

This document is a postprint version of an article published in Food Research International © Elsevier after peer review. To access the final edited and published work see https://doi.org/10.1016/j.foodres.2018.08.006

Application of temperature and ultrasound as 1 corrective measures to decrease the 2 adhesiveness in dry-cured ham. Influence on 3 free amino acid and volatile compound profile

Pérez-Santaescolástica, C.1, Carballo, J.2, Fulladosa, E.3, Garcia-6 Perez, José V.4, Benedito, J.4, and Lorenzo, J.M.1* 7

- ¹Centro Tecnológico de la Carne, Rúa Galicia Nº4, Parque Tecnológico de Galicia, San Cibrán 9
- 10 das Viñas, 32900 Ourense, Spain
- ²Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 11
- 32004 Ourense, Spain 12
- ³IRTA. XARTA. Food Technology program. Finca Camps i Armet, s/n 17121 Monells, Girona, 13
- 14 Spain

18

20

4

5

8

- ⁴UPV, Department of Food Technology, Universitat Politècnica de València, Camí de Vera s/n, 15
- 16 E-46022, Valencia, Spain
- * Corresponding author. Tel: +34 988 548 277; fax: +34 988 548 276 17

E-mail address: jmlorenzo@ceteca.net 19

Abstract

The impact of low temperature treatment and its combination with ultrasound has been evaluated in order to correct texture defects in dry-cured hams. A total of 26 dry-cured hams, classified as high proteolysis index (PI>36%), were used. From these hams, ten slices from each ham sample were cut, vacuum packed and submitted to three different treatments: control (without treatment), conventional thermal treatments (CV) and thermal treatment assisted by power ultrasound (US). The impact of these treatments on instrumental adhesiveness, free amino acid and volatile compounds profile were assessed. Statistical analysis showed that both US and CV treatments, significantly (*P*<0.001) decreased the instrumental adhesiveness of dry-cured hams from 85.27 g for CO to 40.59 and 38.68 g for US and CV groups, respectively.

The total free amino acid content was significantly (*P*<0.001) affected by both treatments, presenting higher values the samples from the US group (6691.5 *vs.* 6067.5 *vs.* 5278.2 mg/100 g dry matter for US, CV and CO groups, respectively). No significant differences were observed between US and CV treatments. All the individual free amino acids were influenced by ultrasound and temperature treatments, showing the highest content in sliced dry-cured ham submitted to ultrasounds at 50 °C, except for isoleucine which presented the highest level in samples from CV group. Similarly, significant differences (*P*<0.05) were also detected in the total volatile compound content between CO and US groups, with a higher concentration in the CO batch (56662.84 AU x 10³ / g of dry-cured ham) than in the US treatment (45848.47 AU x 10³ / g of dry-cured ham), being the values in the CV treatment intermediate (48497.25 AU x 10³ / g of dry-cured ham). Aldehydes, ethers and esters, carboxylic acids and sulphur compounds were more abundant in the CO group, while CV group showed higher concentrations of ketones, alcohols and nitrogen compounds.

Keywords: adhesiveness; dry-cured ham; free amino acid content; heat treatment; proteolysis; ultrasound treatment; volatile compounds

1. Introduction

In terms of economic value, dry-cured ham is the most important meat product in the Spanish market. Nevertheless, its production experienced a gradual reduction during the last years (Ministerio de Agricultura y Pesca, 2017). This may be a consequence of consumer's increasing concern for health. Dry-cured products have been reported to be one of the main sources of dietary salt in Spain, and it is known that sodium is highly related to cardiovascular diseases (WHO, 2012). Consequently, the reduction of salt in dry-cured ham could improve the value of this product by addressing consumer's requirements.

