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ABSTRACT 

BACKGROUND: The biocontrol agent Candida sake CPA-1 has been demonstrated to 

be effective against several diseases. Consequently, the optimisation of a dry 

formulation of C. sake to improve its shelf life and manipulability is essential to increase 

its potential for future commercial applications. The aim of this research was to 

optimise the conditions to make a dry formulation of C. sake using a fluidised bed 

drying system and then to determine the shelf life of the optimised formulation and its 

efficacy against Penicillium expansum on apples.   

RESULTS: The optimal conditions for the drying process were found to be 40 °C for 45 

minutes, and potato starch used as the carrier significantly enhanced the viability. 

However, none of the protective compounds tested increased the viability of the dried 

cells. A temperature of 25 °C for 10 min in phosphate buffer was considered the 

optimum condition to recover the dried formulations. The dried formulations should be 

stored at 4 °C and air-packaged; moreover, shelf life assays revealed good results after 

12 months of storage. The formulated products maintained their biocontrol efficacy.  
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CONCLUSION: A fluidised bed drying system is a suitable process for dehydrating C. 

sake cells; moreover, the C. sake formulation is easy to pack, store and transport, and 

it is a cost-effective process.  

Keywords: biocontrol, Candida sake, dehydration, fluidised bed, formulation, shelf life. 

INTRODUCTION 

Scientific knowledge related to biocontrol agents (BCAs) has been extensively 

developed during previous decades.1 The efficacy of BCAs has been demonstrated 

against several postharvest diseases responsible for significant damage of fresh fruit 

and vegetables. Commercial use of BCAs would allow the reduced application of 

synthetic fungicides to treat fungal pathogens.2 These facts, as well as an increased 

concern for human health, demonstrate the need to protect the environment for future 

generations, and the development of resistance to many fungicides by many 

postharvest pathogens is one of the most important reasons for the advancement of 

biological control research. 

In spite of research advancements, the acceptance and widespread use of postharvest 

biocontrol products is still limited, probably because of their shortcomings when 

commercially applied.1,3–6 Therefore, an improvement of handling of BCAs under 

commercial conditions is necessary, and one way to achieve this goal is to produce a 

formulation that is easy to package, store and transport, that has a long shelf life and 

retains its efficacy. All of these factors are the keys for the commercial success of 

BCAs.7,8  

Candida sake strain CPA-1 is a well-known BCA. It was isolated from apples and 

demonstrated good efficacy against major postharvest diseases of pome fruits, such as 

blue mould (Penicillium expansum), grey mould (Botrytis cinerea) and Rhizopus rot 

(Rhizopus stolonifer).9 Moreover, C. sake effectively reduced B. cinerea in a lab-based 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
assay with detached grape berries10 and in field applications, different biologically 

based strategies significantly reduced the incidence and severity of botrytis rot under 

Mediterranean conditions11 and under Atlantic climatology.12 Sour rot of grapes was 

also reduced with some treatments including C. sake.13 

A formulation process must principally achieve four basic objectives: It must i) stabilise 

the organism during production, distribution and storage; ii) aid in the handling and 

application of the product; iii) protect the agent from harmful environmental factors; and 

finally iv) enhance the activity of the organism at the site of use.14 The maintenance of 

cell viability is fundamental for commercial BCA formulations but suggested minimum 

shelf life changes depending on the authors from six15 to 12 months16 or 18 months2. 

The efficacy of BCAs is dependent on the degree of success of the formulation, so it is 

necessary to carefully evaluate every detail of the formulation process to obtain high 

survival rates of viable microorganisms and to achieve an equal or even better efficacy 

as with fresh cells. 

