the most identified NAS species from teat skin were *S. equorum* (43%, 116/268), *S. haemolyticus* (15.7%, 42/268), and *S. cohnii* (14.2%, 38/268) accounting for 73% of all NAS isolates from teat skin. Remarkably, six NAS species including *S. capitis, S. sciuri, S. succinus, S. vitulans, S. saprophyticus*, and *S. piscifermentans* were not shown in milk, while *S. simulans* was the only NAS species that was not isolated from teat skin. Distribution of NAS species varied among the eight herds (H1-H8) in both milk and teat skin samples. *S. equorum* was the most prevalent species in H1 (92%, 11/12), H2 (58%, 15/26), H3 (35%, 16/46), H4 (47%, 23/49), H5 (34%, 24/70) and H6 (29%, 21/72), while *S. haemolyticus* was most prevalent species in H7 (22%, 9/41) and *S. cohnii* in H8 (44%, 25/57). Teat apex colonization with *S. equorum* increased the odds of having IMI with *S. equorum* significantly, Table 2. Isolation of *S. chromogenes, S. cohnii, S. epidermidis, S. haemolyticus* and *S. xylosus* from teat skin was not found ### Microbial Interactions of NAS species with S. aureus to increase odds of IMI for these NAS species. Out of the total identified NAS isolates (n= 373), 81 isolates (32 milk and 49 teat skin), representing 16 different species from 58 dairy cows were selected to examine their ability to interfere with the *agr* quorum sensing system of *S. aureus*. In 58 (71.6%), 55 (67.9%), and 49 (60.5%) out of 81 of the staphylococcal supernatants of the tested NAS isolates, we observed reduced expressions of *hla*, rna-III, and *spa*, respectively (Figure 1; Table 3) indicating that NAS species interfere with the *agr* quorum sensing system of *S. aureus*. NAS isolates of the same species from different herds showed different patterns on *agr* quorum sensing system of *S. aureus*. For example, isolates of *S. equorum* from milk of H1, H3 and H5 downregulated the *agr* quorum sensing system of *S. aureus*, while *S. equorum* isolates from H2, and H5 had no effect indicating the important role of herd characteristics and management on the pattern of microbial interactions. The pattern of cross talk between NAS species and *S. aureus* virulence gene varied according to the involved NAS species. Our NAS isolates showed three main different patterns; (a) downregulation effect represented by *S. chromogenes* (milk), *S. simulans* (milk), *S. xylosus* (milk and teat), *S. saprophyticus* (teat), *S. warneri* (milk and teat), *S. haemolyticus* (milk and teat), *S. piscifermentans* (teat), and *S. arlettae* (teat), (b) no effect represented by *S. sciuri* (teat), and *S. vitulinus* (teat). The third pattern (c), variable effect, was represented by *S. epidermidis* (milk and teat), *S. equorum* (milk and teat), *S. hominis* (milk and teat), *S. cohnii* (milk and teat), and *S. succinus* (teat), Table 3. 288 DISCUSSION To the best of our knowledge, this is the first study describing the distribution patterns of NAS species on quarter level from milk and teat skin in dairy herds with AMS. Furthermore, we have demonstrated for the first time the microbial interactions and cross-talk between different NAS species isolated from milk and teat skin, and *S. aureus* as mediated via the *agr* quorum sensing system and the resulting pattern on aspects of virulence and colonization of *S. aureus*. # NAS species from Milk and Teat skin and their association We have identified 10 out of 16 NAS species in milk, where *S. epidermidis*, *S. haemolyticus* and *S. chromogenes* were most frequently isolated, confirming their major role in causing IMI in dairy herds with AMS. This comes in agreement with the findings of previous studies (Piessens et al., 2011; Dolder et al., 2017; Condas et al., 2017). However, other studies have reported different predominant NAS species associated with bovine IMI (Supré et al., 2011; Fry et al., 2014). De Visscher et al., (2016a) concluded that *S. chromogenes*, *S. sciuri*, and *S. cohnii* were the predominant species causing IMI in freshly calved heifers and dairy cows. These variations among the findings of different studies could be caused by the differences in study design, type of milking system, species identification methods and criteria of IMI definition, different herd management, and species-specific characteristics of NAS (Zadoks and Watts, 2009). Concerning the teat apex colonization, we identified 15 out of 16 identified NAS species with different frequencies. However; *S. equorum, S. haemolyticus*, and *S. cohnii* were identified as the most commonly isolated NAS species from teat skin across the eight herds. This finding indicates that teat skin is a natural habitat for a wider range of NAS species in comparison to those species found in milk, which could indicate