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ABSTRACT

An eight-week study was conducted on silvery-black porgy (Sparidentex hasta) juveniles to evaluate four
isoproteic, isolipidic and isoenergetic different diets (50% crude protein, 20% crude lipids, 18.5 MJ kg™")
containing graded levels of soybean lecithin (SBL) (0, 30, 60 and 90 g kg_1 diet) at the expense of fish
oil (FO). Fish fed the 60 g SBL kg™' diet had significantly higher weight gain (32.4%) and feed intake
(8.8 g fish™") than the control group (SBL 0) (P < 0.05). The fillet fatty acid (FA) profiles were correlated
with the FA profile of the experimental diets. Fish fed with SBL-supplemented diets had higher fillet
phosphatidylcholine levels than the control group (P < 0.05). Plasma total immunoglobulin was higher
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in fish fed 60 and 90 g SBL kg~ diets than in the other groups (P < 0.05). Total protease activity was
higher in fish fed the 90 g SLB kg™' diet than other treatments (P < 0.05). Results indicated that
substitution of dietary FO with SBL diet up to 67% (60 g SLB kg~' diet) improved somatic growth
performance and profoundly affected the fillet fatty acid profile in silvery-black porgy juveniles.

Introduction

Phospholipids (PLs) play a major role in maintaining the struc-
ture, integrity, fluidity and function of cellular membranes
(Tocher et al. 2008). Dietary PLs have been reported to
improve growth performance, survival rates, stress resistance
and digestive functions in different fish species, both in larvae
and early juveniles, and can decrease the incidence of skeletal
deformities at larval stages (see reviews by Coutteau et al.
1997; Tocher et al. 2008; Cahu et al. 2009). In addition, PLs by
stimulating lipoprotein synthesis in enterocytes can enhance
lipid transport, improve the intestinal absorption of long-chain
polyunsaturated fatty acids (LC-PUFA) and reduce intestinal stea-
tosis (Fontagné et al. 2000; Gisbert et al. 2005; Tocher et al. 2008).
In this regard, soybean lecithin (SBL) because of its high avail-
ability and reasonable price in comparison to marine PL
sources has been commercially used as a ubiquitous source of
PLs in aquafeeds (Tocher et al. 2008). From a nutritional point
of view, SBL may also serve as a feed attractant, providing vita-
mins and EFAs that are vital for fish growth (see reviews by Cout-
teau et al. 1997; Tocher et al. 2008; Cahu et al. 2009). Several
studies conducted in different fish species have reported positive
effects of dietary SBL supplementation on growth performance
(Kenari et al. 2011; Kumar et al. 2012; Taylor et al. 2015), digestive
processes (Hamza et al. 2008; Kenari et al. 2011; Adel et al. 2017)
and antioxidant enzyme activities (Gao et al. 2014; Kumar et al.
2014; Adel et al. 2017), as well as stress and disease resistance
(Kumar et al. 2012, 2014; Adel et al. 2017).

Silvery-black porgy S. hasta is recognized as one of the
most promising candidates for promoting mariculture activi-
ties in the south of Iran. Thus, considerable research has
been focused on establishing the nutritional requirements of
this species in order to optimize its diet formulation (Mozanza-
deh et al. 2017). Thus, in order to continue improving the for-
mulation of compound diets for this fish species, the current
study was designed to evaluate the effects of dietary SBL
inclusion on growth performance, humoral immune responses
as well as digestive and antioxidant enzymes activities of
S. hasta juveniles.

Materials and methods
Experimental design

For evaluating the effects of dietary SBL inclusion on S. hasta
juveniles performance, an eight-week feeding trial was con-
ducted using four isonitrogenous (ca. 500 g kg™' crude
protein), isoenergetic (ca. 18.5MJkg™") and isolipidic (ca.
200 g kg™' crude lipids) diets containing graded levels of
SBL (0, 30, 60 and 90gkg™' diet) (Tables 1-3) at the
expense of fish oil (FO) as the main lipid source. Experimental
diets were prepared as described in Mozanzadeh et al. (2015).
Diets were prepared by mixing all dry ingredients including
fish meal, wheat meal, gluten meal, beef gelatin and premixes
for 30 min. Then, FO, SBL and sufficient distilled water were
added to form a soft dough and mechanically extruded to
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Table 1. Ingredient and proximate composition of the experimental diets.
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Table 3. Lipid classes of experimental diets (%).