Different formulations have been developed for C. sake in previous years. Abadias et 

at. studied a freeze-dried C. sake formulation but obtained an efficacy significantly 

lower than that of fresh cells in all treatments.17 The stability of the formulation 

decreased 10-fold after two months storage at 4 °C. Liquid formulation of BCA by 

modifying the water activity or adding protectants was also investigated, and the results 

were more satisfactory because the efficacy of the formulation was similar to that of 

fresh cells for P. expansum on apples, and the addition of sugars such as lactose and 

trehalose as protectants improved cell viability, which was greater than 70% after four 

months at 4 °C.18 Furthermore, a liquid formulation in an isotonic solution based on 

trehalose (0.96 M) was developed and stored for seven months at 4 °C, and it retained 

its viability and efficacy against blue mould rot in apples.19 A spray-drying system was 

evaluated as a dehydration method for CPA-1, but it was not satisfactory because of 

low cell survival, poor product recovery and low efficacy.20 The induction of 
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thermotolerance in C. sake cells by mild heat treatments to improve survival by using 

spray-drying was also studied, but although these treatments improved the survival of 

the cells, they could not be considered as suitable formulation methods for this BCA.21 

After all of this work, the liquid C. sake formulation in an isotonic solution of trehalose 

was found to be most suitable because it retained viability and efficacy for one year 

(unpublished data), and this formulation was commercialised by demand for a period of 

time under the name of Candifruit™ 3. However, some shortcomings of this formulation 

must be noted: it should be stored and distributed under refrigeration, and large 

volumes of liquid have to be managed and transported. Therefore, CPA-1 can be 

considered an effective BCA, but it is still not a competitive product or a real alternative 

to fungicides.  

Rhodes (1993) suggested that dehydration is one of the best ways to formulate 

microbial agents so they can be handled by normal distribution and storage channels.22 

Moreover, a successful dry formulation is easy to use and convenient to transport, and 

it has a long shelf-life and high consumer acceptance.14 Nevertheless, when a dry 

formulation is optimised, some issues must be considered, such as the maintenance of 

viability when the BCA is dried or an optimal moisture content to avoid rapid 

deterioration.14  

In this study, a fluidised bed drying system was evaluated to avoid the deficiencies of 

freeze-drying and spray-drying dehydration systems. The freeze-drying method usually 

maintains cell viability, but it is comparatively expensive. On the other hand, the main 

disadvantage of spray-drying is the destruction of microbial cells caused by the high 

drying temperature.8 In contrast, during fluidised bed drying, the air to dry the cells is 

injected at the bottom so that the granules fluidise and the product dries relatively 

rapidly without a requirement for high temperatures, and the cost is lower than that of 

other drying methods. Fluidised bed drying is widely used to dry heat sensitive biologic 

materials, and some BCAs have been formulated using this system.23–25 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
The aim of this research was to optimise the conditions of fluidising-bed dehydration to 

produce a dry formulation of C. sake by studying several factors that could affect cell 

viability, shelf life, and efficacy against P. expansum on apples.   

The specific objectives were: (i) the optimisation of drying conditions such as 

temperature and drying time, (ii) the selection of a carrier to mix with C. sake cell paste 

to facilitate extrusion, (iii) the determination of the effect of protectants on cell survival, 

(iv) the evaluation of the effect of the rehydration media and conditions on viable cell 

recovery from CPA-1 formulations; (v) the evaluation of the product shelf life under 

various storage conditions, and (vi) the evaluation of the biocontrol efficacy against P. 

expansum on apples. 

MATERIAL AND METHODS 

Microorganisms 

Yeast isolate 

The C. sake strain CPA-1 used in this investigation belongs to the collection of the 

University of Lleida-IRTA, Catalonia, Spain and it was deposited in the Colección 

Española de Cultivos Tipo (CECT-10817) at the University of Valencia, Burjassot, 

Spain. It was isolated from the surface of apples.  

C. sake stock cultures were stored at 4 °C on nutrient yeast dextrose agar plates 

(NYDA: nutrient broth, 8 g l-1; yeast extract, 5 g l-1; dextrose, 10 g l-1; and agar, 15 g l-1) 

and were sub-cultured on NYDA plates at 25 °C for 48 h before use. Sub-cultured cells 

were transferred to potassium phosphate buffer (pH 6.5; KH2PO4 0.2 mol l-1, 70 ml; 

K2HPO4 0.2 mol l-1, 30 ml and deionised water, 300 ml) to obtain the suspension used 

as the starter inoculum for biomass production in liquid bioreactors and for the in vivo 

efficacy assays. 