However, negative impact on texture quality due to the reduction of salt in dry-cured meat products has been widely reported (Armenteros, Aristoy, Barat, & Toldrá, 2009; Flores *et al.*, 2006; Lorenzo, Fonseca, Gómez, & Domínguez, 2015a). In this regard, excessive proteolysis during dry-cured ham processing may lead to a high instrumental adhesiveness, a high pastiness perception and thus a decrease of consumers' acceptability (López-Pedrouso *et al.*, 2018). In addition, other factors such as properties of fresh pieces (pH, fat level, weight), ripening process and type of muscle have been related to proteolysis index of dry-cured ham (Skrlep *et al.*, 2011). López-Pedrouso *et al.* (2018) noticed that the determination of instrumental adhesiveness could be a good indicator of pastiness level in dry-cured ham. These authors also observed that hams with higher proteolysis indices displayed increased instrumental adhesiveness.

On the other hand, consumer preference highly depends on the sensory properties of slices, which are mainly determined by aroma, taste and texture (Narváez-Rivas, Gallardo, & León-Camacho, 2012). In this regard, aroma of dry-cured ham is due to the presence of many volatile compounds generated by chemical and enzymatic mechanisms during the ripening process (Bermúdez, Franco, Carballo, & Lorenzo, 2015). A great number of volatile compounds has been found in dry-cured ham, including hydrocarbons, ketones, acids, terpenes, ketones, alcohols, nitrogen and sulphur compounds, and others. However, only a limited number of volatile compounds contribute to the overall ham flavor (mainly aldehydes and ketones) (Carrapiso, Ventanas, & García, 2002).

Mild thermal treatments (around 30 °C) during a long time (between 7 and 10 days) have been used to correct the softness and pastiness of dry-cured ham (Morales, Arnau, Serra, Guerrero, & Gou, 2008; Gou, Morales, Serra, Guardia, & Arnau, 2008). However, these treatments are not useful for the meat industries because they require a long processing time which could affect to sensorial characteristics (mainly aroma and color) of dry-cured hams. Thus, in order to avoid these defects and improve the final quality of dry-cured ham, new corrective measures that produce a more homogeneous increase of temperature of the ham need to be explored. In this regard, the application of ultrasounds (US) treatment could be a suitable alternative to conventional thermal treatment (Önür *et al.*, 2018). In addition, US can induce chemical, biological and mechanical changes in meat and meat products due to cavitations in liquid systems (Kang *et al.*, 2016) and its effect of dry-cured hams has not been previously investigated.

Low-intensity US waves are used to obtain information about the propagation medium, while high-intensity waves, or high-power US, are used to make permanent changes in the medium (Robles-Ozuna & Ochoa-Martínez, 2012). High-intensity US application is based in the elastic deformation of ferroelectric materials caused by the mutual attraction of polarized molecules into an electric field (Raichel, 2006). In addition, Sajas and Gorbatow (1978) considered that ultrasonic intensity is closely related to the appearance and magnitude of US effects. In a previous study, Contreras, Benedito, Bon, and García-Pérez (2018) noticed that heating caused an increase in hardness and elasticity of dry-cured ham, whereas the application of US did not modify the texture parameters. However, to date the application of US as a corrective measure for adhesiveness of dry-cured meat products has not been explored.

Previous studies noticed that the structure and the function of protein can be modified by the application of US. Thus, the objective of this study was to evaluate the high-power US combined with moderate thermal treatments as a non-invasive intervention strategy to decrease the adhesiveness of sliced dry-cured ham, as well as the assessment of the effects of these treatments on the free amino acid and volatile compound contents of ham samples.

2. Materials and methods

2.1. Samples

For this study, a total of 26 dry-cured hams, classified as having a high proteolysis index (PI>36%) were used. Hams were manufactured according the process reported by Fulladosa *et al.* (2018). At the end of the process, hams were cut and boned and the cushion part containing the *Biceps femoris* muscle was excised and sampled. Ten slices from each ham sample were vacuum packed and submitted to three different treatments: control (without treatment), conventional thermal treatments (CV) and thermal treatment assisted by power ultrasound (US).

