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Abstract 20 

The fungus Pencillium digitatum is the causal agent of the citrus green mould, the major 21 

postharvest diseases of citrus fruit. Lesions on the surface of infected fruits first appear as soft 22 

areas around the inoculation site, due to maceration of fruit. The macerating activity has been 23 

associated with pectinases secreted by the fungus during infection. In order to evaluate the 24 

contribution to virulence and macerating activity of the two major polygalacturonases (PGs) 25 

secreted by P. digitatum, we have obtained and characterized mutants lacking either pg1 or 26 

pg2, the genes encoding PG1 and PG2, respectively. Disease incidence of deletants in either 27 

gene was not different from that of the parental strain or ectopic transformants. However, 28 

disease progressed more slowly in deletants, especially in those lacking the pg2 gene. The 29 

lesions originated by the Δpg2 deletants were not as soft and the pH was not as acid as those 30 

originated by either the wild type strain or the ectopic transformants. Total PG activity in the 31 

macerated tissue was also lower in fruits infected with the Δpg2 deletants. Interestingly, the 32 

macerated tissue of oranges infected with Δpg2 deletants showed around 50% reduction in 33 

galacturonic acid content with respect to lesions caused by any other strain.  34 

 35 

 36 

 37 

 38 
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1. Introduction 40 

Green mould rot, caused by Penicillium digitatum, is the most common postharvest disease 41 

affecting citrus fruit in Spain (Tuset, 1987) and all production areas characterized by low summer 42 

rainfall (Eckert and Eaks, 1989). This pathogen may invade the fruit during the preharvest period 43 

through injuries occurred in the field, or/and in the packinghouses during storage and shelf-life 44 

periods. P. digitatum is a specialist pathogen that under natural conditions infects citrus fruit 45 

uniquely, although previous works demonstrated that it can infect overripe apple tissues (Buron-46 

Moles et al., 2012; Vilanova et al., 2012; Vilanova et al., 2014). The use of synthetic fungicides 47 

has been the standard procedure to control this pathogen (Harding, 1972). However, these chemical 48 

treatments have several disadvantages, such as the persistence of the residues on the treated fruit, 49 

increase of the pathogen-resistant strains, as well as health and environmental problems (Bus, 50 

1992). New approaches for designing new and safer control strategies would benefit from the 51 

knowledge of the molecular mechanisms underlying the pathogenesis of P. digitatum. 52 

P. digitatum is a necrotrophic wound pathogen that requires pre-existing injured fruit peel to 53 

penetrate the plant tissue (Kavanagh and Wood, 1967). Necrotrophs kill host cells by means of 54 

toxic molecules, which can be either host-specific, as tentoxin, or nonhost-specific toxins, as AM 55 

toxin, and lytic enzymes. However, the ultimate purpose of a necrotroph is not to kill its host, but 56 

to discompose the plant tissue and utilize the host-derived nutrients for its own growth (Zhang and 57 

van Kan, 2013). During infection, necrotrophic plant pathogens macerate the host tissue by 58 

secreting significant amounts of carbohydrate-active enzymes (CAZYmes) that contribute to the 59 

degradation of plant cell wall polymers to obtain the nutrients required for its development (Zhao 60 

et al., 2013). Among these CAZYmes special attention has been paid to those involved in pectin 61 

degradation. Pectin is the collective name for a complex of polysaccharides that constitute the 62 
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major carbohydrate type in the middle lamella (Jayani et al., 2005, Caffall and Mohnen, 2009). 63 

The most abundant type of pectin is homogalacturonan, a linear polymer of α-1,4-linked D-64 

galacturonic acid, which can be modified by acetylation and methyl-esterification. Other pectins 65 

include rhamnogalacturonan I and II, and xylogalacturonan. Enzymes involved in the degradation 66 

of the pectin backbone include polygalacturonases (PGs), pectate and pectin lyases (PLs), 67 

rhamnogalacturonases and rhamnogalacturonase lyases (recently reviewed by Ramoni and Seiboth 68 

(2016)). Depending upon the pattern of action (random or terminal) polygalacturonases (PGs) are 69 

termed as endo- or exo-enzymes, respectively. Endo- PGs are widely distributed among fungi, 70 

bacteria and many types of yeast whereas, in contrast, exo-PGs occur less frequently (Jayani et al., 71 

2005). 72 

PGs play a critical role in pectin degradation by fungal pathogens and they hydrolyse the 73 

polygalacturonic acid chain across the oxygen bridge (Jayani et al., 2005). PG activity has been 74 

detected in decayed tissue and has been implicated as a virulence factor in several soft rot diseases 75 

(Reignault et al., 2008). In some pathogens, the disruption of PG genes reduced virulence, which 76 

suggests that this enzyme is a significant virulence factor in several plant-infecting fungi (Scott-77 

Craig et al., 1990; Shieh et al., 1997). However, in several other cases, disruption of cell wall-78 

degrading enzymes caused only partial or no reduction in pathogenicity, suggesting that not all 79 

enzymes produced by the pathogen are required for pathogenicity (Scott-Craig et al., 1990). 80 

However, few studies on P. digitatum’s cell walls degrading enzymes (CWDEs) encoding genes 81 

as virulence factors have been conducted so far (López-Pérez et al., 2015; Zhang et al., 2013a; 82 

Zhang et al., 2013b). Zhang and collaborators (2013b) have shown that a P. digitatum mutant 83 

lacking the polygalacturonase PG2 was able to infect citrus fruits, although it was less virulent than 84 
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the parental strain. A similar phenotype has been described for P. digitatum mutants lacking the 85 

pectin lyase PL1, which showed reduced virulence (López-Pérez et al., 2015). 86 

In a recent work, the importance of CWDEs in the virulence of P. digitatum was highlighted 87 

because they constituted the second most abundant group of genes in a library containing up-88 

regulated fungal genes during the infection of oranges (López-Pérez et al., 2015). The genome of 89 