Cells were produced in a liquid production system with a 5 l working volume 

(BIOSTAT-A modular bioreactor, Braun Biotech International, Melsungen, Germany) at 
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25 °C, an agitation speed of 400 rpm and an aeration level of 150 l h-1 for 40 h. The 

starter inoculum of C. sake was added to 5 l of molasses-based medium (MB: cane 

molasses 40 g l-1 (Loiret & Haëntjens España S.A., Barcelona, Spain), urea 1.2 g l-1 

(Panreac Química S.A., Barcelona, Spain), water activity (aw) 0.996) at a final 

concentration of 106 colony forming units per ml (CFU ml-1).  

For biomass production in an Erlenmeyer flask for in vivo efficacy trials, the starter C. 

sake inoculum was added to 50 ml of molasses-based medium to a final concentration 

of 107 CFU ml-1.  

Pathogen isolate 

The pathogen used was P. expansum CMP-1 belonging to the collection of University 

of Lleida-IRTA, Catalonia, Spain, and it was deposited in the Colección Española de 

Cultivos Tipo (CECT-20906) at the University of Valencia, Burjassot, Spain. It was a 

strain isolated from a rotten apple that had been in cold storage for several months. It 

was maintained on potato dextrose agar (PDA: 200 ml of extract from boiled potatoes, 

20 g dextrose, 20 g agar and 800 ml water) at 25 °C from 7 to 15 days and was 

periodically sub-cultured and transferred through apple tissues to maintain virulence.  

Fluidised bed drying 

CPA-1 produced cells were centrifuged (Avanti™, Beckman) at 8631 g and 10 °C for 

10 min to harvest the cells from the medium. The centrifuge was programmed at 10 ºC 

to avoid heating of yeast cells. The pellet was weighed, and the cell paste was 

homogenised in a hand mixer with the appropriate proportion of the carrier until the 

dough lost adherence. The yeast dough was extruded into particles of 0.2 to 0.5 mm 

diameter and 0.5 mm length using a cookie press from an icing set (LACOR) and 

perforated metallic plate. The initial concentration of the extruded yeast dough was 

determined on NYDA by dilution plating. Afterwards, the various optimisation studies 

were conducted by introducing 2 - 3 g of wet extruded dough into the tubes of a 
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fluidised bed dryer 350S (Burkard Manufacturing Co. Ltd, Hertfordshire, UK). After the 

fluidised bed drying was complete, 0.05 g of dry extruded particles were weighed and 

rehydrated with 5 ml of phosphate buffer, then shaken for 1 min and allowed to 

rehydrate for 9 min. The final concentration of dehydrated cells of C. sake was 

determined by dilution plating on NYDA. Viability after the fluidised bed drying process 

was expressed as log (N/N0), where N0 represents CFU per gram of extruded dough 

before drying and N is the CFU per gram of the same quantity of wet extruded dough 

after fluidised bed drying. 

To determine the dry matter of the initial wet dough, 1 g of the product was placed in 

duplicate aluminium weighing boats and dried in a convection oven at 105 ± 1 °C for 24 

hours. The same process was carried out with the dry extruded product but only 0.5 g 

were weighed. 

During the fluidised bed drying process, the room temperature was controlled at 20 ºC 

and relative humidity at 40% to achieve the same conditions for all assays. All fluidised 

bed drying experiments were completely random designs. 

Optimisation of time and temperature of drying 

A range of drying temperatures from 30 °C to 50 °C were used to study the effect of 

inlet air temperatures of 30, 40, 45 and 50 °C. Drying times of: 5, 10, 15, 20, 30, 45 and 

60 min were also evaluated. Potato starch was used as a carrier in studies to optimise 

the drying time and temperature. Three replicates of each formulate were weighted for 

each time and temperature, and the viability was the mean of them. The experiment 

was repeated twice. 