SBL (g kg™") SBL (g kg™")

Ingredients (g kg™") 0 30 60 90 Lipid classes (mg g extracted lipid™") 0 30 60 90
Fish meal® 560 560 560 560 PC 2.1 1.8 23 36
Beef gelatinb 51 51 51 51 PS +PI - 1.5 31 7.6
Gluten meal 120 120 120 120 PE - 1.2 1.8 35
Wheat meal® 101 101 101 101 UK - - - 26
Fish oil® 135 105 75 45 PL 2.1 45 7.2 17.3
Soybean lecithin® 0 30 60 9  CHOL 6.3 6.7 7.2 7.6
Vitamin premix® 15 15 15 15 FFA 8.9 15.1 7.1 11.1
Mineral premixf 15 15 15 15 TAG 74.6 69.0 61.6 573
Antioxidant® 3 3 3 3 SE+W 8.1 4.7 16.9 6.7
Proximate composition (g kg™') NL 97.9 95.5 92.8 82.7
Dry matter 9204 9154 9104 9124 Notes: PC: phosphatidylcholine; PS: phosphatidylserine + PI: phosphatidylinositol;
Crude protein 485.0 488.0 482.0 490.0 PE: phosphatidylethanolamine; UK: unknown; PL: phospholipids; CHOL: choles-
Crude lipid 260.0 2530 2450 249.0 terol; FFA: free fatty acids; TAG: triacylglycerol; SE: sterolsters; W: wax; NL:
Ash 85.0 84.0 89.0 89.0

2Fish meal (Clupeonella sp.); Parskilka Mazandaran, Iran (635 g kg™" crude protein,
177 g kg™ crude lipid).

PGelatine; Beyza feed mill, Shiraz, Iran. (850 g kg™ crude protein, 42 g kg™" crude
lipid).

“Wheat meal; Beyza feed mill, Shiraz, Iran. (120 g kg™' crude protein, 30 g kg™
crude lipid).

dBehpak Industrial Company, Behshahr, Mazandaran, Iran.

Vitamin premix (mg kg_1) of premix: vitamin A, 5,000,000 IU; vitamin D3,
500,000 IU; vitamin E, 3000 mg; vitamin K3, 1500; vitamin B1, 6000; vitamin
B2, 24,000; vitamin B5, 52,000; vitamin B6, 18,000; vitamin B12, 60,000; folic
acid, 3000; nicotinamide 180,000; antioxidant, 500, Damloran pharmaceutical
company, Borujerd, Iran.

*Mineral premix (mg kg~") of premix: copper, 3000; zinc, 15,000; manganese,
20,000; Iron, 10,000; potassium iodate, 300. Microvit®, Razak laboratories,
Tehran, Iran.

9Butylated hydroxyl toluene, GarmabShimi, Iran.

obtain pellets (3 mm). Pellets were dried in a convection
oven at 25°C and stored in re-sealable plastic bags at —20°C
until use.

Table 2. Fatty acid composition of experimental diets (mg g™ total fatty acids).

SLB (g kg™")
Fatty acids 0 30 60 90
14:0 252 30.1 255 20.2
16:0 2105 2344 2134 2204
18:0 525 52.9 486 50.1
20:0 135 13.1 133 72
22:0 16 21 29 26
24:0 43 6.1 50 10.2
SFA? 307.6 338.7 308.7 310.7
14:1n-5 12 23 16 06
16:1n-7 423 40.9 359 259
18:1n-7 272 232 210 18.1
18:1n-9 284.7 277.9 2444 2323
20:1n-9 27 27 17 0.9
MUFAP 358.1 347.0 304.6 277.8
18:2n-6 (LA) 9438 105.6 1684 2489
20:2n-6 16 22 39 33
20:4n-6 (ARA)® 2.2 5.2 35 0.9
n-6 PUFA 986 1124 1758 253.1
18:3n-3 (LNA)® 17.6 189 274 39.1
20:3n-3 13 10 17 03
20:5n-3 (EPA) 40.6 36.8 374 218
22:6n-3 (DHA)? 1146 95.4 94.7 59.2
n-3 PUFA 1741 152.1 161.2 1204
n-3/n-6 1.8 14 0.9 0.5
ARA/EPA 0.05 0.1 0.03 0.02
DHA/EPA 28 26 25 27

Notes: The table provide the detected fatty acids by gas chromatography. Abbrevi-
ation: SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; LA: linoleic
acid; ARA: arachidonic acid; LNA: linolenic acid; EPA: eicosapentaenoic acid, DHA:
docosahexaenoic acid.

neutral lipids.