- a) Thermal treatments assisted by power ultrasound (US), where ultrasound was only applied during the heating stage, which was defined as the time needed to reach in the centre of the slice a temperature 5 °C below that in the heating medium, measured using a thermocouple. Thus, average ultrasonic treatment time was of 7.5 min. Finally, samples were kept in a water bath (50 °C) to complete 5 h of treatment. This heating temperature and time were chosen to avoid the appearance of cooking flavours in the ham, as found in preliminary experiments. Thermal treatments were applied in an ultrasonic bath (600 W, 25 kHz, model GAT600W, ATU, Spain) using water as heating fluid.
- b) Conventional thermal treatments (CV) where samples were kept in a water bath for 5 hours at 50 °C.

2.2. Instrumental adhesiveness

Textural analysis was performed using a texture analyzer (Stable Micro Systems, TA-XT Plus, London, UK) by carrying out a separation test using different load cells with a specific probe. Instrumental adhesiveness was measured in sliced ham samples (1 mm) by applying probe tests and calculating the negative area of a force-time curve in tension tests with a single cycle. The texturometer was equipped with a probe connected to a special device that enables horizontal probe displacement. After the separation of the slices, the probe returned to the initial position. The conditions for the instrumental measurement of adhesiveness of dry cured ham slices were reported by Lopez-Pedrouso *et al.* (2018). From the graph force *vs.* distance obtained, the

adhesiveness was calculated. All the measurements were made in triplicate and carried out at room temperature.

2.3. Moisture content

Moisture content was quantified according to the ISO recommended standards 1442:1997 (ISO, 1997).

2.4. Free Amino acid analysis

The free amino acids were extracted following the procedure described by Lorenzo, Cittadini, Bermúdez, Munekata, and Domínguez (2015b). Amino acids were derivatizated with 6-aminoquinolyl-Nhydroxysuccinimidyl carbamate (Waters AccQ-Fluor reagent kit) and analyzed by RP-HPLC using a Waters 2695 Separations Module with a Waters 2475 Multi Fluorescence Detector, equipped with a Waters AccQ-Tag amino acid analysis column. The results were expressed as mg of free amino acid/100 g of dry matter.

2.5. Volatile compound analysis

The extraction of the volatile compounds was performed using solid-phase microextraction (SPME). A SPME device (Supelco, Bellefonte, USA) containing a fused silica fibre (10 mm length) coated with a 50/30 layer of divinylbenzene/ carboxen/polydimethylsiloxane was used. Chromatographic analyses were carried out under the conditions described by Domínguez, Gómez, Fonseca, and Lorenzo (2014) with modifications, and a gas chromatograph 7890B (Agilent Technologies, Santa Clara, CA, USA) equipped with a mass selective detector 5977B (Agilent Technologies) was used. For extraction, 1 g of each sample was weighed in a 20 mL vial, after being ground using a commercial grinder. The conditioning, extraction and injection of the samples were carried out with an autosampler PAL-RTC 120. Volatile compounds were identified by comparing their mass spectra with those contained in the NIST14 (National Institute of Standards and Technology, Gaithersburg) library, and/or by comparing their mass spectra and retention time with authentic standards (pentane, octane, decane, undecane, dodecane, tridecane, propanal, butanal, pentanal, hexanal, heptanal, octanal, decanal, nonanal and pentadecanal) (Supelco, Bellefonte, PA, USA), and/or by calculation of retention index relative

to a series of standard alkanes (C_5 – C_{14}) (for calculating Kovats indexes, Supelco 44585-U, Bellefonte, PA, USA) and matching them with data reported in literature. The results are expressed as quantified area units (AU) × 10^3 /g of sample.

2.6. Statistical analysis

The effect of treatment was examined using a one-way ANOVA, where this parameter was set as factor. The values were given in terms of mean values and standard error of the means (SEM). When a significant effect (*P*<0.05) was detected, means were compared using the Tukey's test. All analyses were conducted using the IBM SPSS Statistics 24.0 program (IBM Corporation, Somers, NY, USA) software package. Correlations between variables (*P*<0.05) were determined using the Pearson's linear correlation coefficient.