Optimisation of the carrier 

Four substances were tested to identify an optimal carrier for a dry formulation of C. 

sake using fluidised bed drying, natural silicate (Sigma-Aldrich Chemie GmbH, 

Steinheim, Germany), potato starch (Panreac Química S.A., Barcelona, Spain), corn 
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starch (Fluka, Sigma-Aldrich Chemie GmbH) and rice starch (Sigma-Aldrich Chemie 

GmbH). The survival of the BCA was the mean of three replicates. The fluidised bed 

drying conditions for this assay were 40 °C for 45 min. 

Optimisation of the protective compounds 

Various concentrations of several protective compounds were used as protectants in 

the fluidised bed drying process, 100 g l-1 sucrose (SUC10), 10 g l-1 glucose (GLU1), 

100 g l-1 glucose (GLU10), 100 g l-1 sorbitol (SOR10), 100 g l-1 dextran (DEX10), 10 g l-

1 trehalose (TRE1), 50 g l-1 trehalose (TRE5), 100 g l-1 trehalose (TRE10), 100 g l-1 

sorbitan monostearate (MON10), 200 g l-1 sorbitan monostearate (MON20), 100 g l-1 

skimmed milk (MILK10), 10 g l-1 carboxymethyl cellulose (CMC1), 50 g l-1 

carboxymethyl cellulose (CMC5), 100 g l-1 carboxymethyl cellulose (CMC10), 100 g l-1 

glycerol (GLY10) and 100 g l-1 polyethylene glycol (PEG10). All the formulation 

products were dried using previously determined conditions.  

This optimisation was carried out with different assays on different days. Three 

formulations with different protective compounds and a formulation without a protective 

substance (the control) were tested in each assay. The effect of protective compounds 

on the survival of the C. sake yeast cells after fluidised bed drying was expressed as: 

[log (Nf with protectant/N0 with protectant) – log (Nf control/N0 control)], where N0 is the CFU per gram of 

the extruded dough before drying and Nf is the CFU per gram of the same quantity of 

wet extruded dough after fluidised bed drying. Each protective compound was tested at 

least in two drying processes. Two replicates of each formulate were weighted to 

evaluate the survival. 

Optimisation of the rehydration media and the rehydration conditions 

The rehydration process is an important factor because it can improve the viability of 

the final product. Two aspects of the rehydration process were considered: i) the 

composition of the rehydration media because it could facilitate the repair of cell 
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damage and the restoration of physiological function, and ii) the rehydration 

temperature and time, which could affect the cell viability after rehydration. 

Phosphate buffer and skimmed milk (100 g l-1) were tested as rehydration media for 

dried formulations. Rehydration times of 10 min, 2 h, 5 h and 24 h and rehydration 

temperatures of 6, 15, 25, 30 and 35 °C were studied with the previously optimised 

formulation. Three replicates of each formulate were weighted for each condition of 

rehydration and the viability was the mean of them. The experiment was repeated at 

least twice. 

Shelf life of formulated products 

To study the stability of the optimised formulation, 72 glass vials containing 

approximately 0.05 g of the formulation were sealed with laboratory film (Parafilm “M”). 

Then 36 vials were kept in an airtight container filled with silica gel to avoid sample 

humidification. The other 36 vials were stored under vacuum. The vials were stored at 

4 °C and 25 °C, and 3 vials were removed at different times to determine survival by 

dilution plating on NYDA with phosphate buffer at room temperature for 10 min as the 

rehydration media. The resulted survival for each condition was the mean of the three 

vials. Shelf life assays were conducted for twelve months. 

Formulated product efficacy 

The efficacy of two optimised dry formulations was tested against P. expansum on 

apples. Both formulations were stored at 4 °C and air-packaged, one for one month 

and a half and another for six months. Both formulations were rehydrated with 

phosphate buffer at room temperature for 10 min, and their efficacy was compared to 

the efficacy of fresh cells. Fresh cells were obtained following growth in 100 ml conical 

flasks containing 50 ml of the same medium of formulated cells. Flasks were incubated 

for 48 hours at 25 °C and 150 rpm, and then the cells were centrifuged (as section 2.2.) 
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and resuspended in 50 ml of phosphate buffer. The cell density of C. sake was 

adjusted with phosphate buffer to 107 CFU ml-1.  