Fish maintenance and feeding

This study was carried out at the Mariculture Research Station of
the South Iranian Aquaculture Research Center (SIARC), Sarban-
dar, Iran. Fish were randomly distributed into 12 cylindrical
polyethylene tanks (functional volume =250 L), and each tank
was stocked with 15 fish (BW;=38.0+0.1 g, mean + standard
error). Before beginning of the nutritional trial, fish were
adapted to the experimental condition for two weeks. Tanks
were supplied with running sea water (1L min™") in a flow-
through system and the mean values for salinity, tempreture,
pH and dissolved oxygen were 48.2 + 0.2 ppt, 25.1+1.6°C, 7.7
+0.1 and 6.8+ 0.4 mg L™", respectively. The photoperiod con-
dition during experiment was 16L:8D (light:darkness). Each
diet was tested by triplicate and fish were fed one of the
above-mentioned diets by hand to visual satiation two times
per day (0800 and 1500 h) for 56 days. Uneaten feed was
removed from the bottom of the tank by siphoning 1 h after
feeding, dried in an oven (60°C for 24 h) and weighed to deter-
mine feed intake values. All fish from each replicate were
measured to the nearest 0.1 g for their body weight (BWs) and
their standard length (SL) was measured to the nearest 1 mm.
Four specimens from each replicate were sacrificed with an
overdose 2-phenoxyethanol for evaluateing the weight of the
liver, intraperitoneal fat and viscera. Sample collection for
blood (n =2 fish per replicate) and plasma (n =2 fish per repli-
cate), digestive (n=2 fish per replicate) and antioxidant
enzymes (n=2 fish per replicate) was done as previously
reported by Pagheh et al. (2017).

Lipid classes and fatty acid (FA) analyses

Total lipids from diets and fish fillets were extracted by sample
homogenization in chloroform/methanol (2:1, v/v) (Folch et al.
1957). Lipid class separation was performed by high-perform-
ance thin-layer chromatography (HPTLC) (Olsen and Henderson
1989). The HPTLC plates (10 x 10, Nano-sil 20, 0.2 mm of Nano-
silica gel 60, Fiers, Kuurne, Belgium) were used for the separation
of lipid classes. In this regard, plates were placed in chloroform:
methanol (2:1) for 24 h, then they were transferred in the oven
at 110°C for 30 min and let them cool in a desicator. A volume
of 10 ul of samples was transferred to plates and developed
using a mixture of methylacetate: isopropanol: chloroform:
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methanol: KCl (2:2:2:1:1). Then, plates were dried in a desicator
for 15 min, and placed in a second solvent (29.75 ml of hexan
+5.25 ml of diethylether + 0.35 ml glacial acetic acid) for 15
min. Fewster mix (3% copper acetate in 8% orthophosphoric
acid) was pulverized on the plates. Finally, plates were placed
in the oven at 160°C for 20 min, and after cooling the lipid
classes were quantified by densitometry (BioRad, GS-900, USA).

For determining the diet and fillet FA’s profiles, FA methyl
esters were prepared by acidic methanolysis of lipid extracts
using sulphuric acid in methanol (Christie 1993). In this
regard, the lipid sample (up to 50 mg) is dissolved in 2.5% sul-
phuric acid in methanol (2 mL) in a test tube. The mixture was
left for 1 h at 80°C, then samples were cooled down at room
temperature. After that, water (1.5 mL) containing sodium
chloride (0.9%) was added and the required esters extracted
with hexane (2 x 1 mL) using Pasteur pipettes to separate the
layers. The solution centrifuged (4000 g, 50 min, 4°C) and the
upper layer, which contained FA methyl esters was separated
and evaporated under a stream of nitrogen. Finally, the
remained dry FA methyl esters were dissolved in isooctane
(1 mL) and determined by gas chromatography. The FA compo-
sition of diet (n = 1) and fish fillet (n = 3) were determined by an
auto sampler gas chromatography (GC, Agilent technologies
7890 N, USA), equipped with aflame ionization detector (FID)
and a cyanopropyl-phenyl capillary column (DB-225MS, 30
m x 0.250 mm ID x 0.25 um Film thickness, USA). Carrier gas
was ultra-high purity nitrogen at a flow rate of 1 mLmin™".
The column temperature was programmed as follows:
holding at 100°C for 2 min, raising to 182°C at a rate of 30°C
min~', and again raising to 220°C at a rate of 2°C min™',
holding for 5 min, and finally column heating at a rate of 3°C
min~'-230°C, then holding at this temperature for 3 min. The
injector and detector temperatures were set at 230°C and
300°C, respectively. The split ratio was 30:1 and the sample
volume injected for each analysis was 1 L (total run time =
40 min per sample). The identification of fatty acids was per-
formed by comparing their retention time with those of an
external commercial standard mixture (GLC-68d, NuChek
Prep., MN, USA) (Agh et al. 2014).

Hematological and antioxidant status

Complete blood count was assessed according to Blaxhall and
Daisley (1973). Haemolytic and lysozyme activities, as well as
total immunoglobulin (Ig) levels in the plasma were determined
according to Andani et al. (2012), Ellis (1990) and Siwicki et al.
(1994), respectively. Superoxide dismutase (SOD) and catalase
(CAT) activities, as well as total antioxidant capacity (TAC) in
liver samples were assayed according to Kono (1978), Koroluk
et al. (1988) and Benzie and Strain (1996), respectively.