P. digitatum is enriched in two families involved in pectin degradation, when compared to P. 90 

chrysogenum, a closely related but not pathogenic species. Thus, P. digitatum possesses eight 91 

polygalacturonases and rhamnnogalacturonases belonging to family GH28 and three pectin 92 

methylesterases belonging to family CE8 (Marcet-Houben et al., 2012). 93 

In order to clarify the role of P. digitatum’s PGs in pathogenicity, different strategies including 94 

physiological, biochemical and molecular investigations should be performed. In this work, we 95 

have compared the role in virulence of the two major PGs in P. digitatum by obtaining and 96 

characterizing in the same genetic background knockout mutants for the genes pg1 and pg2, to 97 

provide evidence that these genes play a different role during pathogenesis on orange fruit. 98 

2. Materials and Methods 99 

2.1. Fruits 100 

‘Valencia’ orange fruits (Citrus sinensis L. Osbeck) were harvested from a commercial orchard in 101 

Tortosa (Catalonia, Spain) and processed the same day. Fruits were selected for uniform size, 102 

without physical injuries or apparent infections. Once the fruit arrived at the laboratory, they were 103 

surface-disinfected with a 10 % commercial bleach solution for 1 min, rinsed with tap water and 104 

allowed to dry at room temperature. Colour index, firmness, soluble solids and acidity were 105 

determined as quality parameters following standard procedures (Vilanova et al., 2013). 106 
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2.2. Fungal strains and culture conditions  107 

Conidial suspensions from Penicillium digitatum Sacc. isolate Pd1 (CECT20795; (Marcet-Houben 108 

et al., 2012) were prepared by adding 5 mL of sterile water with 0.01 % (w/v) Tween-80 over the 109 

surface of seven- to 10-day-old cultures grown on potato dextrose agar medium (PDA; 200 mL 110 

boiled potato extract, 20 g dextrose, 20 g agar and 800 mL water) and rubbing the surface of the 111 

agar with a sterile glass rod. Conidia were counted in a haemocytometer and diluted to 106 conidia 112 

mL-1 inoculum concentration. 113 

2.3. Construction of P. digitatum pg1 and pg2 disruption plasmids 114 

P. digitatum Pd1 pg1 and pg2 genes correspond to NCBI gene entries PDIP_64460 and 115 

PDIP_19910, respectively. Further annotation of PDIP_64460 was required to match GenBank 116 

AB015286 sequence. Plasmids were constructed following the procedures described by López-117 

Pérez et al. (2015). DNA fragments of 1.5-1.7 kb in length located upstream and downstream of 118 

both genes were amplified by PCR from P. digitatum Pd1 genomic DNA using primers pairs pg1-119 

O1/pg1-O2 and pg2-O1/pg2-O2 (see Table 1 for primers sequences) for the upstream regions of 120 

pg1 and pg2, respectively, and pg1-A3/pg1-A4 and pg2-A3/pg2-A4 for the downstream regions. 121 

The amplified upstream, containing the first exon of the gene, and downstream regions from each 122 

gene were cloned flanking the hygromycin B resistance cassette in the vector pRF-HU2 (Frandsen 123 

et al., 2008), which was previously digested with PacI and Nt.BbvCI, following the USER friendly 124 

cloning technique (New Englands Biolabs, Beverly,MA, USA) to generate plasmids pRFDPG1 125 

and pRFDPG2, respectively. An aliquot of each plasmid was used to transform E. coli DH5 126 

quimio-competent cells. Kanamycin resistant colonies were screened for proper fusion of both 127 

upstream and downstream gene flanking fragments by PCR with primers RF1-RF6 and RF2-RF5 128 
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and verified by DNA sequencing. Selected plasmids were electroporated into Agrobacterium 129 

tumefaciens AGL-1 electrocompetent cells.  130 

2.4. Agrobacterium tumefaciens-mediated transformation of Penicillium digitatum 131 

P. digitatum transformation was conducted as previously described (Marcet-Houben et al., 2012). 132 

Putative transformants were selected on PDA plates supplemented with hygromycin B (100 µg/ml) 133 

and cefotaxime (200 µg/ml). They were transferred to Eppendorf tubes containing PDA 134 

supplemented with hygromycin B (100 µg/ml) and cefotaxime (200 µg/ml) and incubated at 24 ºC 135 

until sporulation. Conidia were inoculated into liquid GPY medium (glucose 40 g/l; peptone 5 g/l; 136 

yeast extract 5 g/l) supplemented with hygromycin (100 µg/ml) and incubated at 24 ºC and 200 137 

rpm for 2 days. DNA was extracted as described previously (López-Pérez et al., 2015). Insertion 138 

of the T-DNA in the transformants was verified by PCR with the primers HMBF1/HMBR1 (Table 139 

1), which target the hygromycin B resistance gene. Integration by homologous recombination was 140 

analysed with primers pairs pg1-F7/pg1-R7 and pg2-F7/pg2-R7 for pg1 and pg2, respectively. The 141 

absence of the targeted gene in the deletants was further verified using the primers pg1-F8/pg1-R8 142 

and pg2-F8/pg2-R8 (Table 1) for pg1 and pg2, respectively. Fig. 1A and 2A show a scheme with 143 

the relative position of the primers used in the characterization of the transformants. 144 

The number of T-DNA insertions present in selected monosporic transformants was determined 145 

by qPCR following the procedure described by Crespo-Sempere et al. (2013) using the primer pairs 146 

pg1-F9/pg1-R9 and pg2-F9/pg2-R9, which are located in the PCR-amplified upstream regions of 147 

pg1 and pg2, respectively. The P. digitatum gene encoding β-tubulin (GenBank accession number 148 