3. Results and discussion

3.1. Effect of treatments on instrumental adhesiveness

The effect of temperature treatment alone or US assisted on instrumental adhesiveness of dry-cured ham is shown in Figure 1. Statistical analysis showed that both, US and CV treatments, significantly (*P*<0.001) decreased the instrumental adhesiveness of dry-cured hand from 85.27 g for CO to 40.59 and 38.68 g for US and CV groups, respectively. However, there was not significant differences between US and CV treatments. The decrease of instrumental adhesiveness in dry-cured ham slices may be due to the fact that the intramolecular hydrogen connections can break due to the mechanical vibration and the effects of thermal and ultrasonic cavitation causing loosening of the molecular structure and reduction of molecular nodes (Luo, Huang, Yang, 2003). In addition, denaturation and structural changes of proteins due to thermal treatment could also decrease the instrumental adhesiveness of dry-cured ham slices (Tornberg, 2005). Finally, some changes such as the aggregation of the globular heads of myosin (Morales *et al.*, 2008), cell membrane destruction (Rowe, 1989) and the transversal and longitudinal shrinkage of meat fibers (Tornberg, 2005) could take place during the thermal treatment.

The findings in the present work are in agreement with data reported by Morales *et al.* (2008) who showed that the thermal treatment at 30 °C for 168 h on both sliced and whole dry-

cured ham decreased softness, adhesiveness and pastiness in BF muscle, without increasing hardness in SM muscle or affecting their physicochemical parameters (moisture, activity water and proteolysis index). In addition, Gou *et al.* (2008) observed a decrease of soft textures in whole dry-cured ham pieces without affecting the sensory properties after a treatment of 10 days ageing process at 30 °C. Regarding US application, our outcomes are in agreement with data reported by Contreras *et al.* (2018) who did not find any significant difference in hardness and elasticity of dry-cured ham slices between ultrasonically assisted heated and conventionally heated samples. However, our results are in disagreement with those reported by Hu *et al.* (2014) who did not show significant difference between control and US starch corn samples, but they found a lower hardness, elasticity and brittleness in US treated samples.

Taking into account that texture is one the most important sensory attributes of dry-cured ham, which affect its acceptability by consumer, the application of both treatments, US and CV, could be used to reduce the instrumental adhesiveness of dry-cured ham slices by immersing the packaged samples in a water bath during a short period of time.

3.2. Effect of treatments on moisture content

The effect of temperature treatment alone or US assisted on moisture content is presented in Figure 2. Statistical analysis did not show significant differences on moisture content among groups, presenting mean values of 59.01, 58.68 and 58.57 g/100 g; *P*>0.05, for CO, US and CV groups, respectively. Our moisture values were in the range of data (48.3-65.2 g/100 g) reported by other authors (Bermúdez, Franco, Carballo, & Lorenzo, 2014a; Prevolnik *et al.*, 2011; Pugliese *et al.*, 2015) for dry-cured ham.

3.3. Effect of treatments on free amino acid content

Table 1 shows the effect of temperature treatment alone or US assisted on the free amino acids of dry-cured ham. Statistical analysis displayed that total free amino acid content was significantly (*P*<0.001) affected by both treatments, presenting the higher values the samples from the US group (6691.5 vs. 6067.5 vs. 5278.2 mg/100 g dry matter for US, CV and CO groups, respectively). No significant differences were observed between US and CV treatments. These

values are within the range of free amino acid contents (from 4000 to 12,500 mg/100 g dry matter) described by other authors (Bermúdez, Franco, Carballo, Sentandreu, & Lorenzo, 2014b; Jurado, García, Timón, & Carrapiso, 2007; Martín, Antequera, Ventanas, Benítez-Donoso, & Córdoba, 2001) in dry-cured ham. The higher total free amino acid content in samples submitted to ultrasound at 50 °C could be due to the release of some free amino acids from cell tissues that were destroyed by the ultrasounds.