that not all NAS species are adapted to the milk habitat or were equally able to invade the teat canal. In line with this statement, six NAS species including *S. capitis, S. sciuri, S. succinus, S. vitulinus, S. saprophyticus*, and *S. piscifermentans* have never been shown in milk, while *S. simulans* was the only NAS species to never have been isolated from teat skin. Falentin et al. (2016) reported that *Staphylococcus* was the dominant genus in the bovine teat microbiota (an average abundance of 23.8%) with *S. equorum* and *S. aureus* as the most commonly identified species (~13%) of staphylococci. Therefore, the wide range of NAS species could actually be part of the normal microbiota of the teat skin. Our findings are comparable to the findings of previous studies, which isolated NAS from teat apex (Piessens et al., 2011; De Visscher et al., 2014, 2016b). Consistent with Braem et al. (2013) who found that *S. equorum*, and *S. haemolyticus* were the most prevalent NAS species on teat skin. Similarly, De Visscher et al. (2014) reported that the most prevalent species in the parlor-related extramammary niches were *S. cohnii*, *S. fleurettii*, and *S. equorum* in herd 1–3, respectively, while *S.* haemolyticus and S. sciuri were present in all herds. Based on phenotyping, Taponen et al. (2008) found S. equorum and S. sciuri, and based on ribotyping, S. succinus and S. xylosus, as the predominant NAS species in extramammary samples (udder skin, teat apices and teat canals) of lactating dairy cows of one herd. The distribution of NAS species differed widely across the eight herds. For instance, *S. arlettae* and *S. sciuri* were the most prevalent species in H7, while *S. haemolyticus* and *S. chromogenes* were the most prevalent species in H5. This marked variation in the distribution of NAS species across the study herds could indicate that the NAS distribution is "herd-specific". Similar findings were reported by Dolder et al. (2017) from Switzerland, and Condas et al. (2017) from Canada. Species-specific characteristics of NAS, herd-specific management and study design could be a possible explanation for the difference in species distribution between studies and herds. As shown in Table 1, our study herds showed different management practices in respect to type and management of robot, teat spray and robot disinfection, type of bedding and floor. Similar findings were reported in conventional dairy herds by De Visscher et al. (2014) who reported that *S. cohnii* was common on both teat apex and in milk, while *S. haemolyticus* in herd 1, *S. fleurettii* in herd 2 and *S. equorum* in herd 3 were more common on teat apex than in milk. While teat apex colonization with *S. equorum* increased the odds of IMI in the same quarter, however, we could not find such significant association for other species such as *S. chromogenes*, *S. cohnii*, *S. epidermidis*, *S. haemolyticus*, and *S. xylosus*. A similar findings have been reported by previous studies (Piepers et al., 2011; Quirk et al., 2012; Braem et al., 2013). Quirk et al. (2012) found that *S. cohnii* was the only NAS that did not concurrently cause IMI and colonize the teat canal. Therefore, interchange between NAS species colonizing the teat skin and causing IMI is possible but that could be characteristic for specific NAS species (Adkins et al., 2018). De Visscher et al. (2014) found a relationship between detection of NAS on teat apex and in milk, but could not determine the direction of the relationship. In other words: we do not know if NAS in milk originates from the teat skin or if the teat skin is colonized because of intramammary shedding of NAS. Dolder et al. (2017)
suggested that the possible causes for a positive association might be a combination of distinct virulence factors, synergism in bacteria metabolism, and environmental conditions such as poor hygiene; however, the true underlying mechanisms remain unclear. 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 350 351 352 353 354 355 ### Microbial Interactions of NAS species with S. aureus Previous studies have documented the agr cross-inhibition between S. aureus and other staphylococcal species mainly of human and non-bovine origin leading to an inhibition of the secreted virulence factors including major toxins such as alpha-hemolysin and the phenole soluble modulins (Otto et al., 2001; Canovas et al., 2016; Paharik et al., 2017). Our study confirms that similar patterns of microbial interactions exist between NAS species isolated from different habitats in dairy cows and S. aureus. Several staphylococcal species had the ability of cross interfering with the S. aureus agr quorum sensing system. These findings could be highly relevant to understand the role