GU124566) was used as a reference for normalization employing primers 149 

betatubPDIG1/betatubPDIG2 (Table 1). DNA from the wild-type Pd1 strain was used as a control. 150 



 

8 

 

PCR reactions were performed using a LightCycler 480 Real-Time apparatus (Roche, Manheim, 151 

Germany) and the LightCycler 480 SYBR Green I Master kit (Roche) following the manufacturer’s 152 

recommendations.  153 

2.5. Fruit infections 154 

Each orange was wounded by making two injuries with a nail (1 mm wide and 2 mm deep) in one 155 

side of fruit and was then inoculated with 15 µL aqueous conidia suspension of P. digitatum 156 

transformants or P. digitatum wild type strain. Oranges inoculated with sterile water were used as 157 

control treatment. After inoculation, oranges were stored at 20 ºC and 85 % relative humidity (RH) 158 

for four days. Decay incidence and severity were measured. Four replicates per treatment were 159 

used and each replicate consisted of two inoculated wounds in five fruits.  160 

2.6. pH 161 

Mesocarp pH was determined by placing a micro-pH electrode directly into the wound (pH & Ion-162 

Meter GLP 22 + Model 5033 pH electrode, Crison Instruments SA, Barcelona, Spain). Four 163 

replicates per treatment were used and each replicate consisted of two inoculated wounds in five 164 

fruits. 165 

2.7. Firmness measurements 166 

Rot firmness was evaluated by measuring the maximal strength of compression of the infected 167 

lesion area using a TA-TX2 Texture Analyzer (Stable Micro Systems Ltd., Surrey, England). The 168 

resistance of the compression was measured using a cylinder probe with a round basis (P/0.75S) 169 

using the following conditions: pre-test speed (2 mm/s), test speed (0.3 mm/s), post-test speed (5.0 170 

mm/s) and contact distance (2 mm) and results were expressed as Newtons (N). Two replicates per 171 

treatment were used and each replicate consisted of two inoculated wounds in five fruits. 172 
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2.8. Polygalacturonase activity assays 173 

Two peel discs of 12 mm in diameter around the inoculation site and 4 mm deep were removed 174 

from 10 oranges using a cork borer. Twenty peel disks were so obtained, frozen immediately in 175 

liquid nitrogen, freeze-dried for 3 days, grounded to a fine powder in a coffee mill and stored 176 

at -80 ºC until further analysis as described below. Twenty discs pooled from ten fruits were 177 

considered one replicate. Three replicates per treatment were used. 178 

For the extraction of polygalacturonase (exo-PG; EC 3.2.1.67 and endo-PG; EC 3.2.1.15) activity, 179 

100 mg of freeze-dried peel tissue from each replicate was homogenised (10 %, w/v) in extraction 180 

buffer prepared according to Lohani et al. (2004). PG activity was determined on the crude extracts 181 

as referenced in Ortiz et al. (2011). One unit (U) of PG activity was defined as the liberation of 1 182 

μmol of GalUA min-1 from citrus pectin (d.e. 70–75%), with galacturonic acid (GalUA) as a 183 

standard. Total protein content was determined with the Bradford (1976) method, with BSA as a 184 

standard. Results were given as specific activity over total protein (U mg-1 protein). 185 

2.9. Analysis of organic acids  186 

Two peel discs of 12 mm in diameter around the inoculation site and 4 mm deep were obtained in 187 

a similar manner to that used in the PG activity studies described above. Twenty discs from ten 188 

fruits were pooled and considered one replicate and four replicates per treatment were performed. 189 

Malic, ascorbic, oxalic, citric and fumaric acids were extracted and quantified using high 190 

performance liquid chromatography (HPLC), and gluconic and galacturonic acids using ultra-high-191 

performance liquid chromatography–mass spectrometry (UHPLC–MS) system (Waters, Milford, 192 

USA) following the conditions described by Vilanova et al. (2014). Results were expressed as mg 193 

g-1 dry weight (DW). 194 
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2.10. Statistical analysis 195 

Data regarding incidence and severity of fruit decay, quality parameters, pH, firmness, PG activity 196 

and organic acid levels were analysed for significant differences by analysis of variance (ANOVA) 197 

with the JMP 8 (SAS Institute Inc, NC, USA) statistical package. Statistical significance was 198 

defined as P<0.05; when the analysis was statistically significant, a Tukey test for separation of 199 

means was performed. 200 

3. Results 201 

3.1. P. digitatum pg1 and pg2 gene knockout mutants 202 

We followed a gene deletion approach to study the role of the two major PGs from P. digitatum. 203 

The promoter and terminator regions of the genes pg1 and g2 were PCR-amplified and cloned into 204 

the binary plasmid pRF-HU2 flanking the hygromycin B resistance cassette, originating plasmids 205 

pRFDPG1 and pRFDPG2, respectively. After A. tumefaciens-mediated transformation of P. 206 

digitatum Pd1, 50 and 96 transformants of pg1 and pg2, respectively, were screened by PCR to 207 

detect the presence of the hygromcycin B resistance marker with primers HMBF1 and HMBR1 208 

(Table1). All transformants were positive for the amplification of the expected 801 bp amplicon 209 