Activity of pancreatic digestive enzymes

Samples were processed and handled following the indications
of Solovyev and Gisbert (2016) regarding the time of sample
storage and process. Dissected digestive tracts from the same
tank were pooled and homogenized (1-2 min at 0-4°C; 3
volumes v/w of 50 MM 2 mM Tris-HCI buffer, pH 7.0) (Chong
et al. 2002). Total alkaline proteases were assayed according

to method described by Garcia-Carreio and Haard (1993). Bile
salt-activated lipase activity was assayed according to the
method described by lijima et al. (1998). The soluble protein
of crude enzyme extracts was quantified by means of the Brad-
ford’s method (1976). All the assays were made in triplicate
(methodological replicates). All oxidative stress condition par-
ameters and digestive enzymes activities were measured in tri-
plicate with a microplate scanning spectrophotometer
(PowerWave HT, BioTek®, USA).

Statistical analyses

Data were analysed using SPSS ver.19.0 (Chicago, lllinois, USA). All
data are presented as mean * standard error of the mean calcu-
lated from three replicates (tanks). Arcsine transformations were
conducted on data expressed as percentage. One-way ANOVA
was performed at a significance level of 0.05 following confir-
mation of normality and homogeneity of the variance. Duncan'’s
procedure was used for multiple comparisons when statistical
differences were found among groups by the one-way ANOVA.

Results
Fatty profile and lipid classes of experimental diets

As presented in Table 2, the levels of dietary polyunsaturated FA,
mainly (linoleic and linolenic acids), increased; wheareas the
content of monounsaturated fatty acids (oleic acid, 18:1n-9), as
well as that of n-3 LC-PUFA (especially EPA and DHA) decreased
with the progressive replacement of dietary FO with SBL. As
expected, PL levels, including phosphatidyl choline, ethnolamine,
serin and inositol in diets increased, and the level of tryacyglycer-
ols decreased with the progressive replacement of dietary FO
with SBL (Table 3).

Growth performance

In the present study, no mortality occurred throughout the
experiment (Table 4). Growth performance of fish fed SBL-sup-
plemented diets was improved in comparison with the control
group. In this context, fish fed with the control (SBL 0) and 60 g
SBL kg~ diets had the lowest and highest WG (96.0 vs. 128.0%)
and SGR (1.2 vs. 1.5% day™") values, respectively, whereas the
other groups showed intermediate values (Table 4). Values of
the HSI were higher in fish fed the control diet than those fed
SBL-supplemented diets, whereas there were no differences
in other somatic indices including VSI, PFl and K among exper-
imental groups (P > 0.05).

Fillet lipid classes and FA profiles

Lipid classes and FA composition of fillets significantly changed
depending on lipid classes and FA composition of experimental
diets (Tables 5 and 6). Fillets of fish fed the control diet had the
highest content in saturated fatty acids [mainly palmitic (16:0)
and stearic (18:0) acids] (P < 0.05). The levels of monounsaturated
fatty acids (MUFA), especially oleic acid (18:1n-9, OA), significantly
decreased in the fillet of fish fed the 90 g SLB kg™ diet (P < 0.05).
The amount of polyunsaturated fatty acids (PUFA), especially



JOURNAL OF APPLIED ANIMAL RESEARCH e 27

Table 4. Growth response and survival of S. hasta juvenile fed experimental diets differing in their content in soybean lecithin (SBL) (mean + SEM, n = 3).

SLB (g kg™
Parameter 0 30 60 90 P-value
BW; (g) 378+0.1 38.1+0.1 37.8+0.1 379402 0.099
BW (g) 741 +£09° 772427 862+ 1.7° 82,6 +4.0°° 0.043
SGR (% day™")' 12+00° 13+0.1%® 15+0.0° 14+0.1% 0.043
WG (%) 95.8+2.1° 102.7 +£7.5° 1282+ 4.8 117.7 £ 10.6®° 0.043
SUR (%)° 100+ 0.0 100 £ 0.0 100+ 0.0 100+ 0.0 1.000
FI (g fish™") 557 £0.8° 60.4 +0.8° 64.5+1.1° 62.7 +2.0% 0.001
FCR? 15+0.0 1.6%0.1 13£0.1 14+0.1 0.224
PER® 13+0.0 13+0.1 15+0.1 14+0.1 0.237
K (%)° 30+00 3.0+0.1 31400 29+0.1 0.347
VS| (%)’ 80+03 78+07 83+0.1 83+03 0.929
HSI (%)® 1.8+0.1 14+0.1° 1.5 +0.0° 1.6+0.0° 0.030
PFI (%)° 3.1+03 37+06 33+02 39+02 0.761

Note: A different superscript in the same row denotes statistically significant differences (P <.05).
1Speciﬁc growth rate (SGR, % day‘1) =[(In BWs—In BW))/t] X 100, where t is experimental period (56 days).