of NAS in udder health and may explain conflicting results reported from NAS in previous studies. Some studies reported that presence of NAS in the same habitat (e.g., milk) would provide a protective effect against IMI with S. aureus (De Vliegher et al., 2004; Piepers et al., 2011; Vanderhaeghen et al., 2014). Dos Santos Nascimento et al. (2005) reported that some NAS species from milk can produce antimicrobial substances "bacteriocins" inhibiting the growth of some major mastitis pathogens, including S. aureus. Recently, Goetz et al. (2017) reported that isolates of S. chromogenes and S. simulans significantly reduced biofilm formation in approximately 80% of the staphylococcal species tested, including S. aureus. Furthermore, previous studies confirmed the protective role of S. chromogenes against IMI with S. aureus (Matthews et al., 1990; De Vliegher et al., 2003, 2004). Other research studies could not demonstrate a protective effect of NAS against major pathogens including S. aureus (Vanderhaeghen et al., 2014) or S. aureus and S. uberis (Zadoks et al. 2001). Previous reports showed that presence of NAS increased the odds of having a new S. aureus IMI (Parker et al., 2007; Reyher et al., 2012). In the current study, we have shown different patterns for different NAS species including NAS distribution within AMS herds, and sample type variation. These different patterns could offer one or more explanation for the findings of the previous studies on NAS epidemiology and characteristics. We want to highlight an important point of difference between our findings and previous studies. Most of the previous studies investigated the relationship and interaction between S. aureus and NAS species based specifically on the aspect of antimicrobial interaction where NAS act by producing antimicrobial compounds that eliminate S. aureus from the surrounding environment (De Vliegher et al., 2004; dos Santos Nascimento et al., 2005). Meanwhile, our unique findings were based exclusively on investigation of the crosstalk between S. aureus and NAS species via examining the influence of NAS species on the expression of S. aureus virulence factors controlled by agr quorum sensing system. For some species, all isolates (e.g., S. chromogenes, S. xylosus, S. simulans and S. saprophyticus) repressed agr activity to some degree, whereas for other species (e.g., S. epidermidis, S. equorum, S. hominis, and S. cohnii) only some of the isolates produced an agr inhibitory activity in culture supernatants. Although, we do not know the exact mechanism of repression in these isolates, but we anticipate that they produce AIP-like molecules that inhibit the S. aureus quorum sensing system. Canovas et al., (2016) demonstrated that S. schleiferi produce an AIP variant that has very strong agr repressing activity. However, in that study the staphylococcal species originated from different animal host species such as dog, horse, cow, bird, and cat. Some NAS species are common to many hosts such as S. epidermidis, S. haemolyticus, S. saprophyticus, S. simulans, and S. xylosus. While other NAS species such as S. caprae, S. chromogenes, S. felis, S. gallinarum and S. schleiferi are the most common species in small ruminants (Pengov, 2001), cattle (Carretto et al., 2005; Condas et al., 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 2017), cats (Lilenbaum et al., 1999), chickens (Aarestrup et al., 2000), and dogs (Penna et al., 2000), respectively, while they are rare in other host species. Here, we show that NAS species found on teat skin and in milk of dairy cattle, also have the potential of repression *agr* activity. Our findings indicate that NAS species originating from the teat skin environment numerically appear to be more likely repressive to *S. aureus*, which has to be confirmed with a larger sample size and further investigation. It was reported that crosstalk involving agr interference has been observed as a result of co-habitual competition within the same ecological niche (Condas et al., 2017). In this study, we have identified 14 quarters harbor different NAS species having co-existence with *S. aureus* from milk (n=4) and from teat (n=14). Therefore, we speculate that the observed crosstalk may be explained partially by the co-habitual competition between *S. aureus* and NAS species within the same niche. The selection criteria for the study herds and inclusion criteria of dairy cows and quarters should be taken in mind in terms of the generalizability of the obtained findings. We investigated NAS of cows with elevated SCC in AMS herds, which could differ from NAS derived from cows with low SCC or cows milked in other milking systems. In other words, AMS herds may have different NAS species with different