‘Golden Delicious’ apples were surface-sterilised and wounded with a nail to produce 

an injury 2 mm in diameter and 2 mm deep at the stem (top) and another at the calyx 

(bottom). For each treatment, 15 µl of cell suspension of formulated C. sake was 

applied to the wounds and the fruits were allowed to dry at room temperature. Then the 

wounds were inoculated with 15 µl of an aqueous suspension of P. expansum at 104 

conidia ml-1. Each treatment was replicated four times with five apples per replicate. 

The treated apples were incubated at 20 °C and 85% relative humidity (RH) for seven 

days, and then the rot lesion diameter (severity) and the number of infected wounds 

(incidence) were determined. 

Statistical analysis 

An analysis of variance was performed using the JMP8 software (SAS Institute Inc., 

Cary, NC, USA) on all data sets. Prior to the analyses, the incidence percentage and 

the CFU data were transformed by the square root of the arcsine and the logarithm, 

respectively, in order to improve the homogeneity of the variance. If a result was 

statistically significant (P<0.05), the Least Significant Difference (LSD) procedure was 

used for mean separation.  

RESULTS 

Optimisation of time and temperature of drying process 

Several combinations of drying temperatures and times were tested and the best 

temperatures were 40 and 45 °C (Fig. 1). However, only drying at 40 °C for 45 min 

produced an optimal formulation moisture below 10% (8.5%), although the cell viability 

decreased to approximately 25%. In contrast, the highest temperature tested (50 °C) 

was too high, and the cell survival rapidly decreased to near 35% after 20 min, 

whereas survival was approximately 60% when the cells were dried at 40 °C for 20 min 
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(data not shown). A low temperature (30 °C) was insufficient to dry the product, so the 

final formulation had a high moisture content of approximately of 12.5% (data not 

shown). Drying the cells at a lower temperature or for less time to improve cell viability 

was considered, but both options increased the risk of an important decline in the shelf 

life of the final formulation due to excess available water in the dried product. 

Consequently, these temperatures were rejected, and 40 °C for 45 min was chosen to 

continue the study. 

Optimisation of the carrier 

A carrier substance was necessary to reduce the adhesiveness of the cell paste and 

achieve a malleable dough that could be extruded to obtain small particles for fluidised 

bed drying. In addition, it was important to choose a carrier that did not damage the 

cells or reduce their survival. 

Two of the four substances tested as carriers proved to be not useful for this BCA. 

Specifically, natural silicate caused problems with the formulation process because the 

dough could not be extruded, and the corn starch produced non-soluble formulations 

during the rehydration process. Only potato starch and rice starch were useable as 

carriers in further experiments.  

The viability of C. sake after drying the cells at 40 °C for 45 min was significantly higher 

with potato starch (31.3% viability) than with rice starch (18.5% viability) as the carrier. 

Likewise, the reduction of C. sake cells after drying was 0.5 log units when potato 

starch was used as carrier whereas the reduction was 0.73 log units with rice starch.  

The moisture content of the dried product was also better with potato starch (8.6%) 

because the dried product with rice starch had a moisture content above 10% that 

could compromise the shelf life of the formulated product. 
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Optimisation of protective compounds 

Different protectant substances at different concentrations were tested to improve cell 

survival after the fluidised bed drying process (Fig. 2). Most of the compounds tested 

resulted in lower survival than the control formulation (without a protectant substance). 

Improved survival was achieved with all tested percentages of carboxymethyl cellulose 

(10, 50 and 100 g l-1), 200 g l-1 sorbitan monostearate, 10 g l-1 glucose and 10 g l-1 

trehalose, but no significant differences were observed. Moreover, despite of the 

improvement in C. sake survival, these formulations had too high moisture content for 

practical use (Table 1). The worst survival was observed when 100 g l-1 sucrose and 

100 g l-1 polyethylene glycol were used. 