2Weight gain (WG, %) = [(BW— BW;)/BW,] x 100.

3Survival (S, %) = (number of fish in each group remaining on day 56/initial number of fish) x 100.

“Feed conversion ratio (FCR) = feed intake (g)/weight gain (g).

>Protein efficiency ratio (PER) = weight gain (g)/protein intake (g).

SFulton’s condition factor (K) = (BWy/SL?) x 100.

Viscerosomatic index (VSI, %) = (visceral weight (g)/BWy).

8Hepatosomatic index (HSI, %) = (liver weight (g)/BW;) x 100.

9Intraperitoneal fat index (IPF, %) = (intraperitoneal fat weight (g)/BWg) x 100.

linoleic acid (18:2n-6, LA) and a-linolenic acid (18:3n-3, a-LNA),
significantly increased with increasing dietary SBL levels;
however, the concentrations of LC-PUFA including ARA, EPA
and DHA as well as the n—3/n—6 ratio in the fillet significantly
decreased with increasing SBL in diets (P < 0.05). Fish fed with
SBL-supplemented diets had higher fillet phosphatidylcholine
than the control group, whereas the fillet of fish fed the 90 g
SLB kg™' diet had the highest phosphatidylethanolamine levels
(P<0.05). However, levels of triacylglycerides were almost
similar each other among different dietary groups (P> 0.05).

Hematological and antioxidant parameters

In the present study, hematological parameters, as well as
hematological indices, were not affected by the inclusion of
SBL in the basal diet (Table 7, P>0.05). Regarding, non-
specific serological parameters, fish fed the control diet had
the highest plasma lysozyme activity than other experimen-
tal groups (Figure 1(a); P < 0.05). However, plasma haemolytic
activity (Figure 1(b)) was not affected in different experimental
groups (P> 0.05). Plasma total Ig (Figure 1(c)) level was higher
in fish fed diets supplemented with 60 and 90 g SBL kg™’

Table 5. Fatty acid (mg g™ total fatty acids) composition of fillet of S. hasta juvenile fed experimental diets differing in their content in soybean lecithin (SBL) (mean +

SEM, n=3).
SBL (g kg™")

Fatty acids 0 30 60 90 P-value
14:0 124+0.1 18.7+03% 159+ 1.9% 145 +0.8> 0.043
16:0 2316+ 1.5 2156+0.2° 2248+17° 2149+ 04 0.030
18:0 946+ 1.3 67.9 0.9 81.8+56° 779+02° 0.012
20:0 24+07° 25+03° 6.7+1.8° 74+0.1° 0.001
22:0 55+0.1° 1.1£0.1¢ 1.0£0.1¢ 26+0.6° 0.001
24:0 56+13 45+1.1 49+1.1 35+06 0.756
SFA 352.0 + 2.0 3104 +0.8° 33524260 3207 + 1.5 0.022
14:1n-5 27+02 1.8+04 20+05 25+0.2 0.351
16:1n-7 33.5+05° 345+ 1.5 334+ 20° 264+1.8° 0.018
18:1n-7 36.4+1.0° 25.2+0.8% 282+1.2° 225+0.7¢ 0.027
18:1n-9 2285 +3.7% 2473+ 1.5 2346+ 6.5 2133+7.2° 0.035
20:1n-9 21405 20+0.0 25+03 1.8+0.1 0.958
22:1n-9 48+0.7 4.8+0.0° 6.0+ 0.5 23+02° 0.040
MUFA 307.8+4.72 3157+ 1.9° 307.7 £5.6° 268.8 + 6.5° 0.001
18:2n-6 874+8.1° 103.5+5.0° 1172+ 04° 1753+ 142 0.001
20:2n-6 3.0+04 16+05 28+09 33+0.1 0.855
20:4n-6 11.0+1.0° 113+03? 9.8+ 0.6 84+0.1° 0.039
n-6 PUFA 101.4 + 8.6° 116.4 + 4.8 129.7 +£0.7° 187.0+1.4° 0.001
18:3n-3 98+0.7° 13.8+0.7° 138+ 1.1° 185 + 8.5 0.001
20:3n-3 26+0.1° 19+02° 1.8+0.1° 13+0.1¢ 0.045
20:5n-3 41.6 +0.6° 405+ 1.72 403 +0.72 349+0.9° 0.020
22:6n-3 165.1+3.6° 1504 +0.3%° 1429 +82° 138.0+8.2° 0.001
n-3 PUFA 1775+ 442 166.1 + 1.22° 1584 +9.3° 157.9+8.8° 0.001
n-3/n-6 1.8+0.2° 14+0.1% 12+0.1° 0.8+0.1° 0.001
ARA/EPA 03+0.0 03+0.0 02+0.0 0.2+00 0.900
DHA/EPA 40+0.1 37+02 36+03 40+0.1 1.000