characteristics compare to conventional milking systems. That could be argued by the no human contact to the udder tissue under AMS environment. Moreover, cows are milked several times (up to 5) daily with the same robot (Rasmussen, 2006). As the effect of NAS on SCC is species specific (Supré et al., 2011, Fry et al., 2014) with higher SCC reported from *S. chromogenes* and *S. simulans* (Fry et al. 2014), we may have selected for specific NAS species with more pronounced effect on SCC. The finding of interactions between *S. aureus* and different NAS species causing IMI and/or colonizing teat skin of dairy cows opens the door for identification of new and effective nonantibiotic anti-virulence strategies targeting *S. aureus* infections as alternative to antimicrobials or biocides used for *S. aureus* mastitis treatment and control. Further studies are necessary in the future such as field studies with larger samples sizes and additional assays of NAS species isolates e.g. quantitative beta-galactosidase reporter plate assay to identify and quantify the cross-talk patterns between *S. aureus* and different NAS species. 429 CONCLUSION In total, 15 different NAS species were identified from teat skin whereas 10 species were identified from milk. *S. epidermidis, S. haemolyticus* and *S. chromogenes* were the most prevalent species in milk accounting for 76%, while *S. equorum, S. haemolyticus* and *S. cohnii* were the most prevalent species in teat skin accounting for 73%. Staphylococcal supernatants of NAS species isolated from milk and teat skin interfered with the *agr* quorum sensing system of *S. aureus*. The pattern of cross talk between NAS species and *S. aureus* virulence gene expression varied according to the involved NAS species. Our NAS isolates showed three patterns; (a) downregulation effect e.g., *S. chromogenes* (milk), (b) no effect e.g., *S. sciuri* (teat), and (c) variable effect e.g., *S. epidermidis* (milk and teat). NAS species, habitat type, and herd factors affect NAS and *S. aureus* crosstalk patterns. The findings of this study will boost our knowledge and understanding of the epidemiology of NAS species and their relation with *S. aureus* IMI and/or colonization of teat skin of dairy cows. ### **ACKNOWLEDGMENTS** The study was part of the research project 'STOPMAST' financed by the Danish Milk Levy Foundation. We gratefully acknowledge the efforts of Nanna Skjølstrup and Louise Mathiasen for their help with sampling and examination of samples by bacterial culture. We would also like to thank Bettina Nonnemann for conducting the MALDI-TOF assay. Thanks to the Danish farmers for their help and making their cows available for our study. Thanks to the milk quality technicians at SEGES helping taking milk samples and to the laboratory technicians at DTU and UCPH for their technical and logistic support. Yasser Mahmmod was supported by the Islamic Development Bank 450 Merit Scholarship Program (IDB-MSP), Jeddah, Saudi Arabia. 451 452 **REFERENCES** - 453 Aarestrup, F.M., Y. Agersø, P. Ahrens, J.C. Jorgensen, M. Madsen, and L.B. Jensen. 2000. - Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Vet. - 455 Microbiol. 74:353–364. - 456 Adkins, P.R.F., S. Dufour, J.N. Spain, M.J. Calcutt, T.J. Reilly, G.C. Stewart, and J.R. Middleton. - 457 2018. Molecular characterization of non-aureus Staphylococcus spp. from heifer intramammary - infections and body sites. J Dairy Sci. doi: 10.3168/jds.2017-13910 (In press). - Braem, G., S. De Vliegher, B. Verbist, V. Piessens, E. Van Coillie, L. De Vuyst, and F. Leroy. 2013. - 460 Unraveling the microbiota of teat apices of clinically healthy lactating dairy cows, with special - emphasis on coagulase-negative staphylococci. J. Dairy Sci. 96:1499–1510. - Cameron, M., H.W. Barkema, J. De Buck, S. De Vliegher, M. Chaffer, J. Lewis, and G.P. Keefe. - 463 2017. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted - laser desorption/ionization time-of-flight mass spectrometry
using a direct transfer protocol. J. - 465 Dairy Sci. 100:2137-2147. - 466 Canovas, J., M. Baldry, M.S. Bojer, P.S. Andersen, P.K. Grzeskowiak, M. Stegger, P. Damborg, - 467 C.A. Olsen, and H. Ingmer 2016. Cross-talk between Staphylococcus aureus and other - staphylococcal species via the *agr* quorum sensing system. Front. Microbiol. 7:1733. - 469 Carretto, E., D. Barbarini, I. Couto, D. De Vitis, P. Marone, J. Verhoef, H. DeLencastre, and S. - Brisse. 2005. Identification of coagulase-negative staphylococci other than *Staphylococcus* - 471 *epidermidis* by automated ribotyping. Clin. Microbiol. Infect. 11:177–184. - Chan, P.F., and S.J. Foster. 