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Abstract

One of the major limitation for the application of QTL results in pig breeding and QTN identifica-

tion has been the limited number of QTL effects validated in different animal material. The aim

of the current work was to validate QTL regions through joint and specific genome wide associa-

tion and haplotype analyses for growth, fatness and premier cut weights in three different gen-

etic backgrounds, backcrosses based on Iberian pigs, which has a major role in the analysis

due to its high productive relevance. The results revealed nine common QTL regions, three seg-

regating in all three backcrosses on SSC1, 0–3 Mb, for body weight, on SSC2, 3–9 Mb, for loin

bone-in weight, and on SSC7, 3 Mb, for shoulder weight, and six segregating in two of the three

backcrosses, on SSC2, SSC4, SSC6 and SSC10 for backfat thickness, shoulder and ham

weights. Besides, 18 QTL regions were specifically identified in one of the three backcrosses,

five identified only in BC_LD, seven in BC_DU and six in BC_PI. Beyond identifying and validat-

ing QTL, candidate genes and gene variants within the most interesting regions have been

explored using functional annotation, gene expression data and SNP identification from RNA-

Seq data. The results allowed us to propose a promising list of candidate mutations, those iden-

tified in PDE10A, DHCR7, MFN2 and CCNY genes located within the common QTL regions

and those identified near ssc-mir-103-1 considered PANK3 regulators to be further analysed.

Introduction

QTL identification is one of the most relevant approaches used in livestock genomic studies in

order to understand the genetic architecture that regulates complex productive traits. To date,
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different porcine breed schemes had been used for QTL scanning, from simple designs includ-

ing purebred populations such as Pietrain, Landrace or Duroc [1,2], to more complex schemes,

mating different breeds in order to compare animals with diverse phenotypes, as Duroc x Pie-

train [3,4], Iberian x Landrace [5] or three-way crosses such as Duroc x (Landrace x Large

White) [6]. These studies have reported a large number of QTL for different productive traits

such as growth (1,328), fat composition (1,311), drip loss (1,071), average daily gain (568),

average backfat thickness (332) or intramuscular fat content (244) (PigQTLdb) [7].

In spite of the great amount of QTL identified in multiple pig breeds, the application of the

results in pig breeding and the identification of causal genes and mutations (QTN) has not

been very successful. One of the major limitations had been the low number of available mark-

ers [8,9]. However, this issue has been settled with the development of high-density genotyping

platforms, which provide a high number of markers along the genome, allowing us to QTL

fine-map and to conduct genome-wide analysis (GWAS) [10,11]. Another major limitation

for QTN identification has been the limited number of animals employed in the analyses

[12–14], reporting unreliable results that cannot be validated in different genetic backgrounds.

So far, few porcine QTL regions related to productive traits have been confirmed in different

animal material, some exceptions are the QTL around LEPR region for growth, fatness and

meat quality traits identified in Iberian x Landrace cross [15], and validated in Iberian x

Meishan cross [16] and Duroc populations [17,18], the FAT1 QTL located on SSC4 associated

with fatty acid metabolism validated in Meishan x Large White, Iberian x Landrace and Wild

Boar intercrosses [19–23], the QTL around MC4R for performance traits [24] and the QTL

located on SSC12 for fatty acid composition was validated in different Iberian and Landrace

cross populations and in purebred Duroc [17,25–28].

The aim of the current work was to validate QTL regions through GWAS analyses for

growth, fatness and premier cut yields in three different genetic backgrounds F1 (Iberian x

Landrace) x Landrace (BC_LD), F1 (Iberian x Duroc) x Duroc (BC_DU) and F1 (Iberian x

Pietrain) x Pietrain (BC_PI) backcrosses. Here, Iberian background had a major role in the

analysis due to the high productive relevance of this breed [29]. Beyond identifying and vali-

dating QTL, candidate genes and polymorphism within the most interesting regions have

been proposed and explored.

Material and methods

Animals

Phenotypic and genotypic data used in this study belong to three different experimental back-

crosses: F1 (Iberian x Landrace) x Landrace, F1 (Iberian x Duroc) x Duroc and F1 (Iberian x

Pietrain) x Pietrain. The Iberian parental belong to different Iberian strains, Guadyerbas

(black hairless strain), used for the Iberian x Landrace backcross, and Torbiscal (red strain),

used for the Iberian x Duroc and Iberian x Pietrain backcrosses, which differ, apart from the

coat colour, in productive traits such as growth ratio, backfat thickness and premium cut yields

[30]. Schematic representation of the backcross generation is shown in Fig 1. All pigs were

raised and fed under the standard, intensive system in Europe; males were not castrated. After

a suckling period of between 23 and 28 d, piglets were allocated in pens with 12 individuals in

each pen and were given ad libitum access to a pelleted diet (13.4 MJ/kg of ME, 18.3% of CP,

1.2% of lysine). When the piglets were about 75 d old, they were moved to a fattening building.

They were penned in groups of 10 to 12 animals separated by sex, and during the whole test

period they had ad libitum access to a cereal based commercial diet (13.4 MJ/kg of ME, 17.5%

CP, 1% lysine). Pigs tested at the same time and in the same fattening building were considered

as 1 contemporary group (batch).
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Fig 1. Backcross generation scheme: Schematic representation of each of the backcrosses used (BC_LD, BC_DU and BC_PI),

specifying the number of individuals in each generation.

https://doi.org/10.1371/journal.pone.0190184.g001
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Ethics statement. All animal procedures were performed according to the Spanish Policy

for Animal Protection RD1201/05, which meets the European Union Directive 86/609 about

the protection of animals used in experimentation. The protocol was approved by the Com-

mittee on the Ethics of Animal Experiments of the Instituto Nacional de Investigación y Tec-

nologı́a Agraria y Alimentaria CEEA (Permit Number: 2014/026).