All the individual free amino acids were influenced by ultrasound and temperature treatments, showing the highest content in sliced dry-cured ham submitted to ultrasounds at 50 °C, except for isoleucine which presented the highest level in samples from CV group. According to Jambrak, Mason, Lelas, Paniwnyk, & Herceg (2014), the ultrasound treatment can modify the protein structure due to partial cleavage of intermolecular hydrophobic interactions, rather than peptide or disulphide bonds increased the release of free amino acids. It could be seen that leucine, glutamic acid and alanine were the most abundant free amino acid in the three studied groups and the sum of these three amino acids reached around 27% of the total free amino acids.

On the other hand, the flavour of dry-cured ham could be linked to the amount of the individual free amino acid. In this regard, sweet taste is associated with the level of alanine, serine, proline, threonine and glycine; bitter taste is related to aromatic amino acids such as leucine, phenylalanine, methionine, valine and isoleucine; whereas acid taste is linked to histidine, glutamic and aspartic acids, and aged flavour is associated with the content of lysine, tyrosine and aspartic acid (Table 1). According to this classification, both treatments (ultrasound and temperature) significantly increased the bitter taste of dry-cured ham. On the other hand, the use of temperature did not significantly modify the acid and aged taste, whereas these two tastes were significantly increased by using ultrasounds. The temperature significantly increased the sweet taste of hams and this taste was significantly further increased by the ultrasound treatment at 50 °C. These variations in free amino acid content could be affected the acceptance of dry-cured ham for the consumers.

3.4. Effect of treatments on volatile compound profile

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

The effect of temperature treatment alone or US assisted on the volatile fraction of drycured ham can be observed in Table 2. A total of 155 volatile compounds were found in headspace of the dry-cured ham. These volatile compounds were classified as part of some of the main chemical families according to Narváez-Rivas et al. (2012) and Purriños, Franco, Bermúdez, Carballo and Lorenzo (2011a): 56 hydrocarbons, 23 aldehydes, 21 ketones, 16 esters and ethers, 24 alcohols, 6 carboxylic acids, 4 nitrogenous compounds and 5 sulphur compounds. Significant differences (P<0.05) were detected in the total volatile compound content between CO and US groups, with a higher concentration in the CO batch (56662.84 AU x 103 / g of drycured ham) than in the US treatment (45848.47 AU x 103/g of dry-cured ham), being the values in the CV treatment intermediate (48497.25 AU x 10³ / g of dry-cured ham). The fact that US had been used as a method to improve the food preservation (Knorr et al., 2011) together with the hypothesis that spoilage could originate higher concentrations of volatile compounds in the headspace (Carrapiso, Martín, Jurado, & García, 2010), could explain the less content of total volatile compounds in the US group. Regarding the different chemical families, except for hydrocarbons, the sum of the volatile compounds of each family showed significant differences among groups. Moreover, the levels of 94 individually volatile compounds were significantly influenced by the treatment (24 hydrocarbons, 15 ketones, 15 alcohols, 21 aldehydes, 10 ester and ethers, 4carboxilic acids, 3 sulfur compounds and 2 nitrogenous compounds).

As shown in Table 2, hydrocarbons were the most numerous chemical family with up to 56 different compounds, 24 of them have already been identified in other previous studies in hams (Bermúdez, Franco, Carballo, & Lorenzo, 2015; Narváez-Rivas *et al.*, 2012; Pérez-Santaescolástica *et al.*, 2018). Hydrocarbons represented a percentage of 30% of the total area of the volatile compounds in control samples, whereas, in both US and CV groups, this chemical family was the most abundant (accounting for 43% and 37%, for US and CV batches, respectively). The aliphatic hydrocarbon, that was found in higher concentration was 2,2,4,6,6-pentamethyl heptane, followed by octane, and then, with similar values, pentane, hexane,

undecane and dodecane. It is well known that significant differences in the hydrocarbons content does not originate important odour changes due to their low threshold values (Carrapiso, Ventanas, & García, 2002).