Notes: A different superscript in the same row denotes statistically significant differences (P < .05). The table provide values of the detected fatty acids by gas chrom-
atography. Abbreviation: SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; LA: linoleic acid; ARA: arachidonic acid; LNA: linolenic acid; EPA: eicosapen-

taenoic acid, DHA: docosahexaenoic acid.
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Table 6. Lipid classes (mg g™ extracted lipid) of fillet of S. hasta juvenile fed experimental diets differing in their content in soybean lecithin (SBL) (mean =+ SEM, n = 3).

SBL (g kg™")
Lipid classes (mg g extracted Iipid_1) 0 30 60 90 P-value
PC 12+0.1° 1.6+0.1° 1.7+0.1° 1.6+0.1° 0.035
PE 0.3+0.0° 0.4+ 0.0° 0.8+0.0P 1.1+0.0° 0.026
PL 15+0.1° 20+05%® 25+05° 27+04° 0.032
MAG 6.2+0.2 59+0.1 6.1+03 5.7+0.0 0.135
CHOL 15+0.1 14+0.2 1.6+0.0 1.6+0.1 0.914
FFA 263+0.8 326+35 320403 284+0.1 0.424
TAG 59.4+0.6 53.1+46 51.1+0.7 58.0+0.3 0.478
SE+W 50+04 50+ 1.1 6.7+09 36+04 0.491
NL 98.5+0.1 98.0+0.2 975+0.5 973+09 0.933

Notes: PC: phosphatidylcholine; PE: phosphatidylethanolamine; PL: phospholipids; MAG: monoacylglycerol; CHOL: cholesterol; FFA: free fatty acids; TAG: triacylglycerol; SE:

sterolsters; W: wax; NL: neutral lipids.

diets than in the other groups (P < 0.05). There were not sig-
nificant differences in liver antioxidant parameters including
SOD (Figure 2(a)), CAT (Figure 2(b)) and TAC (Figure 2(c))
among experimental groups (P > 0.05).

Digestive enzyme activity

In the present study, fish fed the 90 g SBL kg™' diet had the
highest total protease activity in comparison to the other
groups (Figure 3(a); P<0.05); however, bile salt-activated
lipase activity was not affected by dietary SBL supplementation
(Figure 3(b); P> 0.05).

Discussion

Supplementing diets with functional feed additives (e.g. acid-
ifiers, phospholipids, pro-, pre- and synbiotics) not only
increases nutrient digestibility but also improves growth per-
formance and general health in farmed aquatic animals
(Hussain et al. 2017; Rabia et al. 2017; Wang et al. 2017). Regard-
ing the importance of dietary PLs, several studies have revealed
that juvenile fish may also need dietary PLs supplementation for
optimal somatic growth performance (Uyan et al. 2007, 2009;
Salini et al. 2016) as they have a limited synthesis capacity
(Tocher et al. 2008). In the present study, the improvement in
somatic growth of fish fed SBL-supplemented diets could be

Table 7. Hematological profile of S. hasta juveniles fed experimental diets
differing in their content in soybean lecithin (SBL) (mean + SEM, n =3).

SBL (g kg™")
Pp-
Parameter 0 30 60 90 value
RBC (x10° pL™") 22+0.1 23+0.1 24+0.1 23+0.1  0.200
Hb (g dL™") 73+0.2 7.8+0.2 7.9+0.2 74+02 0.155
Het (%) 508+15 543+17 552+15 517+11 0.139
MCV (Fl) 2303+2.1 2315+15 2300+05 231.3+08 0833
MCH (pg)® 328+03 332+03 327+04 333+02 0292
MCHC (g dL™")® 143+02 140+00 142+02 140+00 0.269
WBC (x10% uL™")¢ 45+0.2 49+0.1 50+0.6 50+02 0570
Neutrophilis (%) 238+15 242+16 272+25 228+08 0286
Lymphoctes (%) 722420 718+12 687+32 745+11 0.286
Monocytes (%) 40+06  40+03  42+07  27+03 0.155

Notes: A different superscript in the same row denotes statistically significant
differences (P < .05). Abbreviations: RBC: red blood cell; Hb: haemoglobin; Hct:
haematocrit; MCV: mean cell volume; MCH: mean cell haemoglobin; MCHC:
mean cell haemoglobin concentration; WBC: white blood cell.

@Mean cell volume (MCV) = Hct (%)/RBC x 10° (L) x 10.

Mean cell haemoglobin (MCH) = Hb (g/dL)/RBC x 100 (uL) x 10.