Phenotypic data

Seven traits related to growth, fatness and premium cut yields recorded for all three backcross

pigs were analyzed (Table 1). These traits were: body weight at 150 days of mean age (BW150),

backfat thickness measured at 75 kg of live weight (BFT75) and at slaughter (BFTS), mean

weights (left and right) of premium cuts, hams (HW) shoulders (SW) and loin bone-in (LBW),

and intramuscular fat content (IMF) measured in Longissimus dorsi samples at slaughter as

described in Fernández et al. [31].

Genotypic data

Two different genotyping platforms were used, BC_LD and BC_PI backcrosses were genotyped

with the platform PorcineSNP60 BeadChip (Illumina, Inc.) [32], containing 64,232 SNPs. Geno-

meStudio software (Illumina, Inc.) was employed to visualize, edit, standard quality filter and

extract genotyping data. Backcross BC_DU was genotyped with Axiom1 Porcine Genotyping

Array (Affymetrix, Inc.) [33], containing 658,692 SNPs. Axiom™Analysis Suite 2.0 was employed

to visualize, quality filter and extract genotype data. For individual analysis of each backcross,

additional data filtering was carried out using GenABEL package [34] in R environment, and

polymorphisms with a minimum allele frequency (MAF)< 0.05 were discarded for further anal-

ysis. In order to be able to compare data from the two platforms SNPchiMp v.3 [35] was used to

select SNPs overlapping between both.

Table 1. Phenotypic traits recorded for the backcrossed pigs analyzed. Number of individuals (N), mean and standard deviation (SD) were calculated. Measures of

body weight at 150 days of mean age (BW150), backfat thickness measured at 75 kg (BFT75) and at slaughter (BFTS), mean weights of hams (HW) shoulders (SW) and

loin bone-in (LBW) and intramuscular fat content (IMF) in Longissimus dorsi muscle.

BW150 BFT75 BFTS HW SW LBW IMF

Merged

N 384 270 280 381 381 372 369

Mean 70.25 12.55 1.95 10.01 5.38 6.51 2.65

SD 12.09 2.511 0.96 1.32 0.75 1.01 1.34

BC_LD

N 101 101 79 99 99 98 86

Mean 77.27 12.59 2.44 9.99 5.31 6.91 2.02

SD 10.07 1.47 0.66 1.35 0.79 0.99 0.63

BC_DU

N 135 55 139 135 135 129 135

Mean 73.57 16.08 2.49 9.9 5.51 6.12 3.86

SD 10.11 1.72 0.95 1.33 0.73 0.87 1.32

BC_PI

N 142 112 141 141 141 139 142

Mean 62.18 10.79 1.42 10.14 5.3 6.59 1.9

SD 10.62 1.64 0.6 1.29 0.73 1.03 0.75

https://doi.org/10.1371/journal.pone.0190184.t001
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GWAS analysis

Genome-wide association analysis was conducted in a joint analysis of the three backcrosses,

merged dataset. Moreover, in order to identify the association source, specific genome-wide

association analyses were conducted for each backcross. The analyses were performed with

GenABEL R package using the following the model:

yijk ¼ Si þ Bj þ bxk þ
X

l
llkal þ uk þ eijk

where yijk is the trait value of kth individual, Si and Bj are fixed effects for sex and batch

respectively and b is the carcass weight regression coefficient only included for BFTS, HW,

SW, LBW and IMF traits. Additive effect of the SNP is al and λlk is the indicator related with

the number of copies of the lth allele (0, 1 or 2), uk is the infinitesimal genetic random effect of

the kth individual, with covariance Aσu
2, A being the numerator relationship matrix and eijk is

the random residual term. For the joint analysis (merged database) the backcross was included

as fixed effect. A q-value <0.05 [36] was employed to identify significant associations.

Region analysis

QTL regions were determined by two or more consecutive SNPs significantly associated with

each phenotypic trait, to a maximum distance of 15Mb. Associated regions identified in the

merged database were considered a priori common QTL.

Haplotype analysis

Those significant SNPs within QTL regions identified in the merged dataset analysis were used

for haplotype association. Haplotypes were built using Phase v2.1 [37] and association analyses

were conducted following the previously described model with Qxpak 5.0 software [38].

Candidate genes

Gene content of the QTL regions were determined using Biomart tool from the Porcine

Ensembl database, Sscrofa11.1. In order to identify potential candidate genes the function of

genes within each of the selected regions (±1Mb) were examined using VarElect [39], STRING

[40] Babelomics [41] and ncbi databases (growth, muscle development and fat metabolism

related genes). Moreover, additional information of gene expression data from a previous

study in BC_LD [42] and a parallel RNA-Seq study conducted in the BC_LD and BC_PI pigs

with divergent phenotypes for the same analyzed traits [43] was also used. Genes mapped

within the selected QTL regions showing significant differential expression (q-value< 0.05

and fold change> 1.5) were retained.