1998. The role of environmental factors in the regulation of virulence- - determinant expression in *Staphylococcus aureus* 8325-4. Microbiology 144:2469–2479. - 474 Condas, L.A.Z., J. De Buck, D.B. Nobrega, D.A. Carson, J.P. Roy, G.P. Keefe, T.J. DeVries, J.R. - 475 Middleton, S. Dufour, and H.W. Barkema. 2017. Distribution of non-aureus staphylococci species - in udder quarters with low and high somatic cell count, and clinical mastitis. J. Dairy Sci. - 477 100:5613-5627. - De Visscher, A., K. Supré, F. Haesebrouck, R.N. Zadoks, V. Piessens, E. Van Coillie, S. Piepers, and - S. De Vliegher. 2014. Further evidence for the existence of environmental and host-associated - species of coagulase-negative staphylococci in dairy cattle. Vet. Microbiol. 172:466-474. - De Visscher, A., S. Piepers, F. Haesebrouck, and S. De Vliegher. 2016a. Intramammary infection - with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and - effect on udder health. J. Dairy Sci. 99:6457-6469. - De Visscher, A., S. Piepers, F. Haesebrouck, and S. De Vliegher. 2016b. Teat apex colonization with - coagulase-negative Staphylococcus species before parturition: Distribution and species-specific - 486 risk factors. J. Dairy Sci. 99:1427-1439. - De Vliegher, S., G. Opsomer, A. Vanrolleghem, L.A. Devriese, O.C. Sampimon, J. Sol, H.W. - Barkema, F. Haesebrouck, and A. de Kruif. 2004. *In vitro* growth inhibition of major mastitis - 489 pathogens by *Staphylococcus chromogenes* originating from teat apices of dairy heifers. Vet. - 490 Microbiol. 101:215–221. - De Vliegher, S., H. Laevens, L.A. Devriese, G. Opsomer, J.L. Leroy, H.W. Barkema, and A.W. De - Kruiff. 2003. Prepartum teat apex colonization with *Staphylococcus chromogenes* in dairy heifers - is associated with low somatic cell count in early lactation. Vet. Microbiol. 92:245–252. - Dohmen, W., F. Neijenhuis, and H. Hogeveen. 2010 Relationship between udder health and hygiene - on farms with an automatic milking system. J. Dairy Sci. 93:4019-4033. - Dolder, C., B.H.P. van den Borne, J. Traversari, A. Thomann, V. Perreten, and M. Bodmer 2017. - 497 Quarter- and cow-level risk factors for intramammary infection with coagulase-negative - staphylococci species in Swiss dairy cows. J. Dairy Sci. 100:5653-5663. - 499 Dos Santos Nascimento, J., P.C. Fagundes, M.A. de Paiva Brito, K.R. dos Santos, and M. do Carmo - de Freire Bastos. 2005. Production of bacteriocins by coagulase-negative staphylococci involved - in bovine mastitis. Vet. Microbiol. 106:61–71. - Falentin, H., L. Rault, A. Nicolas, D.S. Bouchard, J. Lassalas, P. Lamberton, J.M. Aubry, P.G. - Marnet, Y. Le Loir, and S. Even. 2016. Bovine teat microbiome analysis revealed reduced alpha - diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. - Front. Microbiol. 7:480. - 506 Fry, P. R., J. R. Middleton, S. Dufour, J. Perry, D. Scholl, and I. Dohoo. 2014. Association of - 507 coagulase-negative staphylococci species, mammary quarter somatic cell count, and persistence of - intramammary infection in dairy cattle. J. Dairy Sci. 97:4876–4885. - 509 Goetz, C., Y.D.N. Tremblay, D. Lamarche, A. Blondeau, A.M. Gaudreau, J. Labrie, Malouin, F. and - M. Jacques. 2017. Coagulase-negative staphylococci species affect biofilm formation of other - coagulase-negative and coagulase-positive staphylococci. J. Dairy Sci. 100:6454-6464. - 512 Gomes, F., and M. Henriques. 2016. Control of bovine mastitis: old and recent therapeutic - approaches. Curr. Microbiol. 72:377–382. - Hovinen, M., and S. Pyörälä. 2011. Invited review: udder health of dairy cows in automatic milking. - 515 J. Dairy Sci. 94:547-562. - 516 Le, K.Y., and M. Otto. 2015. Quorum-sensing regulation in staphylococci an overview. Front - 517 Microbiol. 6:1174. - Lilenbaum, W., A.L. Esteves, and G.N. Souza. 1999. Prevalence and antimicrobial susceptibility of - staphylococci isolated from saliva of clinically normal cats. Lett. Appl. Microbiol. 28:448–452. - 520 Matthews, K.R., R.J. Harmon, and B.A. Smith. 1990. Protective effect of Staphylococcus - *chromogenes* infection against *Staphylococcus aureus* infection in the lactating bovine mammary - 522 gland. J. Dairy Sci. 73:3457-3462. - National Mastitis Council, 1999. Laboratory Handbook on Bovine Mastitis. National Mastitis - 524 Council, Madison, WI. - National Mastitis Council, 2004. Microbiological Procedures for the Diagnosis of Bovine Udder - Infections and Determination of Milk Quality, 4th ed. NMC, Madison, WI. - Nielsen, A., K.F. Nielsen, D. Frees, T.O. Larsen, and H. Ingmer. 2010. Method for screening - 528 compounds that influence virulence gene expression in *Staphylococcus aureus*. Antimicrob. - 529 Agents Chemother. 54:509-512. - Novick, R.P. 1967. *In vivo* transmission of drug resistance factors between strains of *Staphylococcus* - 531 *aureus*. J. Exp. Med. 125:45–59. - 532 Otto, M., H. Echner, W. Voelter, and F. Gotz. 2001. Pheromone cross-inhibition between - 533 Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69:1957–1960. - Paduch, J.H., E. Mohr, and V. Kromker. 