“‘Mean cell haemoglobin concentration (MCHC) = (g/dL) = Hb (g/dL)/Hct (%).

explained by different reasons. For instance, increasing feed
intake (FI) without affecting FCR values in fish fed the SBL-sup-
plemented diets in comparison with the control group might
have resulted in better growth performance in these groups.
In this sense, it has been proved that the trimethyl group of
the choline base of phosphatidylcholine, as well as as well as
inositol group of the phosphatidylinositol can stimulate the
gustatory response of fish (Izquierdo and Koven 2010; La et al.
2018). Similar results were also reported in juveniles of other
marine and freshwater fish species such as Japanese flounder
(Paralichthys olivaceus, Uyan et al. 2007), rainbow trout (Oncor-
hynchus mykiss, Rinchard et al. 2007), amberjack (Seriola dumer-
illi, Uyan et al. 2009), Atlantic salmon (Salmo salar, De Santis
et al. 2015) and yellowtail Seriola quinqueradiata (La et al.
2018). Secondly, dietary lecithin as the major source of phos-
phatidylcholine can be hydrolysed in the digestive tract to
the form of lysophosphatidylcholine, an important precursor
of PLs, which may save some energy for their biosynthesis
(Tocher et al. 2008), energy that may be derived to other meta-
bolic processes, including somatic growth. In addition, dietary
lecithin can increase the digestibility of diets and stimulate
the synthesis and secretion of lipoproteins, and the utilization
of dietary lipids (Tocher et al. 2008), improving somatic
growth (Seiliez et al. 2006). Under current experimental con-
ditions, the increased HSI values in the control group may be
due to a higher accumulation of fat stores in the liver, which
may be attributed to an insufficient dietary PLs, thus, affecting
the normal lipid transportation in the body as also reported in
common carp (Cyprinus carpio L.) larvae fed PL deficient diets
(Fontagné et al. 1998). In addition, the slight increase in HSI
level with increasing dietary SBL inclusion might be as a result
of lipid accumulation due to the high percentage of linoleic
acid in SBL, which promoted lipid accumulation in the liver (Pie-
decausa et al. 2007).

In the current study, the FA profile and lipid classes of the
fillet of fish generally reflected those of experimental diets.
The concentrations of OA as well as linoleic acid (18:2n-6, LA)
in the fillet from different experimental groups were signifi-
cantly lower than their levels in respective diets, indicating
that these FAs were mainly catabolized for energy purposes,
which was in agreement with other studies in different fish
species (Bell et al. 2003; Regost et al. 2003; Benedito-Palos
et al. 2008; Wassef et al. 2009; Tocher et al. 2010; Mozanzadeh
et al. 2015, 2016a). The amount of polyunsaturated fatty acids
(PUFA), especially LA and a-linolenic acid (18:3n-3, a-LNA),
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Figure 1. Plasma humoral immune parameters including lysozyme level (a) haemolytic activity (b) total Ig (c), and in S. hasta fed different experimental diets.
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Figure 2. Liver SOD (a) and catalase (b) activities and total antioxidant capacity (c)
in S. hasta fed different experimental diets.

significantly increased with increasing dietary SBL levels, as it
has also been reported in other fish species fed diets sup-
plemented with SBL (Benedito-Palos et al. 2008; Alves Martins
et al. 2010; Sotoudeh et al. 2011; Azarm et al. 2013; Saleh
et al. 2015; Salini et al. 2016). Fish oil is the main source of the
LC-PUFA, including arachidonic (20:4n-6, ARA), eicosapentae-
noic (20:5n-3, EPA) and docosahexaenoic (22:6n-3, DHA) (Glen-
cross 2009; Turchini et al. 2009). Thus, the replacement of FO
with SBL led to a decrease in LC-PUFA including ARA, EPA
and DHA, as it has also been reported in different fish species
such as gilthead seabream larvae (Sparus aurata, Alves
Martins et al. 2010) and juveniles at commercial size (Bene-
dito-Palos et al. 2008), Caspian brown trout (Salmo trutta
caspius, Sotoudeh et al. 2011) and juvenile barramundi (Lates
calcarifer; Salini et al. 2016). The selective retention of DHA in
S. hasta tissues has been proved in previous studies (Mozanza-
deh et al. 2015, 20163, 2016b), and it has a similar pattern that
was demonstrated in other sparid species (Benedito-Palos et al.
2008; Peng et al. 2008). In this study, the incorporation of gradi-
ent levels of SBL at the expense of FO, increased the PL concen-
tration in the diet and modified its lipid classes. In this sense,

fish fed with SBL-supplemented diets had higher fillet PC
content than those fed other experimental diets. Similar to
our results, Teshima et al. (1986) reported that the concen-
trations of PLs such as PC slightly higher in the shrimp larvae
(Penaeus japonicus) receiving SBL-PC than in those receiving
other PL classes. In contrast to the result of the present study,
Geurden et al. (1998) reported higher deposition of neutral
lipids in the whole body of turbot post-larvae (Scophthalmus
maximus) fed with PL- supplemented diet in comparison with
fish fed a PL-free one. These differences may be attributed to
the differences in lipid metabolism between different develop-
mental stages (juvenile vs. post-larvae) (Tocher et al. 2008).