SNP calling

RNA-Seq data obtained from liver, hypothalamus and Longissimus dorsi muscle samples, from

pigs with divergent phenotypes for growth and fatness on each backcross [43,44] was used for

SNP calling, in order to identify candidate polymorphism within the selected candidate genes.

RNA-Seq data filtering, mapping and SNP calling was carried out with CLC Genomics Work-

bench (www.clcbio.com). Reads were mapped against the pig reference genome Sscrofa10.2,

and re-annotated for Sscrofa 11.1. Mapping parameters were set at a cost of two for mismatches

per read, cost of three for insertion or deletions, a length fraction of 0.9 and a similarity frac-

tion of 0.8. Quality-based variant detection tool from CLC Genomic Workbench, based on

neighborhood quality [45,46], was used to perform SNP calling, setting a neighborhood radius
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of 5, minimum neighborhood quality of 15 and minimum central quality of 20, a minimum

coverage of 3 and a 20% of minimum variant frequency.

The SNPs were classified using VENNY 2.1 tool [47] as: 1) SNPs identified in genes located

in common regions observed in all the backcrosses, and 2) SNPs segregating in the backcross

where backcross-specific QTL regions were detected. Besides, the functional relevance of these

SNPs was analyzed with VeP tool (Variant effect Prediction, Ensembl) in order to identify

potential candidate mutations.

Results

SNP data

For the GWAS analyses only SNPs overlapping between genotyping platforms (60K and 650K)

for each backcross were retained. A total of 39,279 SNPs in 102 BC_LD pigs, 38,684 SNPs in

139 BC_DU pigs, and 38,891 SNPs in 144 individuals BC_PI pigs were selected. The merged

dataset contained 40,929 SNPs in 385 backcrossed pigs. The SNPs showing a MAF� 0.05 were

around 80% in each backcross and 97% in the merged dataset. Approximately a 50% of them

showed intermediate frequency (MAF� 0.25) in each backcross, and 61% in the merged data-

set (S1 Fig). These data revealed a similar allele frequencies distribution across all the animal

material, therefore none restraining effects related to SNP informativity would be expected in

the QTL region identification, although it could be found for specific genomic regions.

GWAS analysis

The GWAS analyses for BW150, BFT75, BFTS, IMF, HW, SW and LBW traits were carried

out for the merged dataset and independently for each backcross. Significance associations

were considered those with q-value lower to 0.05 (S2 Table). The results from the merged anal-

ysis reported a total of 89 significant associations (TAS), 22 TAS in the specific BC_LD analy-

sis, 21 TAS in the specific BC_DU analysis and 32 TAS in the specific BC_PI (S1 Table).

Region analysis

Region determination following previously defined criteria revealed 15 QTL regions in the

merged dataset, a priori considered common QTL regions, eight of which were not identified

in any specific backcross analyses (Table 2). Additionally, another four QTL regions were spe-

cifically identified in the BC_LD, another four regions in the BC_DU and four regions in the

BC_PI (Table 3).

The QTL regions identified in the merged dataset, located on SSC1, SSC2, SSC4, SSC5,

SSC6, SSC7, SSC10 and SSC13, were associated with all phenotypic traits except for BFT75

(Table 2). The eight QTL regions identified in the merged dataset but not in the individual

analyses were localized on SSC1, SSC2, SSC4, SSC5, SSC7 and SSC10, associated with BFTS,

HW, SW and LBW (Table 2). The four regions identified specifically in the BC_LD were

located on SSC5, SSC6, SSC11 and SSC16 associated with BFT, SW and LBW (Table 3). Four

regions identified specifically in the BC_DU were located on SSC4, SSC8, SSC9, and SSC15,

and showed association with BW150, BFT and SW (Table 3). Finally, the four regions identi-

fied specifically in the BC_PI were located on SSC2, SSC4, SSC11 and SSC13, and showed asso-

ciation with BW150, BFTS, IMF and SW (Table 3).

Haplotype analyses

For the QTL regions identified in the merged dataset, haplotypes were constructed and ana-

lyzed taking into account all the SNPs significantly associated in order to validate the QTL
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origin. The haplotype description and segregation is shown in S2 Table. Results of the haplo-

type association analyses in the merged dataset and each backcross are summarized in Table 4.

The M2, M5 and M13 QTL regions appeared segregating in all three backcrosses, M6, and

M11 in BC_LD and BC_DU, the M4, M7 and M9 in BC_PI and BC_DU, and the M14 in

BC_LD and BC_PI, and all those were considered actual common QTL regions (Table 5).

Nonetheless, M12 appeared only segregating in BC_LD, M8 and M10 and M15 appeared only

segregating in BC_DU, and M1 and M3 appeared only segregating in BC_PI, therefore these

(M1, M3, M8, M10, M12 and M15) were considered backcross-specific QTL regions for fur-

ther analysis.

Table 2. Significant QTL regions identified in the merged dataset or in the merged dataset and individual backcross GWAS. Results for body weight at 150 days

(BW150), backfat thickness at slaughter (BFTS), ham (HW), shoulder (SH), loin bone-in (LBW) mean weights and intramuscular fat (IMF): region name, dataset, genomic

position, number of associated SNPs, associated trait, additive effects and P-value. The effect was estimated on the most significant SNP of each QTL region.