Optimisation of the rehydration media and the rehydration conditions 

Laboratory experiments showed that differences among phosphate buffer and 

skimmed milk were rarely significant at low rehydration temperatures (6 °C and 15 °C), 

and no significant differences were evident among the different rehydration times at 

these temperatures (Fig. 3). Phosphate buffer was a significantly better medium only 

when rehydration was carried out at 6 °C for two hours. At room temperature (25 °C), 

both rehydration media showed the same tendency with time in the experiment. Two 

hours of rehydration yielded the highest C. sake survival, although no significant 

differences were observed between 10 minutes and two hours. At higher temperatures 

(30 °C and 35 °C), significant differences were observed among rehydration times but 

not between the rehydration media.  

In general, the cell recovery did not decrease with time at low temperatures (6 and 15 

°C), whereas at high temperatures (25, 30 and 35 °C), a notable decrease of the cell 

survival with time was observed. 

The highest survival was obtained with skimmed milk at 35 °C for 10 minutes (70.0%) 

although this was not significantly different from cells rehydrated with phosphate buffer. 
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Moreover, for both media, survival was not significantly different after 10 min of 

rehydration at 25 °C and 35 °C (data not shown).  

Shelf life of formulated products 

In general, storage temperature had a strong influence on the shelf-life viability of 

fluidised bed dried C. sake cells, and better results were obtained at 4 °C than at 25 °C 

(Fig. 4). At 25 °C, the survival of the formulated cells stored decreased sharply under 

both air conditions, and after two months, the air-packaged formulation showed a 

survival of less than 10%, a decrease of 0.69 log units. At 4 °C, the viability remained 

stable for both storage conditions after 12 months, and the differences between an air-

vacuum and air-packaging were only significant at the first and the twelfth month of 

storage.  

Formulated product efficacy 

The optimised dry formulation process using fluidised bed drying was used to 

determine the efficacy of formulated C. sake cells stored at 4 °C against P. expansum 

in Golden Delicious apples. The efficacy experiments showed that both C. sake 

formulations significantly inhibited development of blue mould (Fig. 5). Two different 

storage times (one and a half and six months) were tested to demonstrate that the 

efficacy did not decrease during storage. Both the incidence and severity of P. 

expansum on apples treated with C. sake cells were reduced up to 52 and 72%, 

respectively. No significant differences were found between both storage formulations 

and fresh cells. 

DISCUSSION AND CONCLUSIONS 

The present study demonstrated that a dry formulation of the biocontrol agent Candida 

sake CPA-1 using fluidised bed drying is appropriate for cell survival and efficacy. The 

optimised formulation was dried at 40 ºC for 45 min using potato starch as carrier and 

without protectant compounds. The chosen rehydration media was phosphate buffer at 
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25 ºC for 10 min and it can be stored air-packaged at 4 ºC at least one year. Moreover, 

compared with freeze-drying, vacuum-drying or spray-drying systems, fluidised bed 

drying has the lowest fixed and manufacturing costs.26 Likewise, the optimised 

formulation presented more benefits compared to previously developed formulations of 

C. sake. On one hand, compared with liquid formulation, fluidised bed dried formulation 

was a lot less bulky, so it would be easy to manage and transport. On the other hand, 

compared with the other processes used previously to dry C. sake, the optimised 

process encompassed three important benefits: it was cheaper, it was faster and it 

maintained cell viability and efficacy.  

The optimum C. sake formulation using fluidised bed drying was achieved by drying for 

40 min at 45 °C. Similar conditions have been used for other microorganisms such as 