2013. The association between bedding material and the - bacterial counts of *Staphylococcus aureus*, *Streptococcus uberis* and coliform bacteria on teat skin - and in teat canals in lactating dairy cattle. J. Dairy Res. 80:159-164. - Paharik, A.E., C.P. Parlet, N. Chung, D.A. Todd, E.I. Rodriguez, M.J. Van Dyke, N.B. Cech, and - A.R. Horswill. 2017. Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus - Colonization and Skin Infection by Blocking Quorum Sensing. Cell Host Microbe. 22:746-756. - Painter, K.L., A. Krishna, S. Wigneshweraraj, A.M. Edwards, 2014. What role does the quorum- - sensing accessory gene regulator system play during *Staphylococcus aureus* bacteremia? Trends - 542 Microbiol. 22:676-685. - Parker, K.I., C. Compton, F.M. Anniss, A. Weir, C. Heuer, S. McDougall. 2007. Subclinical and - clinical mastitis in heifers following the use of a teat sealant precalving. J. Dairy Sci. 90:207–218. - Pengov, A. 2001. The role of coagulase-negative *Staphylococcus* spp. and associated somatic cell - counts in the ovine mammary gland. J. Dairy Sci. 84:572–574. - Penna, B., R. Varges, L. Medeiros, G.M. Martins, R.R. Martins, and W. Lilenbaum. 2010. Species - distribution and antimicrobial susceptibility of staphylococci isolated from canine otitis externa. - 549 Vet. Dermatol. 21:292-296. - Piepers, S., K. Peeters, G. Opsomer, H. W. Barkema, K. Frankena, and S. De Vliegher. 2011. - Pathogen group specific risk factors at herd, heifer and quarter levels for intramammary infections - in early lactating dairy heifers. Prev. Vet. Med. 99:91–101. - Piessens, V., E. Van Coillie, B. Verbist, K. Supré, G. Braem, A. Van Nuffel, L. De Vuyst, M. - Heyndrickx, and S. De Vliegher. 2011. Distribution of coagulase-negative *Staphylococcus* species - from milk and environment of dairy cows differs between herds. J. Dairy Sci. 94:2933–2944. - Quirk, T., L.K. Fox, D.D. Hancock, J. Capper, J. Wenz, and J. Park. 2012. Intramammary infections - and teat canal colonization with coagulase-negative staphylococci after postmilking teat - disinfection: species-specific responses. J. Dairy Sci. 95:1906-1912. - Rasmussen M. D. 2006. Automatic milking and udder health: an overview. World Buiatrics - 560 Congress 2006 Nice, France. Accessed on 19 July 2017. - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.563.9122&rep=rep1&type=pdf - Reyher, K.K., I.R. Dohoo, D.T. Scholl, and G.P. Keefe. 2012. Evaluation of minor pathogen - intramammary infection, susceptibility parameters, and somatic cell counts on the development of - new intramammary infections with major mastitis pathogens. J. Dairy Sci. 95:3766–3780. - Sawant, A.A., B.E. Gillespie, S.P. Oliver. 2009. Antimicrobial susceptibility of coagulase-negative - *Staphylococcus* species isolated from bovine milk. Vet. Microbiol. 134:73-81. - 567 Singh, R., and P. Ray. 2014. Quorum sensing-mediated regulation of staphylococcal virulence and - antibiotic resistance. Future Microbiol. 9:669-681. - Souza, F.N., S. Piepers, A.M.M.P. Della Libera, M.B. Heinemann, M.M. Cerqueira, and S. De - Vliegher. 2016. Interaction between bovine-associated coagulase-negative staphylococci species - and strains and bovine mammary epithelial cells reflects differences in ecology and - epidemiological behavior. J. Dairy Sci. 99:2867-2874. - 573 Supré, K., F. Haesebrouck, R.N. Zadoks, M. Vaneechoutte, S. Piepers, and S. De Vliegher. 2011. - Some coagulase-negative *Staphylococcus* species affect udder health more than others. J. Dairy - 575 Sci. 94:2329–2340. - 576 Taponen, S., J. Björkroth, and S. Pyörälä. 2008. Coagulase-negative staphylococci isolated from - bovine extramammary sites and intramammary infections in a single dairy herd. J. Dairy Res. - 578 75:422-429. - 579 Thorberg, B.M., M.L. Danielsson-Tham, U. Emanuelson, and K. Persson Waller. 2009. Bovine - subclinical mastitis caused by different types of coagulase-negative staphylococci. J. Dairy Sci. - 581 92:4962-4970. - Vanderhaeghen, W., S. Piepers, F. Leroy, E. Van Coillie, F. Haesebrouck, and S. De Vliegher. 2015. - Identification, typing, ecology and epidemiology of coagulase negative *staphylococci* associated -