Because of their potent antioxidant capacity due to the side-
chain moiety that contains amine/hydroxyl groups (Saito and
Ishihara 1997), PLs might maintain the fluidity and stability of
the RBC membranes and protect them against oxygen free rad-
icals. Results of present study showed that complete blood
count indices were not affected by different diets. In contrast,
it has been reported that lecithin (10 g kg™' diet) tended to
stimulate erythropoiesis in rainbow trout (O. mykiss), which
resulted in higher red blood cell, haemoglobin concentration
and haematocrit levels than in fish fed non-supplemented
lecithin diet (Réhulka and Minarik 2003). These differences
between studies may be attributed to differences in fish
species, diet formulations and purity of SBL tested in different
nutritional studies.

In the current study, the replacement of dietary FO with SBL
resulted in decreasing body n-3/n-6 PUFAs ratio in S. hasta,
which may have influenced fish immune responses. It has
been reported that dietary SBL supplementation increased
mucosal antibacterial activity in common carp (C. carpio, Adel
etal. 2017). Moreover, supplementation of dietary PLs increased
the stress resistance in different fish species such as Labeo
rohita fingerlings (Kumar et al. 2012), large yellow croaker (Lar-
michthys crocea, Zhao et al. 2013), milkfish (Chanos chanos,
Kumar et al. 2014) and stellate sturgeon (Acipenser stellatus,
Jafari et al. 2018). Our study showed that plasma lysozyme
activity values decreased, whereas plasma total Ig levels
showed the opposed trend in fish fed SBL-supplemented
diets. Similar to our result, Jafari et al. (2018) reported that
increasing dietary SBL from 4 to 8 g SBL kg™' significantly
increased serum total Ig in juvenile stellate sturgeon (A. stella-
tus) compared to fish fed dies supplemented with 0 and 2 g
SBL kg™' and fish fed 10g SBL kg™' showed intermediate
values. The results of our study indicate that more immunologi-
cal (cellular and mucosal) analyses need to be conducted in
order to provide a more precise result of the effects of dietary
PL on fish immunity. It is well documented that lecithin acts
in synergy with other antioxidants preventing the oxidation of
vitamins A, C and E, as well as enhance their utilization (ADM
2003). Using butylated hydroxyl toluene (3 g kg™') as an antiox-
idant in the experimental diets might be masked the antioxi-
dant properties of SBL in the present study. In contrast, it has
been reported that dietary SBL supplementation (1-3%)
increased antioxidant enzyme activities (CAT, SOD, gluta-
thione-S-transferase and glutathione peroxidase) in milkfish
(Kumar et al. 2014) and common carp (Adel et al. 2017).

Literature regarding the effect of dietary PLs on the activity
of digestive enzymes in juvenile fish is scarce. The results of
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Figure 3. Digestive enzyme activities including total protease (a) and lipase (b) in
S. hasta fed different experimental diets.

this study showed that total protease activity was increased in
fish fed the 90 g SLB kg™ diet. Several studies have reported
the beneficial effects of dietary PLs on the digestive function
in larval stages of different marine (Cahu et al. 2003; Gisbert
et al. 2005; Wold et al. 2007; Cai et al. 2016) and freshwater
(Hamza et al. 2008) fish species. It has been reported that
dietary PLs enhance the secretion of pancreatic digestive
enzymes by increasing lysophospholipids, which act as sup-
plementary emulsifiers in the intestinal lumen (Cahu et al.
2003). Moreover, PLs indirectly increase the levels of cholecysto-
kinin that mediated in stimulating the pancreatic secretion
(Gisbert et al. 2005; Azarm et al. 2013).

Concluding, the results of this study showed the replacement
of dietary FO with SBL can improve somatic growth performance
in S. hasta juveniles. Regarding to the results of WG and Fl, sub-
stitution of dietary FO with SBL diet up to 67% (60 g SBL kg™")
diet suggested as an optimum level in S. hasta juvenile. More-
over, increasing dietary SBL led to a significant decrease in
fillet n-3 LC-PUFA (mainly EPA and DHA) and n-3/n-6 ratios in
S. hasta, whereas increased the concentrations of different phos-
pholipid classes in the fillet. A finishing feeding trial with FO diet
is recommended for the restoration of the n-3 LC-PUFA in the
fillet of fish fed SBL-supplemented diets.
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