Region Dataset � Genomic Position SNPs Trait a ± se P-value
M1 m 1:373,626–381,075 2 LBW 0.20 ± 0.06 4.2 ×10-5

M2 m+ld 1:768,502–2,754,517 2 BW150 −1.68 ± 0.49 1.1 ×10-4

M3 m 1:43,378,688–52,039,046 2 BFTS −0.35 ± 0.08 4.4 ×10-6

M4 m+pi 2:145,257–8,936,150 4 BFTS 0.32 ± 0.08 1.9 ×10-5

M5 m 2:3,321,699–9,006,820 2 LBW 0.21 ± 0.06 8.9 ×10-5

M6 m 4:8,968,669–18,736,459 3 SW 0.09 ± 0.03 1.2 ×10-4

M7 m 4:106,675,400–114,087,749 3 BFTS 0.23 ± 0.06 3.2 ×10-5

M8 m 5:45,418,338–58,984,249 2 BFTS 0.57 ± 0.15 8.8 ×10-5

M9 m+pi 6:20,539224–39,457626 7 HW 0.14 ± 0.03 1.3 ×10-5

M10 m+du 6:25,753,694–30,429,968 4 LBW −0.12 ± 0.03 2.5 ×10-5

M11 m+ld 6:71,901,978–86,757,750 2 SW −0.09 ± 0.02 2.7 ×10-5

M12 m+ld 6:80,622,284–112,485,359 6 HW −0.13 ± 0.03 3.8 ×10-5

M13 m 7:3,508,262–3,831,582 2 SW 0.08 ± 0.02 3.2 ×10-5

M14 m 10:57,593,745–57,794,053 3 HW −0.17 ± 0.04 1.6 ×10-5

M15 m+du 13:14,170,761–24,633,705 8 IMF −0.28 ± 0.07 1.4 ×10-5

�: m: merged; ld: BC_LD; du: BC_DU; pi: BC_PI.

https://doi.org/10.1371/journal.pone.0190184.t002

Table 3. Backcross specific QTL regions. Results for body weight at 150 days (BW150), backfat thickness at 75 kg (BFT75), backfat thickness at slaughter (BFTS), ham

weight (HW), shoulder weight (SH), loin bone-in weight (LBW) and intramuscular fat (IMF): region name, backcross, genomic position, number of associated SNPs, asso-

ciated trait, additive effects and P-value. The effect was estimated on the most significant marker of each QTL region.

Region BC Genomic Position SNPs Trait a ± se P-value
LD1 BC_LD 5:5,196,795–9,634,200 6 LBW 0.13 ± 0.04 4.6 ×10-5

LD2 BC_LD 6:33,958,464–33,971,693 2 SW -0.10 ± 0.02 2.2 ×10-5

LD3 BC_LD 11:27,479,379–28,373,530 2 BFT75 0.82 ± 0.20 1.2 ×10-4

LD4 BC_LD 16:53,929,823–59,747,430 3 BFTS -0.47 ± 0.12 7.7 ×10-5

DU1 BC_DU 4:129,180,275–129,209,724 2 BFT75 -1.72 ± 0.50 1.8 ×10-4

DU2 BC_DU 8:20,674,494–20,770,188 2 BW150 -2.81 ± 0.73 1.6 ×10-4

DU3 BC_DU 9:9,566,683–9,898,353 2 BFTS 0.45 ± 0.11 2.4 ×10-5

DU4 BC_DU 15:8,659,709–9,791,368 10 SW 0.15 ± 0.04 1.8 ×10-4

PI1 BC_PI 2:44,838,080–47,326,959 7 BW150 -3.84 ± 0.98 1.1 ×10-4

PI2 BC_PI 4: 73,710,930–79,915,989 7 BFTS 0.35 ± 0.08 2.6 ×10-5

PI3 BC_PI 11:14,6,72,532–14,737,228 3 SW 0.27 ± 0.06 7.9 ×10-6

PI4 BC_PI 13:190,486,890–191,164,340 2 IMF 0.32 ± 0.09 4.1 ×10-5

https://doi.org/10.1371/journal.pone.0190184.t003
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Table 4. Results of the haplotype association analysis for the common QTL regions in the merged dataset and each individual backcross.

Region Trait SNP Haplotypes>1% Association test

Dataset P-value

M1 (1:0.3–0.4) LBW 2 3 Merged 4.3 ×10-4

BC_LD 0.518

BC_DU NA

BC_PI 1.3 ×10-3

M2 (1:0–3) BW150 2 3 Merged 1.7 ×10-6

BC_LD 2.5 ×10-3

BC_DU 0.034

BC_PI 1.1 ×10-4

M3 (1:43–52) BFTS 2 3 Merged 3.3 ×10-4

BC_LD NA

BC_DU NA

BC_PI 2.4 ×10-4

M4 (2:0–9) BFTS 4 7 Merged 1.9 ×10-6

BC_LD NA

BC_DU 2.8 ×10-3

BC_PI 2.5 ×10-4

M5 (2:3–9) LBW 2 4 Merged 1.7 ×10-7

BC_LD 4.4 ×10-4

BC_DU 4.4 ×10-3

BC_PI 0.015

M6 (4:9–19) SW 3 8 Merged 5.0 ×10-6

BC_LD 0.010

BC_DU 0.018

BC_PI 0.266

M7 (4:107–114) BFTS 3 5 Merged 1.9 ×10-5

BC_LD NA

BC_DU 6.2 ×10-3

BC_PI 5.7 ×10-3

M8 (5:45–59) BFTS 2 3 Merged 9.0 ×10-6

BC_LD NA

BC_DU 1.2 ×10-3

BC_PI 0.376

M9 (6:21–39) HW 7 8 Merged 1.7 ×10-5

BC_LD 0.086

BC_DU 0.044

BC_PI 0.028

M10 (6:26–30) LBW 4 8 Merged 8.8 ×10-4

BC_LD 0.296

BC_DU 6.7 ×10-3

BC_PI 0.496

M11 (6:72–87) SW 2 4 Merged 5.5 ×10-6

BC_LD 0.031

BC_DU 0.017

BC_PI 0.157

M12 (6:81–112) HW 6 13 Merged 2.8 ×10-8

BC_LD 1.1 ×10-4

(Continued)
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Candidate genes and SNPs