Saccharomyces cerevisiae, which was also optimised for 40 min but at 30 °C27 or 

Pichia anomala at 40 °C for approximately 1 h28. The best carrier for C. sake was 

native potato starch. Potato starch mixed with carbohydrates was also used as a 

carrier to dry Lactobacillus plantarum in a fluidised bed drier to minimise the 

inactivation of the cells due to dehydration.29  

Experiments with protective compounds demonstrated that the best choice is to avoid 

the addition of protective substances to achieve an optimal water content for a long 

shelf life of the formulated product. The results obtained in this study demonstrated that 

most protectant substances tested did not improve the viability of dried cells, which 

could be explained by two reasons: (1) the use of potato starch as carrier could have 

had a protective effect on the yeast because it is a polysaccharide30; and (2) direct 

mixing of a solid protectant with wet cell paste could decrease the water activity of the 

final dough prior to drying and affect the stress tolerance of the microorganisms29. A 

final moisture content of <8% is recommended for dried C. sake cells20, but in this 

study with fluidised bed drying, the moisture content of the control formulation (10.3%) 

was deemed acceptable, and its shelf life was evaluated to ensure that the moisture 
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content was satisfactory. According to our goal, a high survival rate immediately after 

drying is less important than low inactivation during storage, an aspect which is crucial 

for commercial exploitation31. 

The optimum rehydration medium and rehydration conditions are phosphate buffer at 

25 °C for 10 min. Nevertheless, a combination that produced a higher survival rate, 

skimmed milk media at 35 °C after 10 minutes, was not significantly different from 

phosphate buffer at 25 °C for 10 min. For this reason, heated skimmed milk was not 

chosen as the rehydration medium because heating the rehydration medium is an 

expensive and unsuitable option for fruit applications. In contrast, phosphate buffer at 

25 °C is cheaper. Yánez-Mendizábal et al. obtained lower viabilities by rehydrating 

spray-dried Bacillus subtilis CPA-8 cells with skimmed milk than with other rehydration 

media.32 Moreover, at 35 °C, the viability decreased drastically after 10 min, so the 

CPA-1 would have to be applied immediately after recovery, which could be difficult. 

However, at 25 °C, the cell viability begins to decrease after 2 h of rehydration. A minor 

loss of viability is offset by greater convenience and a lower cost.  

Muller et al. reported that the reconstitution technique had a significant effect on the 

bacterial recovery and described the rehydration process as a vital step for the 

achievement of maximal viability.33 A critical parameter of the rehydration process is 

the temperature of the rehydration medium29 which is usually from 20 °C to 30 °C for 

fluidised bed drying34,35. Nevertheless, cell survival during rehydration is affected by 

many factors such as the strain, the temperature, the rehydration kinetics or the pH of 

the medium29. 

The results obtained in this study showed that an easy to recover dry product with a 

high viability had been achieved, but knowledge about the time that it could be stored 

without undergoing a significant decrease in survival was necessary. This study 

demonstrated that the survival of the fluidised bed dried C. sake cells is closely related 

to the storage temperature, and is better at 4 °C than at 25 °C. Fu and Chen 
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associated the loss of cell viability at elevated temperature with the degradation of life-

essential macromolecules during storage.29 Previous studies with this BCA showed 

that a cold storage temperature for C. sake was better to keep metabolic activity low 

and maintains stability with time17–19. In this study, a significant difference between 

vacuum conditions and air-packaging was only seen after 12 months of storage at 4 

°C; but during this time, the dried cell survival stored with air-packaging decreased by 

0.3 log units. Therefore, the storage of air-packaged formulations at 4 °C is the best 

and most economical for CPA-1. In contrast, Yánez-Mendizábal et al. did not observe 

significant differences when Bacillus subtilis CPA-8 was stored at 4 °C or 20 °C.32 

The storage of air-packaged formulations at 4 °C demonstrated the longest shelf life for 

a C. sake formulation obtained to date. Previous shelf life studies showed that the 

survival of freeze-dried C. sake cells after storage was not satisfactory, decreasing 

significantly after 15 days17, and the longest published shelf life for a liquid C. sake cell 

formulation was seven months in an isotonic solution based on trehalose (0.96 M)19. 

Nevertheless, this liquid formulation can be stored for one year (unpublished data).  