(Fig. 1B and 2B). We analysed the occurrence of double homologous recombination at the pg1 and 210 

pg2 loci using primer pairs pg1-F7/pg1-R7 and pg2-F7/pg2-R7 for pg1 and pg2, respectively. Eight 211 

pg1 transformants and 10 pg2 transformants showed a single amplicon of the expected size, 3.4 kb 212 

for pg1 and 3.0 kb for pg2 (Fig. 1B and 2B). The absence of the wild type band (1.9 kb and 1.7 kb 213 

for pg1 and pg2, respectively) in these transformants is indicative of gene replacement, thus 214 

originating Δpg1 and Δpg2 null mutants. The remaining ectopic transformants showed two bands, 215 

the lower band corresponding to the original locus and the upper one corresponding to the T-DNA. 216 
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Further confirmation of gene replacement in Δpg1 and Δpg2 deletants was observed by the lack of 217 

amplification with gene-specific primers pg1-F8/pg1-R8 and pg2-F8/pg2-R8 for pg1 and pg2, 218 

respectively, (Fig. 1B and 2B). Amplification of a 700 or 650 bp band, for pg1 and pg2 219 

respectively, with these primers was only observed in the wild type Pd1 strain and the ectopic 220 

transformants. The disrupted Δpg1 allele only contains a fragment of the pg1 gene encompassing 221 

the first 75 aa of the 367 aa of the PG1 protein, whereas the disrupted Δpg1 allele only contains 222 

the first 85 aa of the 378 aa. Hence, both disrupted Δpg mutants lack a functional gene. 223 

Four deletant and two ectopic transformants for each gene were selected for determination of the 224 

number of T-DNA copies integrated in the genome by quantitative PCR using the wild type Pd1 225 

strain as a control and the β-tubulin gene as the reference. All pg1 transformants contained only 226 

one copy of T-DNA. However, only two Δpg2 deletants and one ectopic transformant contained 227 

one copy of the T-DNA. The other two Δpg2 deletants contained two T-DNA copies and the second 228 

ectopic transformant contained three copies of the T-DNA integrated in the genome. Two deletants 229 

and one ectopic transformant for each gene containing a single T-DNA integrated in the genome 230 

were selected for further analysis. As shown in Fig. 1C and 2C growth and sporulation of selected 231 

deletant and ectopic transformants did not differ from the wild type strain.  232 

3.2. Development of green mould caused by P. digitatum pg transformants 233 

Fruit maturity stage was characterized by measuring colour index, firmness, soluble solids and 234 

acidity. Results for colour index and firmness on ‘Valencia’ oranges were 3.0 and 3.97 mm, 235 

respectively. Results for soluble solids and acidity were 11.0 % and 0.9 g L-1 citric acid, 236 

respectively. In comparison to previous studies on ‘Valencia’ oranges (Vilanova et al., 2012, 237 
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Vilanova et al., 2013), our quality results indicated that oranges used in this study were at 238 

commercial maturity stage. 239 

To evaluate the effect of both genes in virulence, oranges were inoculated with the wild type P. 240 

digitatum Pd1 and two ∆pg mutants and one ectopic transformant for each gene. Our results 241 

showed that deletion of either pg1 or pg2 did not affect the decay incidence (Fig. 3A), but the 242 

lesion diameter in oranges inoculated with Δpg1 (ΔPG1-8 and ΔPG1-10) and Δpg2 (ΔPG2-0 and 243 

ΔPG2-13) was smaller than in those fruits inoculated the wild type strain after 4 days of inoculation 244 

(Fig. 3B). The average reduction in decay severity of the ΔPG1-8 and ΔPG1-10 was 31 and 33 %, 245 

respectively compared to the wild type strain, however no significant differences were found 246 

between its respective ectopic (EPG1-5) and the wild type strain. The average reduction in decay 247 

severity of the ΔPG2-0 and ΔPG2-13 was 47 and 51 %, respectively compared to the wild type 248 

strain. In addition, its respective ectopic mutant (EPG2-5) also showed lower lesion diameter than 249 

the wild type strain. In pathogenicity assays conducted with a lower inoculum dose (104 conidia 250 

mL-1 instead of 106 conidia mL-1) we observed the same results. Although there were no differences 251 

in disease incidence between the Δpg deletants and the wild type strain, decay severity was lower 252 

in fruits inoculated with the Δpg2 deletants (results not shown). 253 

3.3. Changes in pH, firmness and polygalacturonase activity induced by P. digitatum mutants 254 

in orange decay 255 

The behaviour showed by the different mutants and the wild type strain in relation to pH, firmness 256 

and PG activity was evaluated at four days after inoculation (Fig. 4). 257 

P. digitatum wild type strain decreased orange peel pH from approximately 4.8 in control tissue 258 

(oranges inoculated with water) to approximately 3.0, representing around 38 % reduction (Fig. 259 
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4A). No significant differences were observed among the pH of the ∆pg1 ectopic and null mutants 260 

(EPG1-5, ΔPG1-8 and ΔPG1-10) and the pH of the wild type strain. However, the pH value in 261 

fruits inoculated with the ΔPG2-0 and ΔPG2-13 deletants (3.2 and 3.1, respectively) was slightly 262 

higher than that measured in the wild type strain (3.0). Moreover, no significant differences were 263 

observed between the pH of EPG2-5 and the wild type strain. 264 

Concerning firmness values, the P. digitatum wild type strain decreased the firmness of orange 265 

peel from approximately 6.32 N in control tissue to approximately 1.46 N, representing a reduction 266 

around 76 % (Fig. 4B). No significant differences in firmness were observed among the pg1 ectopic 267 

and null mutants (EPG1-5, ΔPG1-8 and ΔPG1-10) and the wild type strain. However, firmness of 268 

the ΔPG2-0 and ΔPG2-13 deletants (3.17 and 3.87 N, respectively) was markedly higher than that 269 

measured in the wild type strain (1.46 N). No significant differences in firmness were observed 270 

between the ectopic EPG2-5 and the wild type strain. 271 

Large differences were found in PG activity levels between control tissue and the wild-type strain, 272 

activity values being approximately 20-fold higher in the latter (0.92 vs. 18.4 U mg-1 protein, 273 

respectively) (Fig. 4C). No significant differences were observed among the PG activity of the pg1 274 

ectopic (EPG1-5) and ΔPG1-8 null mutant and the wild type strain. However ΔPG1-10 showed 275 

lower PG activity (12.3 U mg-1 protein) than the wild type strain (18.4 U mg-1 protein). The lowest 276 