To identify positional candidate genes, genes located within significant QTL regions were

annotated using BioMart tool. In the common QTL regions 729 genes were identified, and 180

genes on the backcross-specific regions. To focus in a more affordable candidate gene list, cri-

teria based on functionality, examined with Fatigo and VarElect tools, and gene expression dif-

ferences from parallel RNA-Seq studies (divergent pigs for the analyzed traits) [42,43] were

used to prioritize them. A total of 85 candidate genes were selected, 50 genes for the common

regions and 35 genes for specific backcross regions (Table 6).

Moreover, candidate SNPs were selected from those SNPs identified in parallel RNA-

Seq studies [42,43] within candidate genes and segregating, at least 10% of the pigs carry-

ing the alternative allele in the corresponding backcrosses (S3 Table). A total of 46 out

from 62 segregating SNPs filtered with VeP tool were considered potentially relevant

(Table 7).

Table 4. (Continued)

Region Trait SNP Haplotypes>1% Association test

Dataset P-value

BC_DU 0.161

BC_PI 0.738

M13 (7:3–4) SW 2 4 Merged 1.5 ×10-5

BC_LD 0.031

BC_DU 9.9 ×10-4

BC_PI 5.8 ×10-3

M14 (10:57–58) HW 3 3 Merged 2.9 ×10-4

BC_LD 9.0 ×10-3

BC_DU 0.365

BC_PI 0.028

M15 (13:14–25) IMF 8 21 Merged 4.3 ×10-4

BC_LD 0.257

BC_DU 2.6 ×10-4

BC_PI 0.067

NA: missing genotypes or one single haplotype segregating in the backcross.

https://doi.org/10.1371/journal.pone.0190184.t004

Table 5. Common QTL regions identified. QTL detected for body weight at 150 days (BW150), ham weight (HW), shoulder weight (SH), loin bone-in weight (LBW)

and intramuscular fat (IMF): region name, associated trait, genomic position, dataset where the QTL was identified and actual backcross segregation.

Region Trait Genomic Position DataSet Actual segregation

M2 BW150 1:768,502–2,754,517 m+ld BC_LD, BC_DU, BC_PI

M4 BFTS 2:145,257–8,936,150 m+pi BC_DU, BC_PI

M5 LBW 2:3,321,699–9,006,820 m BC_LD, BC_DU, BC_PI

M6 SW 4:8,968,669–18,736,459 m BC_LD, BC_DU

M7 BFTS 4:106,675,400–114,087,749 m BC_DU, BC_PI

M9 HW 6:20,539224–39,457626 m+pi BC_DU, BC_PI

M11 SW 6:71,901,978–86,757,750 m+ld BC_LD, BC_DU

M13 SW 7:3,508,262–3,831,582 m BC_LD, BC_DU, BC_PI

M14 HW 10:57,593,745–57,794,053 m BC_LD, BC_PI

https://doi.org/10.1371/journal.pone.0190184.t005
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Discussion

The main objective of the current study was to validate QTL among different genetic back-

grounds. In order to achieve this objective, a GWAS study was designed specifically for this

purpose, in which three experimental backcrosses involving four different pig breeds were

employed in a merged dataset and backcross-specific datasets. Here, it is worth to highlighting

the productive value of the Iberian breed versus the widely employed commercial pig breeds

Landrace, Duroc and Pietrain. The relevance of Iberian pig in meat production relies on the

ability to produce high quality dry-cured products [48], due to particular characteristics associ-

ated with fattening, meat and growth processes [29]. Iberian pigs have high fat deposition and

desaturation levels, with particular fatty acid profiles and tend to accumulate infiltrated fat in

Table 6. Functional candidate genes identified in the common and specific QTL regions.

Region Gene

Common QTL

region

M2 (1:0.7–3) PDE10A
M4 (2:0.1–9) HRAS, TNNI2, TNNT3, KCNQ1, DHCR7, FGF3, FGF4, FGF19, CPT1A, GAL, ACTN3,

LTBP3, MEN1, VEGFB, SLC22A8DE
M5 (2:3–9) FGF3, FGF4, FGF19, DHCR7, CPT1A, GAL, ACTN3, LTBP3, MEN1, VEGFB, SLC22A8DE
M6 (4:8–19) MYC, FBXO32, COL14A1DE
M7 (4:106–114) RAP1A,CSF1, PPM1J DE
M9 (6:20–40) FTO, NOD2, SLC9A5 DE
M11 (6:71–88) NPPA, NPPB, MFN2, CASP9, PAX7, HSPG2, CDC42,HMGCL, TRIM63, SLC9A1, FABP3
M13 (7:3.5–4) PPP1R3G, BMP6, DSP DE
M14 (10:57–58) CCNY