with ruminants. Vet. J. 203:44-51. - Vanderhaeghen, W., S. Piepers, F. Leroy, E. Van Coillie, F. Haesebrouck, and S. De Vliegher. 2014. - Invited review: Effect, persistence, and virulence of coagulase-negative *Staphylococcus* species - associated with ruminant udder health. J. Dairy Sci. 97:5275–5293. - Zadoks, R.N., and J.L. Watts. 2009. Species identification of coagulase-negative staphylococci: - Genotyping is superior to phenotyping. Vet. Microbiol. 134:20–28. - Zadoks, R.N., H.G. Allore, H.W. Barkema, O.C. Sampimon, G.J. Wellenberg, Y.T. Grohn, and Y.H. - Schukken. 2001. Cow- and quarter-level risk factors for *Streptococcus uberis* and *Staphylococcus* - 592 *aureus* mastitis. J. Dairy Sci. 84:2649–2663. Table 1. Description of herd management practices in the study herds with automatic milking systems with respect to housing, milking and robot hygiene. | Herd | Her | Milk | Type of | Robot cleaning (per day) | Robot | Teat spray | Floor | Bedding ^b | Additions | No of cows
with SCC > | No of | |------|-----------|---------------------|---------------|---------------------------------|-------------------------|-------------------|---------------------|----------------------|-----------------------|--------------------------|-------------| | code | d
size | production | robot
(no) | | disinfection | | | | to beds | 200,000 | cows | | | a | energy
corrected | (110) | | | | | | | cells/mL | sampl
ed | | | | milk/cow/year | | | | | | | | CCIIS/IIIL | cu | | H1 | 267 | 10,973 | Lely A4 | 2 x robot automatic wash | Astri-L ^c | JOPO winterspray | Solid, slatted in | Chopped straw 2 | Hydrated | 43 | 13 | | | 207 | 10,575 | (4) | 2 x high pressure washer | 115011 12 | (0.3 % iodine) | front of robots and | x day | lime | 13 | 10 | | | | | (') | Brushes in chlorine | | (0.5 /0 1041110) | water trough (1/3) | A day | 11110 | | | | H2 | 198 | 11,098 | Lely A2 | 2 x robot automatic wash | Astri-L ^c | Kenostart | Solid, slatted in | Chopped straw 3 | Ökosan | 43 | 17 | | | | , | (3) | 2 x high pressure washer | | (0.3 % iodine) | front of robots and | x week | GFR^{g} | | | | | | | ` ' | | | , | water trough (1/3) | | | | | | Н3 | 344 | 10,733 | Lely A2 | 2 x robot automatic wash | Astri-L ^c | HM VIR GOLD | Solid, slatted in | Chopped straw 2 | Sanibed ^h | 74 | 20 | | | | | (7) | 2 x high pressure washer | | (1 % lactic acid) | front of robots and | x day | | | | | | | | | Brushes in washing machine | | | water trough (1/3) | • | | | | | H4 | 298 | 11,412 | Lely A3 | 3 x robot automatic wash | Oxivit | NOVA DIP | Statted, rubber in | Chopped straw 1 | Limestone | 60 | 20 | | | | | (5) | $2 \times soap + brush + water$ | Aktiv Plus ^d | (0.75 % iodine) | front of robots and | x day | | | | | | | | | Brushes in chlorine | | | feeding table | | | | | | H5 | 218 | 9,024 | Lely A2 | 2 x robot automatic wash | Oxivit | JOPO winterspray | Slatted | Chopped straw 1 | Hydrated | 49 | 20 | | | | | (4) | 2 x foam + water Brushes in | Aktiv Plus ^d | (0.3 % iodine) | | x day | lime | | | | | | | | acid | | | | | | | | | Н6 | 247 | 11,701 | Lely A3 | 3 x robot automatic wash | $Solox^e$ | Kenostart | Slatted | Chopped straw 2 | Basic | 59 | 20 | | | | | (4) | 2 x high pressure washer | | (0.3 % iodine) | | x day | Strømiddel | | | | | | | | | | | | | Destek ^m | | | | H7 | 333 | 11,909 | DeLaval | 2 x robot automatic wash | PeraDis ^f | ProActive Plus | Statted, rubber in | Chopped straw 2 | Limestone | 50 | 20 | | | | | (6) | 1-2 x high pressure washer | | (0.15 % iodine) | front of robots and | x day | | | | | | | | | DeLaval soap + water | | | feeding table | | | | | | H8 | 244 | 11,020 | DeLaval | 2 x robot automatic wash | PeraDis ^f | ProActive Plus | Slatted | Chopped straw + | Destek | 79 | 20 | | | | | (4) | 1-2 x high pressure washer | | (0.15 % iodine) | | wood showings 1 | CombiRen ⁿ | | | | | | | | | | | | x day | | | | a Includes both lactating and dry cows; ball herds had stalls with mattresses; pH < 3, hydrogenperoxide, peracetic acid, and acetic acid; pH = 1, peracetic acid, acetic acid, and hydrogenperoxide; pH < 1, peracetic acid, hydrogenperoxide, and acetic acid; pH = 0.5, hydrogenperoxide, and peracetic acid; pH = 12, calcium compounds; pH = 2.9, Salicylic acid; pH = 8, Tosylchloramide sodium; pH = 8-10, Tosylchloramide sodium Table 2. Species distribution and association of NAS isolates from aseptic quarter milk and teat skin samples collected from 142 cows (284 quarters) in eight dairy herds with automatic milking systems. | NAS species (n) ^a | Sample | type (%) | OR ^b (95% CI) | P-value | | |------------------------------------|--------------|--------------|--------------------------|---------|--| | | Milk (n=105) | Teat (n=268) | _ | | | | Staphylococcus arlettae (12) | 1 (0.9) | 11 (4.1) | | | | | Staphylococcus capitis (3) | | 3 (1.1) | | | | | Staphylococcus chromogenes (16) | 11 (10.5) | 5 (1.9) | 7.6e-1 (NA - 2.4e+7) | 0.85 | | | Staphylococcus cohnii (43) | 5 (4.8) | 38 (14.2) | 2.23 (0.11 - 15.6) | 0.48 | | | Staphylococcus epidermidis (60) | 52 (49.5) | 8 (3.0) | 0.88 (0.05 - 5.07) | 0.90 | | | Staphylococcus equorum (122) | 6 (5.7) | 116 (43.3) | 4.9e-1 (NA - 8.9e+7) | 0.016* | | | Staphylococcus haemolyticus (58) | 16 (15.2) | 42 (15.7) | 1.13 (0.17 - 4.24) | 0.55 | | | Staphylococcus hominis (17) | 3 (2.9) | 14 (5.2) | | | | | Staphylococcus piscifermentans (2) | | 2 (0.8) | | | | | Staphylococcus saprophyticus (5) | | 5 (1.9) | | | | | Staphylococcus sciuri (9) | | 9 (3.4) | | | | | Staphylococcus simulans (2) | 2 (1.9) | | | | | | Staphylococcus succinus (2) | | 2 (0.8) | | | | | Staphylococcus vitulinus (1) | | 1 (0.4) | | | | | Staphylococcus warneri (2) | 1 (0.9) | 1 (0.4) | | | | | Staphylococcus xylosus (19) | 8 (7.6) | 11 (4.1) | 3.8e-1 (NA - 3.4e+7) | 0.49 | | ^{601 &}lt;sup>a</sup> Staphylococcus arlettae, S. warneri, and S. hominis were not considered in the statistical analysis because of the few number of observations (< 5), while S. capitis, S. piscifermentans, S. ⁶⁰³ saprophyticus, S. sciuri, S. simulans, S. succinus, and S. vitulinus were not isolated from milk and/or teat skin. ⁶⁰⁵ b OR= Odds ratio; * significance at < 0.05 Table 3: Results of 81 staphylococcal strains, their origin, and hla, spa, and RNA III -regulation activity with regard to sample type | NAS species | hla | | | spa | | | | rna_III | | | Overall number of NAS per sample type | | Number of <i>S. aureus</i> isolated from same sample type | | | | |--|----------|----|----------|-----|----------|----|----------|---------|----------|----|---------------------------------------|----|---|----------|----------|----------| | - | Milk (n) | | Teat (n) | | Milk (n) | | Teat (n) | | Milk (n) | | Teat (n) | | Milk (n) | Teat (n) | Milk (n) | Teat (n) | | | Yes* | No | Yes | No | _ | | | | | Staphylococcus arlettae (n=5) | - | 1 | 4 | - | - | 1 | 4 | - | - | 1 | 4 | - | 1 | 4 | - | 3 | | Staphylococcus capitis (n=3) | - | - | 2 | 1 | - | - | 1 | 2 | - | - | 2 | 1 | - | 3 | - | - | | Staphylococcus chromogenes (n=8) | 4 | - | 4 | - | 4 | - | 4 | - | 4 | - | 4 | - | 4 | 4 | - | - | | Staphylococcus cohnii (n= 7) | 2 | 1 | 1 | 3 | 2 | 1 | 1 | 3 | 2 | 1 | 1 | 3 | 3 | 4 | 1 | 4 | | Staphylococcus epidermidis (n= 10) | 2 | 3 | 4 | 1 | 1 | 4 | 2 | 3 | 1 | 4 | 2 | 3 | 5 | 5 | 1 | 1 | | Staphylococcus equorum (n= 9) | 3 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 5 | 4 | 1 | 3 | | Staphylococcus haemolyticus (n= 8) | 4 | - | 4 | - | 1 | 3 | 3 | 1 | 4 | - | 4 | - | 4 | 4 | - | - | | Staphylococcus hominis (n= 6) | 1 | 2 | 1 | 2 | 1 | 2 | - | 3 | 1 | 2 | 1 | 2 | 3 | 3 | - | - | | Staphylococcus piscifermentans $(n=2)$ | - | - | 2 | - | - | - | 2 | - | - | - | 2 | - | - | 2 | - | 1 | | Staphylococcus saprophyticus (n= 4) | - | - | 4 | - | - | - | 3 | 1 | - | - | 4 | - | - | 4 | - | 1 | | Staphylococcus sciuri (n= 4) | - | - | - | 4 | - | - | - | 4 | - | - | - | 4 | - | 4 | 1 | - | | Staphylococcus simulans (n= 2) | 2 | - | - | - | 2 | - | - | - | 2 | - | - | - | 2 | - | - | - | | Staphylococcus succinus (n= 2) | - | - | 1 | 1 | - | - | 1 | 1 | - | - | 1 | 1 | - | 2 | - | - | | Staphylococcus vitulinus (n= 1) | - | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | 1 | - | - | | Staphylococcus warneri (n= 2) | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | 1 | 1 | - | - | | Staphylococcus xylosus (n= 8) | 4 | - | 4 | - | 4 | - | 4 | - | 4 | - | 4 | - | 4 | 4 | - | 1 | | Total (N=81) | 23 | 9 | 35 | 14 | 20 | 12 | 29 | 20 | 22 | 10 | 33 | 16 | 32 | 49 | 4 | 14 | ^{*}Downregulation was rated according to the presence or absence of the inhibition halo zone around the well where: No zone; means no effect, while Yes (presence of zone); means there is a downregulation effect and that effect ranged varied according to the diameter of inhibition zone from slight effect to severe effect **Figure 1. Modulation of** *Staphylococcus aureus* virulence gene expression by non-aureus staphylococcal culture supernatants. TSA agar plates (with erythromycin and X-gal) containing (**A**) the *hla-lacZ* (PC322; Eryr), (**B**) the *rnaIII-lacZ* (SH101F7; Ery^r), or (**C**) the *spa-lacZ* (PC203; Ery^r) reporter strain of *Staphylococcus aureus* were exposed to 20 mL (in pre-drilled wells) of supernatants from centrifugation (8000 rpm for 60s) of overnight cultures of strains 57(*Staphylococcus equorum*), 58(*Staphylococcus epidermidis*), 59(*Staphylococcus piscifermentans*), 60(*Staphylococcus xylosus*), 61(*Staphylococcus chromogenes*), 62(*Staphylococcus arlettae*), 63(*Staphylococcus haemolyticus*), 64(*Staphylococcus piscifermentans*), 65(*Staphylococcus arlettae*), 66(*Staphylococcus sciuri*), 67(*Staphylococcus haemolyticus*), 68(*Staphylococcus xylosus*), 69(*Staphylococcus haemolyticus*), and 70(*Staphylococcus cohnii*). P (positive control): Strain 2898 of *Staphylococcus schleiferi*. N (negative control): NaCl. Zones
appeared between 9 and 36h of incubation at 37 °C. This figure is representative of one set of screening plates.