PG activity was found in ∆pg2 null mutants ΔPG2-0 and ΔPG2-13 (10.3 and 11.2 U mg-1 protein, 277 

respectively). Activity levels in both ∆pg2 null mutants were significantly lower in comparison 278 

with their respective ectopic mutant (EPG2-5), which showed however similar levels in 279 

comparison with the wild-type strain. 280 

 281 
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3.4. Changes in organic acids induced by P. digitatum mutants in orange decay 282 

Malic, ascorbic, oxalic, citric and fumaric acid level caused by the different mutants and the wild 283 

type strain was quantified after four days of inoculation. In general, no significant differences were 284 

observed among wild type strain and PG transformants (data not shown). Ascorbic acid level 285 

showed significant differences among control tissue (1.597 mg g-1 DW) and that mutants with less 286 

lesion diameter: pg2 ectopic and null mutants also showed lower ascorbic acid levels (0.766, 0.866 287 

and 0.516 mg g-1 DW, respectively) than the wild type strain. Moreover, the lowest ascorbic acid 288 

level was detected in ΔPG2-13 (0.516 mg g-1 DW). 289 

Gluconic and galacturonic acid level caused by the different mutants and the wild type strain was 290 

quantified after four days of inoculation (Fig. 5) Gluconic acid level detected in control tissue was 291 

18.666 mg g-1 DW (Fig. 5A). However, no significant differences were observed among control 292 

tissue and pg1 and pg2 ectopic and null mutants and the wild type strain (in a range of 17.791 to 293 

20.408 mg g-1 DW). 294 

P. digitatum wild type strain increased galacturonic acid level from approximately 7.520 mg g-1 295 

DW in control tissue to approximately 108.087 mg g-1 DW, being approximately 14-fold higher in 296 

the wild type (Fig. 5B). No significant differences were observed among the pg1 ectopic and null 297 

mutants (115.187, 118.718 and 110.794 mg g-1 DW, respectively) and the wild type strain (108.087 298 

mg g-1 DW). However, the quantity observed in the ΔPG2-0 and ΔPG2-13 (55.645 and 54.727 mg 299 

g-1 DW, respectively) was lower than that measured in the wild type strain (108.087 mg g-1 DW) 300 

and the ectopic EPG2-5 mutant (135.541 mg g-1 DW). 301 

4. Discussion 302 
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P. digitatum is a necrotrophic fungus that causes extensive maceration of the invaded citrus peel 303 

tissue, presumably due to the action of pectinases secreted by the pathogen during the infection 304 

process. A correlation between pectinases and orange peel maceration was observed in avirulent 305 

strains of P. digitatum obtained by UV irradiation (Garber et al., 1965). These mutants only caused 306 

necrotic lesions at the site of inoculation but did not cause rot. Pectinolytic activity was absent in 307 

the necrotic tissue but abundant in macerated tissue from diseased fruits. The analysis of P. 308 

digitatum pectinases obtained from culture filtrates showed that a secreted pectin lyase had 309 

macerating activity on orange rind tissue (Bush and Codoner, 1968). However, the macerating 310 

activity during lesion development was found to be associated with an exoPG purified from the 311 

macerate peel of oranges infected with P. digitatum (Barmore and Brown, 1979).  312 

We have previously identified in the genome of P. digitatum two PG encoding genes (pg1, 313 

PDIP_64460, and pg2, PDIP_19910, respectively) and two genes encoding pectin lyases (pnl1 and 314 

pnl2, PDIP_08080 and PDIP_57790) that showed a strong up-regulation during the infection of 315 

orange fruits (López-Pérez et al., 2015). P. digitatum mutants lacking either pg2 (Zhang et al., 316 

2013b) or pnl1 (López-Pérez et al., 2015) showed reduced virulence compared to their wild type 317 

strains, although they were still able to develop infection on citrus fruit. In this work, we aimed to 318 

compare the role in virulence and maceration capability of the two major PGs, PG1and PG2, from 319 

P. digitatum by using a functional genomics approach. To avoid strain specific effects, we used 320 

the same P. digitatum Pd1 strain for generating deletants of both pg1 and pg2. This is the same 321 

strain in which we have previously generated deletants lacking the pectin lyase PNL1 (López-Pérez 322 

et al., 2015). Moreover, the genome sequence of this strain is the species’ reference genome at the 323 

NCBI’s RefSeq database. 324 
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Binary T-DNA plasmids containing the upstream and downstream regions of both genes flanking 325 

a hygromycin B resistance cassette were constructed and introduced into P. digitatum via 326 

Agrobacterium-mediated transformation. Two independent deletants and one ectopic transformant 327 

containing just one copy of T-DNA for each gene were selected. All of them grew and sporulated 328 

as the wild type strain on PDA medium (Figure 1 and 2). Pathogenicity assays showed that both 329 

Δpg1 and Δpg2 deletants had the same disease incidence on oranges as the wild type strain or the 330 

ectopic transformants. However, disease severity progressed more slowly in the Δpg deletants, 331 

specially in the two Δpg2 deletants, which showed an average reduction around 50% in lesion 332 

diameter with respect to the wild type strain. A similar reduction in disease severity was already 333 

observed in a Δpg2 deletant obtained in a different P. digitatum strain (Zhang et al., 2013b). 334 