QTL backcross-

specific

BC_LD specific

LD1(5:5–10) A4GALT, ACO2, ATF4, CYB5R3, EP300, MCAT, MKL1, NAGA, PDGFB, SREBF2, TSPO
LD2(6:32–34) SALL1
LD4 (16:53–59) PANK3
M12 (6:80–113) FNDC5,MPPE1DE

BC_DU specific

DU1 (4:128–130) LMO4
DU2 (8:20–21) RBPJ
DU3 (9: 8–10) NEU3, UPC3
M8 (5:45–59) GLY2
M10 (6:25–33) AGRP, FTO, KCTD19, LCAT, MMP2, SLC9A5 DE
M15 (13:14–24) GPD1L, DCLK3DE, ARPP21 DE

BC_PI specific

PI1 (2:44–48) CYP2R1, PDE3B, COPB1
PI2 (4:73–80) CYP7A1
M1 (1:0–0.5) DLL1
M3 (1:43–52) PLN

DE Genes differentially expressed (Fold change >1.5) in RNA-Seq analysis [42,43]; M: common QTL regions coming

from the merged dataset; LD: specific QTL region coming from the BC_LD analysis; DU: specific QTL region

coming from the BC_DU; and PI: specific QTL region coming from the BC_PI analysis.

https://doi.org/10.1371/journal.pone.0190184.t006
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Table 7. Most relevant SNPs considered within selected candidate genes. dbSNP identification, gene name, predicted effect, QTL region.

SNP ID Gene Effect Prediction QTL region

rs321518792 PDE10A — M2

rs334446395 DHCR7 missense_variant M4

rs323256060 DHCR7 missense_variant M4

rs331309328 VEGFB 3_prime_UTR_variant M4, M5

rs319115249 VEGFB 3_prime_UTR_variant M4, M5

rs330540333 VEGFB 3_prime_UTR_variant M4, M5

rs320791982 MEN1 3_prime_UTR_variant M5

rs338285951 MEN1 3_prime_UTR_variant M5

rs340867100 MEN1 3_prime_UTR_variant M5

rs321008722 COL14A1 3_prime_UTR_variant M6

rs342512843 CSF1 missense_variant M7

rs318724354 CSF1 5_prime_UTR_variant M7

rs334648266 CASP9 3_prime_UTR_variant M11

rs343272675 CDC42 3_prime_UTR_variant M11

rs341725204 MFN2 3_prime_UTR_variant M11

rs320903047 MFN2 3_prime_UTR_variant M11

rs341521028 MFN2 3_prime_UTR_variant M11

rs323861488 MFN2 3_prime_UTR_variant M11

rs335545199 MFN2 3_prime_UTR_variant M11

rs329360100 BMP6 3_prime_UTR_variant M13

rs333159364 BMP6 3_prime_UTR_variant M13

rs328999141 BMP6 3_prime_UTR_variant M13

rs333365084 BMP6 3_prime_UTR_variant M13

rs324511668 BMP6 3_prime_UTR_variant M13

rs342273848 BMP6 3_prime_UTR_variant M13

rs325292425 BMP6 3_prime_UTR_variant M13

rs337979499 BMP6 3_prime_UTR_variant M13

rs337148204 BMP6 3_prime_UTR_variant M13

rs321518849 BMP6 3_prime_UTR_variant M13

rs336783880 BMP6 3_prime_UTR_variant M13

rs320422417 BMP6 downstream_gene_variant M13

rs339868002 DSP 3_prime_UTR_variant M13

rs322085085 DSP 3_prime_UTR_variant M13

�7:4913389A>C DSP missense_variant M13

rs332415316 CCNY 3_prime_UTR_variant M14

rs332415316 CCNY intron_variant M14

rs690336573 CCNY 3_prime_UTR_variant M14

rs330813245 CCNY 3_prime_UTR_variant M14

rs332978767 PANK3/mir-103-1 downstream_gene_variant LD4

rs341887311 PANK3/mir-103-1 downstream_gene_variant LD4

rs334607455 PANK3/mir-103-1 downstream_gene_variant LD4

rs324153600 PANK3/mir-103-1 downstream_gene_variant LD4

rs335346325 PANK3/mir-103-1 downstream_gene_variant LD4

rs320940204 PANK3/mir-103-1 downstream_gene_variant LD4

rs337092527 PANK3/mir-103-1 downstream_gene_variant LD4

rs698471988 NEU3 3_prime_UTR_variant DU3

�identified in the current study, EVA accession number: PRJEB23068 (www.dev.ebi.ac.uk/eva/?eva-study=PRJEB23068)

https://doi.org/10.1371/journal.pone.0190184.t007
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muscle mass [49]. Leptin resistance is a characteristic property identified in this breed, and is

associated with high food intake [15,16].

Although linkage QTL mapping has been proved, and remains, a powerful method to iden-

tify regions of the genome that co-segregate with a given trait in experimental populations,

limitations such as the assumption of alternative QTL alleles in the parental generation and the

amount of recombination events need to fine map QTL are well known. GWAS overcome

these two main limitations, while introducing other drawbacks, but it can provide insights into

the genetic architecture of the trait and suggest candidate genes to be further analysed [50,51].

Even more, in the current study, the lack of SNP genotypes for some parents, the different

genetic Iberian backgrounds together with the limited amount of expected recombinants due

the population design were considered crucial criteria for choosing the GWAS approach.