Additionally, we have proven that this dry formulation retains its efficacy against P. 

expansum on Golden Delicious apples after six months of storage and is similar to 

fresh C. sake cells. Both the incidence and severity were reduced by 42 and 64%, 

respectively. Previous studies of freeze-dried C. sake cells with P. expansum on apples 

showed that this formulation was not as effective as fresh cells.17 Furthermore, spray-

dried cells were not as effective as fresh cells against blue mould on pome fruit.20 

Therefore, this is the first dry formulation of C. sake CPA-1 that retained its efficacy 

against blue mould on apples. Other fluidised bed dried BCAs, such as Penicillium 

frequentans36 or P. anomala28, retained an efficacy similar to fresh cells. Also efficacy 

of freeze-dried Pseudomonas spp. was nearly identical to that of the fresh cells.37  

In summary, we have demonstrated that a fluidised bed drying system is suitable for 

dehydrating C. sake cells because the dry formulation had satisfactory solubility, 
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retained its viability for 12 months and was as effective as fresh cells against P. 

expansum on apples. In addition, it is easy to package, store and transport and is cost 

effective. The cell concentration after 12 months is very satisfactory because just over 

one kilogram of formulation can treat a 1000 litre drencher, which is a reasonable 

amount of product to use. 

Based on these findings, we assume that this dry formulation overcomes most of the 

shortcomings hindering the commercialisation of this biocontrol product. However, the 

extrusion of the yeast dough is an involved process that must be performed manually, 

so further research should focus on the development a similar formulation using an 

automatic process. Optimisation of a fluid-bed spray-drying process for C. sake that 

takes advantage of the benefits of this method could be the next step. 
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Table 1. Moisture of the formulations with the best protective compounds after fluidised bed 

drying. 

Protective compound Formulation moisturea (%) 

Control 10.3 

5% carboxymethyl cellulose 12.3 

1% carboxymethyl cellulose 13.3 

10% carboxymethyl cellulose 15.2 

20% sorbitan monostearate 11.3 

1% glucose 12.6 

1% trehalose 11.3 

a The results are the means of at least four measurements. 

 

 

 

 

 

Fig. 1. Survival of C. sake yeast cells after fluidised-bed drying at 40 °C ( ) and 45 °C ( ) 

for various times. The mean value of six determinations and the standard deviation of the 

mean are shown.  
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Fig. 2. Effect of protective compounds on the survival of C. sake yeast cells after fluidised-

bed drying at 40 °C for 45 minutes with potato starch as the carrier. The protective 

substances used were: 50 g l-1 carboxymethyl cellulose (CMC5), 10 g l-1 carboxymethyl 

cellulose (CMC1), 100 g l-1 carboxymethyl cellulose (CMC10), 200 g l-1 sorbitan 

monostearate (MON20), 10 g l-1 glucose (GLU1), 10 g l-1 trehalose (TRE1), 100 g l-1 

glycerol (GLY10), 100 g l-1 sorbitan monostearate (MON10), 100 g l-1 sorbitol (SOR10), 50 

g l-1 trehalose (TRE5), 100 g l-1 skimmed milk (MILK10), 100 g l-1 trehalose (TRE10), 100 g 

l-1 dextran (DEX10), 100 g l-1 glucose (GLU10), 100 g l-1 sucrose (SUC10) and 100 g l-1 

polyethylene glycol (PEG10). Columns with different letters indicate significant differences 

(P<0.05) according to the LSD test.  
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Fig. 4. Shelf life of the optimised C. sake formulation at different temperatures: (a) 25 °C 

and (b) 4 °C, and different storage conditions: vacuum ( ) and air-packaged ( ). Mean 

values of three replicates are shown and the vertical bars indicate the standard deviation of 

the mean. Means marked with an asterisk are significantly different according to the LSD. 
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Fig. 5. Efficacy of fluidised-bed drying formulated C. sake cells stored a 4 °C for one month 

and a half (FORM1) and for six months (FORM2) against P. expansum on Golden 

Delicious apples compared with an untreated (control) and fresh cells. The percentage of 

incidence ( ) and the severity ( ) are represented. The values are the means of four 

replicates. Different upper case letters indicate significant differences for the incidence, 

whereas different lower case letters indicate significant differences for the severity, both 

according to the LSD. 
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