Previous works conducted in Botrytis cinerea-infected tomatoes by Kars et al. (2005) showed that 335 

mutants in the Bcpg2 gene had a >50 % reduction in virulence, meanwhile strains with a mutation 336 

in the Bcpg1 gene only reduced its virulence by 25 % (ten Have et al., 1998). The role of both P. 337 

digitatum PGs to disassemble the orange cell wall seems to be critical for the full virulence of P. 338 

digitatum; however, the disruption of one pectinase gene appears not to be enough to fully reduce 339 

the virulence of this pathogen, probably due to the presence of multiple pectinases in the genome 340 

of P. digitatum (Marcet-Houben et al., 2012). The presence and abundance of pectins into the wall 341 

matrix is considered to regulate the wall extensibility, and different pectin domains crosslink to 342 

each other via calcium and boron bonds. Additional cell wall-related enzymes such as pectin 343 

methylesterases can modify these connections, and therefore increase the susceptibility of pectins 344 

to depolymerisation by PGs and pectate lyases within the wall (Caffall and Mohnen, 2009). 345 

Furthermore, the accessibility of these enzymes to their pectin-backbone substrate is modulated by 346 
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the activity of cell wall hydrolases acting on galactosyl- and arabinosyl-rich pectin side-chains, 347 

which thus regulate cell wall porosity (Goulao and Oliveira, 2008). 348 

We noticed that the lesions in fruits inoculated with both Δpg2 deletants were not as soft as those 349 

observed in fruits inoculated with the wild type strain or any other transformants. Firmness values 350 

of Δpg2 deletants were significant higher than those obtained with the wild type and the other 351 

transformants (Fig 3B). This prompted us to analyse in more detail the characteristics of the 352 

macerated tissue in the lesions originated by the different strains. PG activity in the Δpg2 deletants 353 

showed a tendency to decrease in relation to wild type and the other transformants and this was 354 

clearly related with higher decayed tissue firmness and lower galacturonic acid production. The 355 

accumulation of galacturonic acid is a consequence of the complete pectin degradation by PG 356 

activity as reported Barmore and Brown (1979). In the case of B. cinerea, up to 13 endoPG 357 

isozymes have been described during the progress of the infection (van der Cruyssen et al., 1994). 358 

All BcPGs resulted true endopolygalacturonases, however, they showed different modes of action. 359 

PGA hydrolysis by PG1, PG2 and PG4 produced an accumulation of oligomers with DP < 7. 360 

However, PGA hydrolysis by PG3 and PG6 produced an accumulation of monomers and dimmers 361 

(Kars et al. 2005). 362 

It is known that the timing and degree of in planta gene expression of the endoPG family differs 363 

depending on the host tissue, the degree of fruit ripening, the infection stage and the temperature. 364 

Besides pathogen PG activities, the peel also contains other cell wall degrading enzymes that 365 

contribute to softening of the tissue. Wubben et al. (2000) attributed the different expression 366 

patterns to four mechanisms: basal expression, induction by pectic monomers, repression of the 367 

glucose and ambient pH modulation. In our study, the deletion of pg2 resulted in decayed tissue 368 

with higher firmness, lower PG activity and a 2-fold decrease in galacturonic acid level in relation 369 
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to the lesions originated by the wild type strain. These results demonstrated that Δpg2 strains had 370 

a reduced capacity for pectin decomposition and, hence, less amount of galacturonic acid was 371 

observed, and less nutrients were available for the fungus development. Restriction of growth may 372 

not be solely due to restriction of nutrients but also by physical limitation of hyphal growth through 373 

cells or more importantly between cells and air space. The monosaccharide D-galacturonic acid 374 

seems an important component for the nutrition of P. digitatum because the Δpg2 transformants 375 

showed less infection capacity, determined as the lesion diameter, which correlates with the 376 

production of lower amounts of galacturonic acid in the orange peel, indicating that the gene pg2 377 

is a virulence factor. Taking into account that the albedo of citrus fruit is very rich in pectin, the 378 

capacity to degrade pectin by P. digitatum strain is critical to achieve a successful colonization of 379 

the host. Also in P. digitatum, Zhang et al. (2013b) found that one endoPG gene (Pdpg2) and one 380 

pectin lyase gene (Pdpnl1) were upregulated during citrus fruit infection in the wild type while not 381 

in the P. digitatum ΔpacC mutant. The PacC transcription factor is the terminal component of the 382 

pH signalling pathway. These authors hypothesize that PacC regulates the expression of some 383 

genes that are required for the degradation of pectin in the citrus peel, such as polygalacturonases 384 

and pectin lyases. 385 

The significant pH decrease observed in orange tissue infected by the different P. digitatum strains 386 

agrees with previous reports by other authors (Prusky et al., 2004; Zhang et al., 2013b; Vilanova 387 

et al., 2014). From our results, the optima pH required by both PG from P. digitatum was at least 388 

between 3.0-3.2. Maceration tissue was clearly correlated with a decrease in pH, independently of 389 

the lesion diameter. No significant differences among wild type and both Δpg1 were observed, but 390 

there was a significant difference with the pH of the tissue infected by both Δpg2 deletants. The 391 

results obtained in this work confirm previous work that showed that galacturonic acid was not 392 
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responsible for the pH decrease observed in infected orange tissue (Vilanova et al., 2014); however, 393 

the difference in pH level between Δpg1 and Δpg2 (around 0.2 pH units) could be related to 394 

galacturonic acid content. 395 

Different approaches to evaluate the role of CWDEs in pathogenesis have been conducted in other 396 

pathogens such as Alternaria citris (Akimutsi et al., 2004). They showed that the PG is essential 397 

for degradation of the plant cell wall components, mainly pectin, and for citrus fruit colonization 398 

and pathogenesis. 399 

In conclusion, by obtaining gene knockout mutants, we have shown that the two major PGs, PG1 400 

and PG2, produced by P. digitatum during infection of citrus fruit are required for full virulence. 401 

These two proteins seem to be dispensable to establish infection but they play a role in the 402 

colonization of the orange peel. Moreover, although these two proteins are endopolygalacturonases 403 

they show distinct enzymatic properties in vivo. Hence, PG2 plays a major role than PG1 in tissue 404 

softening, pH reduction and galacturonic acid production.  405 
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 511 