The approach used in the current study enabled us to identify several associations between

SNPs and productive traits, setting a great base for further analyses. Besides identifying TAS,

we were able to define a total of 27 QTL regions in all the material. Here, the impact of the

sample size in QTL scans can be shown, even merging different genetic backgrounds. The

merged GWAS analysis allowed us to identify and validate common QTL, some of which were

undetected in the specific backcross analysis, but also allowed us to identify some of the back-

cross-specific QTL regions such as the M1 and M3 in the BC_PI, M8, M10 and M15 in

BC_DU and M12 in BC_LD. More importantly, nine common QTL were identified and vali-

dated through region haplotypes association analyses. Interestingly, common QTL regions

were identified for all the analysed traits except for backfat thickness at 75 kg (BFT75).

Three QTL regions (M2, M5 and M13), on porcine chromosomes SSC1, SSC2 and SSC7,

appeared segregating in all three backcrosses, which may indicate an Iberian origin, specifi-

cally for M2 and M13 regions, which have not been previously identified. The M2 region

(SSC1:0.7-3Mb) affecting body weight has not been previously described, the closest QTL

for body weight on this chromosome is around 10 Mb in Landrace-Duroc-Yorkshire dams

[52]. Within this region, a functional candidate gene, PDE10A (Phosphodiesterase 10A), was

annotated according to the current porcine genome annotation version (Sscrofa11.1). The

PDE10A encodes for a phosphodiesterase implicated in the regulation of energy homeosta-

sis and it has been proposed as a promising candidate target for the treatment of obesity and

diabetes [53]. One SNP within the gene was detected in the mentioned RNA-Seq analysis

segregating in all three backcrosses, rs321518792, following Sscrofa10.2 annotation, how-

ever in the new Sscrofa11 is not mapped.

The M5 region in SSC2:3-9Mb affecting loin bone-in weight also appeared segregating in

all three backcrosses, but this region has been previously identified in other animal material

such as Large White, Meishan, Pietrain, Leicoma and Landrace [54–56]. Within the region,

nine functional candidate genes were annotated according to the current porcine genome

annotation version (Sscrofa11.1) and another one showed expression differences according to

RNA-Seq data. Among those genes, the ACTN3 (Actinin alpha 3) constitutes an interesting

candidate to regulate muscle performance through the calcineurin signalling [57] and the

DHCR7 gene (7-dehydrocholesterol reductase) associated with obesity through vitamin D path-

way [58,59]. Four SNPs in DHCR7 gene segregating in the three backcrosses were detected in

our RNA-Seq data, two of them are missense, rs334446395 and rs323256060, which could be

interesting to further study in association analysis.

The M13 region in SSC7: 3Mb affecting shoulder weight and segregating in all three back-

crosses has not been previously described, the closest QTL is around 20–40 Mb in Large White

x Meishan [55]. Within this region, it is worth to highlight the DSP gene (Desmoplakin), which

encodes the molecular component responsible of cell adhesion and signalling, including mus-

cle cells, which may determine muscle properties [60]. Candidate SNPs within these genes
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have been identified from the RNA-Seq data as shown in Table 7, highlighting the missense

one identified in DSP, no annotated previously in the SNP database but segregating in BC_PI.

Three other QTL regions (M4, M7 and M9) appeared segregating in BC_DU and BC_PI

backcrosses, both backcrosses share the Torbiscal (red Iberian strain) parental male origin,

different than the BC_LD, where Guadyerbas (black hairless strain) is the parental male ori-

gin. The M4 QTL has been widely reported in different pig populations including Duroc,

Large White, Meishan, Bershire, etc. . . [54, 61, 62]. In the current study segregation of this

QTL was not detected in the BC_LD backcross. Within the region fifteen functional candi-

date could be annotated, highlighting again the DHCR7 gene. The M7 region affecting back-

fat thickness is the same or close to the well-known FAT1 QTL [63, 64], segregating in the

BC_DU and BC_PI backcrosses in the current study, although different QTL regions for

growth and fatness have been identified around the same SSC4 region [65, 31]. Several can-

didate genes underlying this QTL have been analysed, however the causal mutation has not

been identified yet [66–69]. In the current analysis, two functional candidate genes were

annotated, and another one showing expression differences according to our RNA-Seq

data. Highlighting, the CSF1 gene (Colony stimulating factor 1), which encodes a myokine,

involved in lipid metabolism and cholesterol levels [70]. Two candidate SNPs segregating in

BC_PI and BC_DU have been identified from the RNA-Seq data, one missense variant and

one in 5’ UTR. The M9 region for ham weight appeared segregating in BC_DU and BC_PI,

but close to the significance in the BC_LD (P-value = 0.086). These regions have been previ-

ously associated to ham weight in Pietrain and Large White [71]. Within the selected candi-

date genes, the FTO gene (Alpha-ketoglutarate dependent dioxygenase) has been associated

with porcine carcass traits [72] and it is target of multiple obesity-related studies in human

[73, 74], however candidate SNPs within these last two genes could not been identified from

the RNA-Seq segregating in BC_DU. Another strong candidate is the NEU3 gene (Neur-
aminidase 3), which encodes a marker of insulin sensitivity, regulated by fatty acid metabo-

lism [75] and where one 3´UTR variant has been identified segregating in the BC-DU.