Figure legends 512 

Fig. 1. Analysis of Penicillium digitatum pg1 transformants. (A) Diagram of the wild-type locus 513 

and the pg1 replacement with the HygR selectable marker from pRFDPG1 by homologous 514 

recombination to generate the Δpg1 mutant. Primers used in the construction of plasmid pRFDPG1 515 
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and those used for the analysis of the transformants are shown. (B) Polymerase chain reaction 516 

(PCR) analysis of the wild-type Pd1 strain, an ectopic (Epg1-5) and two knockout (Δpg1-8 and 517 

Δpg1-10) transformants. (C) Growth of the wild type P. digitatum Pd1, an ectopic (Epg1-5) and 518 

two knockout Δpg1 mutants (Δpg1-8 and Δpg1-10) after 7 days of incubation at 24 ºC on PDA 519 

medium. 520 

Fig. 2. Analysis of Penicillium digitatum pg2 transformants. (A) Diagram of the wild-type locus 521 

and the pg2 replacement with the HygR selectable marker from pRFDPG2 by homologous 522 

recombination to generate the Δpg2 mutant. Primers used in the construction of plasmid pRFDPG2 523 

and those used for the analysis of the transformants are shown. (B) Polymerase chain reaction 524 

(PCR) analysis of the wild-type Pd1 strain, an ectopic (Epg2-5) and two knockout (Δpg2-0 and 525 

Δpg2-13) transformants. (C) Growth of the wild type P. digitatum Pd1, an ectopic (Epg2-5) and 526 

two knockout Δpg2 mutants (Δpg2-0 and Δpg2-13) after 7 days of incubation at 24 ºC on PDA 527 

medium. 528 

Fig. 3. Disease incidence (A) and lesion diameter (B) in ‘Valencia’ oranges inoculated with 529 

different P. digitatum pg1 transformants at 106 conidia mL-1 and stored at 20 ºC and 85 % RH for 530 

4 days. Wild type P. digitatum (Pd1), two ectopic mutants (EPG) and four knockout mutants (ΔPG) 531 

were analyzed. Each column represents the mean of four replicates and each replicate consisted of 532 

five fruits with two wounds per fruit. Samples with different letters are significantly different 533 

according to Tukey test (P<0.05).  534 

Fig. 4. pH (A), firmness (B) and polygalacturonase (PG) activity in ‘Valencia’ oranges inoculated 535 

with different P. digitatum pg1 transformants at 106 conidia mL-1 and water as control treatment 536 

and stored at 20 ºC and 85 % RH for 4 days. Wild type P. digitatum (Pd1), two ectopic mutants 537 
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(EPG) and four knockout mutants (ΔPG) were analyzed. For pH, each column represented the 538 

mean of four replicates and for firmness, each column represented the mean of two replicates. In 539 

both cases, each replicate consisted of five fruits with two wounds per fruit. For polygalaturonase 540 

(PG) activity, each column represented the mean of three replicates and each replicate consisted of 541 

ten fruits with two wounds per fruit. Samples with different letters are significantly different 542 

according to Tukey test (P<0.05).  543 

Fig. 5. Gluconic (A) and galacturonic (B) acid levels in ‘Valencia’ oranges inoculated with P. 544 

digitatum pg1 transformants at 106 conidia mL-1 and water as control treatment and stored at 20 ºC 545 

and 85 % RH for 4 days. Wild type P. digitatum (Pd1), two ectopic mutants (EPG) and four 546 

knockout mutants (ΔPG) were analyzed. Each column represents the mean of four replicates and 547 

each replicate consisted of ten fruits with two wounds per fruit. Samples with different letters are 548 

significantly different according to Tukey test (P<0.05).  549 

 550 



Table 1. Primers used in this study

Name Sequence (5’ to 3’) Purpose
pg1-O1 GGTCTTAAUGCCCCACTGGTCGATCCTAACCTTCCA Amplification of the upstream region of pg1
pg1-O2 GGCATTAAUTGGGGGTTGACGCTTGCATAACAGAGC Amplification of the upstream region of pg1
pg1-A3 GGACTTAAUGCCAGCGATCAAATGGTGAACACCAAAC Amplification of the downstream region of pg1
pg1-A4 GGGTTTAAUAAGCGTCTGCGTGGTGGTGTGCAGT Amplification of the downstream region of pg1
pg2-O1 GGTCTTAAUTGCGTGGTCTGTGGGGTGGTCGTTT Amplification of the upstream region of pg2
pg2-O2 GGCATTAAUTGGGTGCCGGTGTTCAATCCAGTCA Amplification of the upstream region of pg2
pg2-A3 GGACTTAAUTTTGACTCCTTGCTGGCCGGGCTTG Amplification of the downstream region of pg2
pg2-A4 GGGTTTAAUTCCGCTCGTGAACAGGAGCACGTTG Amplification of the downstream region of pg2
RF-1 AAATTTTGTGCTCACCGCCTGGAC Analysis of plasmid constructs
RF-2 TCTCCTTGCATGCACCATTCCTTG Analysis of plasmid constructs
RF-5 GTTTGCAGGGCCATAGAC Analysis of plasmid constructs
RF-6 ACGCCAGGGTTTTCCCAGTC Analysis of plasmid constructs
HMBF1 CTGTCGAGAAGTTTCTGATCG Amplification of the hygromycin B resistance marker
HMBR1 CTGATAGAGTTGGTCAAGACC Amplification of the hygromycin B resistance marker
pg1-F7 AAGCTCGATGGAATAGCTT Detection of double homologous recombination at the pg1 locus
pg1-R7 CCCAGTAAAAGGACATGC Detection of double homologous recombination at the pg1 locus
pg1-F8 AAAGAAGAAGCCCAAGTTCT Detection of pg1
pg1-R8 AGCTACCGTTACCGCAGAGA Detection of pg1
pg2-F7 ATGCTATTGGTTCTTTCCTC Detection of double homologous recombination at the pg2 locus
pg2-R7 TCCCTCCGTAAACTAAACAA Detection of double homologous recombination at the pg2 locus
pg2-F8 TCGATGGCGCTAAGGAGCTTACT Detection of pg2
pg2-R8 CTCGGCACACAGAATGTA Detection of pg2
pg1-F9 CGGACGGAGTAGATCTCACAACT Determination of T-DNA copy number in pg1 transformants
pg1-R9 CCTGCGCTAACATCCTCATGAAAC Determination of T-DNA copy number in pg1 transformants
pg2-F9 CCTCGTGGTGCTTGTACCTTCTC Determination of T-DNA copy number in pg2 transformants
pg2-R9 TCAGGGTAATGGTCGAGCAAGC Determination of T-DNA copy number in pg2 transformants
betatubPDIG1 CGATGGCGATGGACAGTAAGTTT Determination of T-DNA copy number in pg1 and pg2 transformants
betatubPDIG2 TTGGTTCGTGGTCGTTGTACTCA Determination of T-DNA copy number in pg1 and pg2 transformants
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Table 1. Primers used in this study

		Name

		Sequence (5’ to 3’)

		Purpose



		pg1-O1

		GGTCTTAAUGCCCCACTGGTCGATCCTAACCTTCCA

		Amplification of the upstream region of pg1



		pg1-O2

		GGCATTAAUTGGGGGTTGACGCTTGCATAACAGAGC

		Amplification of the upstream region of pg1



		pg1-A3

		GGACTTAAUGCCAGCGATCAAATGGTGAACACCAAAC

		Amplification of the downstream region of pg1



		pg1-A4

		GGGTTTAAUAAGCGTCTGCGTGGTGGTGTGCAGT

		Amplification of the downstream region of pg1



		pg2-O1

		GGTCTTAAUTGCGTGGTCTGTGGGGTGGTCGTTT

		Amplification of the upstream region of pg2



		pg2-O2

		GGCATTAAUTGGGTGCCGGTGTTCAATCCAGTCA

		Amplification of the upstream region of pg2



		pg2-A3

		GGACTTAAUTTTGACTCCTTGCTGGCCGGGCTTG

		Amplification of the downstream region of pg2



		pg2-A4

		GGGTTTAAUTCCGCTCGTGAACAGGAGCACGTTG

		Amplification of the downstream region of pg2



		RF-1

		AAATTTTGTGCTCACCGCCTGGAC

		Analysis of plasmid constructs 



		RF-2

		TCTCCTTGCATGCACCATTCCTTG

		Analysis of plasmid constructs 



		RF-5

		GTTTGCAGGGCCATAGAC

		Analysis of plasmid constructs 



		RF-6

		ACGCCAGGGTTTTCCCAGTC

		Analysis of plasmid constructs 



		HMBF1

		CTGTCGAGAAGTTTCTGATCG

		Amplification of the hygromycin B resistance marker



		HMBR1

		CTGATAGAGTTGGTCAAGACC

		Amplification of the hygromycin B resistance marker



		pg1-F7

		AAGCTCGATGGAATAGCTT

		Detection of double homologous recombination at the pg1 locus



		pg1-R7

		CCCAGTAAAAGGACATGC

		Detection of double homologous recombination at the pg1 locus



		pg1-F8

		AAAGAAGAAGCCCAAGTTCT

		Detection of  pg1



		pg1-R8

		AGCTACCGTTACCGCAGAGA

		Detection of  pg1



		pg2-F7

		ATGCTATTGGTTCTTTCCTC

		Detection of double homologous recombination at the pg2 locus



		pg2-R7

		TCCCTCCGTAAACTAAACAA

		Detection of double homologous recombination at the pg2 locus



		pg2-F8

		TCGATGGCGCTAAGGAGCTTACT

		Detection of pg2



		pg2-R8

		CTCGGCACACAGAATGTA

		Detection of pg2



		pg1-F9

		CGGACGGAGTAGATCTCACAACT

		Determination of T-DNA copy number in pg1 transformants



		pg1-R9

		CCTGCGCTAACATCCTCATGAAAC

		Determination of T-DNA copy number in pg1 transformants



		pg2-F9

		CCTCGTGGTGCTTGTACCTTCTC

		Determination of T-DNA copy number in pg2 transformants



		pg2-R9

		TCAGGGTAATGGTCGAGCAAGC

		Determination of T-DNA copy number in pg2 transformants



		betatubPDIG1

		CGATGGCGATGGACAGTAAGTTT

		Determination of T-DNA copy number in pg1 and pg2 transformants



		betatubPDIG2

		TTGGTTCGTGGTCGTTGTACTCA

		Determination of T-DNA copy number in pg1 and pg2 transformants
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Force (N)	a

d

d

cd

d

d

bc

b

6.3166500000000001	1.4628874999999999	1.4823500000000001	1.5282	1.44235	1.7612999999999999	3.1692499999999999	3.8656999999999999	



d

a

ab

abc

bc

a

c

bc

Control	Pd1	EPG 1-5	ΔPG 1-8	ΔPG 1-10	EPG 2-5	ΔPG 2-0	ΔPG 2-13	0.92	18.363	16.952999999999999	15.631	12.327	18.887	10.346	11.21	



Control	Pd1	EPG 1.5	ΔPG 1-8	ΔPG 1-10	EPG 2-5	ΔPG 2-0	ΔPG 2-13	4.8140000000000001	2.9642500000000003	2.9740000000000002	2.9329583333333331	2.9369374999999995	2.9491249999999996	3.1705000000000001	3.12	
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Fig. 5
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Gluconic/galacturonic acidconcentration(µg g-1dryweight)