Two QTL for SW (M6 and M11) appeared segregating in the BC_LD and BC_DU back-

crosses. The M6 region match with previous QTL for ham muscle weight described in our pre-

vious studies in the IBMAP population [65]. Within this region there is a strong candidate

gene, COL14A1 (Collagen type XIV alpha 1 chain), which encodes a collagen chain involved in

the regulation of fibrillogenesis and showing expression differences in our RNA-data and in

previous transcriptome analysis in pig [76]. Moreover, four SNPs within the gene have been

identified from our RNA-Seq data, one of them, rs321008722, in the 3’UTR region, which

could potentially alter transcript expression. The M11 region has been associated with shoul-

der weight in a Pietrain x Large White x Landrace x Leicoma experimental population [77].

The region contains the MFN2 gene (Mitofusin 2), which encodes a mitochondrial membrane

protein involved in the regulation of muscle cell proliferation, and it plays a role in the patho-

physiology of obesity [78]. Five SNPs within this gene have been identified in our RNA-Seq

data, at the 3’UTR and segregating in the tree backcrosses.

The common M14 region appeared segregating in the BC_LD and BC_PI, where a QTL for

hind leg conformation has been previously mapped in Landrace [79]. Here, a powerful posi-

tional and functional candidate is located, the CCNY gene (cyclin Y), which encodes for a

member of the cyclin family involved in the regulation of adipogenesis and lipid production

[80]. Interesting candidate SNPs within this gene have also been identified from our RNA-Seq

data, which may alter transcription regulation.

Additionally, regions only identified in one of the three backcrosses were also further exam-

ined due to the potential relevant information for specific pig breeds.
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In the BC_LD background, four QTL regions (LD1, LD2, LD3 and LD4) were identified on

SSC5, SSC6, SSC11 and SSC16, for premium cut weights or backfat thickness. Except LD1,

which is not reported in the pig QTL database, the rest of the regions have been reported in

previous studies involving Landrace pigs (LD2 in Li et al., [81]; LD3 in Fernandez et al. [31];

LD4 in Onteru et al. [82]). The current analyses showed that they are not segregating in the

BC_DU and BC_PI, which together with previous results suggest Landrace specific origin.

Within these regions we have identified interesting candidate genes such as SALL1 (Spalt like
transcription factor 1), key factor for muscle development [83] and PANK3 (Pantothenate
kinase 3), regulator of CoA biosynthesis, essential for lipid and energy metabolism [84]. Inter-

estingly, variants near to ssc-mir-103-1 miRNA considered PANK3 regulators and recently

associated with the analysed traits in pig [85] were identified and could be considered strong

candidate variants to be analysed in further studies.

In the BC_DU background, four QTL regions (DU1, DU2, DU3 and DU4) were identified

in the backcross specific GWAS, but another three regions (M8, M10 and M15) could be iden-

tified as BC-DU specific for LBW, BFTS and IMF during the haplotype association analysis

performed to validate common QTL segregation. Several QTL for backfat thickness have been

described matching DU1 region in different genetic backgrounds (Asian, European, commer-

cial and traditional pig breeds) [86–88], however, in the current study we could identify segre-

gation only in the BC_DU. In the same way, several QTL have been described matching DU3

region in different genetic backgrounds, around UCP3 gene (Uncoupling protein 3) [86,89,90],

also matching DU2 [91], M8 [92] and M10 [77]. However, no QTL has been previously identi-

fied for shoulder weight around DU4 region (SSC15:8-10Mb). Within these QTL regions there

are strong functional candidates to carry the causal mutation, as LMO4 gene (LIM domain
only 4), which modules proliferation and differentiation of preadipocytes [93], FTO [94] and

NEU3 gene [75].

Finally, in the BC_PI background, four QTL regions (PI1, PI2, PI3 and PI4) were identified

in the backcross specific GWAS, but another two regions, M1 and M3, were also validated as

BC-PI specific for LBW during the haplotype association analysis performed to validate com-

mon QTL segregation. All these regions match with previously described QTL: PI1 in Lents

et al. [95]; PI2 in Walling et al. [96]; Tortereau et al. [54]; PI3 in Cherel et al. [97]; P4 in Tere-

nina et al. [98]; M3 in Malek et al. [99]; except for M1. As before, within these QTL regions

there are strong functional candidates to carry the causal mutation such as the PDR3B gene

(Phosphodiesterase 3B), which encodes one of the enzymes involved in the regulation of energy

homeostasis, in adipocytes, hepatocytes, hypothalamic cells and β cells [100], however candi-

date SNPs within this gene has not been identified from our RNA-Seq data.

Moreover, in order to test the SNP number effect, an additional GWAS comparison within

BC_DU using different SNPs number, employing 60K or 650K SNP chip genotyping informa-

tion was conducted (S4 Table). The main results for the QTL scan resulted similar when using

both, 60K and 600K platforms, obtaining the same significant QTL regions. The principal dif-

ference lies in the number of TAS within each region, being larger when employing the 650K

chip, as expected, and leading to a slight difference for the QTL region boundaries.

The design and analysis methodology employed in the current study, using different

genetic backgrounds and high-density SNP data, in SNP GWAS and haplotype association

analyses in merged and specific datasets has allowed us to determine nine QTL regions for

growth, premier cut weights and intramuscular fat validated in different genetic back-

grounds supporting their reliability. Additionally, some backcross-specific QTL regions

were also identified. Finally, the integration of RNA-Seq data and functional annotation

has facilitated the selection of strong candidate genes such as PDE10A, DHCR7, MFN2,
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FTO, CCNY and SALL1 and gene variants segregating that need to be further investigated

in order to identify actual causal mutations.
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