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Meanwhile, the main family of volatile compounds in CO group were the aldehydes (approximately 41% of the total area of volatile compounds). In this regard, Garcia et al. (1991) identified linear aldehydes as a secondary product of lipid oxidative decomposition and attributed the origin of branched aldehydes to non-enzymatic Strecker degradation of valine, leucine and isoleucine. In our work an important reduction of total aldehydes content in US group was observed, as well as a higher decrease in CV batch (23509.08 vs. 10307.72 vs. 2381.68 AU x 10³ / g of dry-cured ham for CO, US and CV groups, respectively). According with previous studies in ham (Andres, Cava, Ventanas, Muriel, & Ruiz, 2007; García-González, Tena, Aparicio-Ruiz, & Morales, 2008; Garcia et al., 1991; Jurado, Carrapiso, Ventanasa, & García, 2009; Sánchez-Peña, Luna, García-González, & Aparicio, 2005), hexanal was the predominant linear aldehyde in CO and US groups, with the highest content presented in CO samples (12264.83 vs. 5747.78 vs. 185.78 AU x 10³ / g of dry-cured ham for CO, US and CV groups, respectively). Hexanal is considered the main volatile compound derived from oxidation of n-6 fatty acids such as linoleic and arachidonic acids, which contributes to the green, greasy and fatty distinctive flavour in matured hams (García González, Tena, Aparicio-Ruiz, & Morales, 2008). In contrast, CV batch presented propanal as the main aldehyde, whose concentration was higher than in the other two groups. On the other hand, 3-methyl butanal was the most abundant branched aldehyde determined in all cases but presenting significant differences (P<0.001) among the groups. CO samples showed the highest concentration of this compound, while CV group registered the lowest one. In this way, Pérez-Santaescolástica et al. (2018) found that highproteolytic hams presented lower amounts of hexanal and 3-methyl butanal than low-proteolytic hams. Lower amounts of these aldehydes in both treatment groups than in control was expected since high temperatures promote protein degradation and enhance proteolytic reactions. According to Ramirez & Cava (2007), who proposed the degradation of isoleucine amino acid as the most probably origin of 2-methyl butanal, a negative correlation between these compounds was found (r= -0.547; *P*<0.01), as well as significant (*P*<0.001) difference among the groups, obtaining higher levels in CV group than in the others ones.

Likewise, the total alcohol content showed higher levels in CV samples than in the other two groups (6548.61 vs. 8599.43 vs. 12199.24 AU x 10³ / g of dry-cured ham for CO, US and CV groups, respectively). This high content of total alcohols found in CV group is a consequence of the higher amounts of three specific individual alcohols: 2-methyl butanol, 3-methyl butanol and phenylethyl alcohol. The increment of 2-methyl butanol and 3-methyl butanol in CV group could be explained for the decrease observed in the 2-methyl butanal and 3-methyl butanal since that branches alcohols may be originated, among others reasons, from the reduction of branched aldehydes (Martín, Córdoba, Aranda, Córdoba, & Asensio, 2006). Otherwise, the major alcohol detected in similar levels in all the groups was 1-octen-3-ol (3543.17 vs. 3818 vs. 3922.68 AU x 10³ / g of dry-cured ham for CO, US and CV groups, respectively).

In addition to aldehydes, Carrapiso, Ventanas, & García (2002) identified ketones as important compounds to odour contribute in dry-cured ham. In our study, statistical analysis showed that the total ketones content was significantly (*P*<0.001) affected by the treatment, observing the greatest level in CV group, and being the 2-heptanone and the acetoin the most abundant ones with higher amount in CV samples than in CO and US groups (427.95 vs. 664.14 vs. 980.43 and 484.130 vs. 501.60 vs. 231.51 AU x 10³ / g of dry-cured ham for CO, US and CV groups, respectively). In agreement with previous studies (Ramírez & Cava, 2007; Sabio, Vidal-Aragón, Bernalte, & Gata, 1998), other 2-ketones were also found, such as 2-butanone, 2-pentanone, 2-octanone and 2-nonanone. All these compounds presented the highest values in the samples from CV treatment.

Esters and ethers, carboxylic acids, nitrogenous compounds and sulfur compounds were the chemical families that presented minor levels of volatile compounds. Esters are compounds distributed in the essential oils with a high flavouring effects, derived from the reaction of an alcohol or phenol with acids (Reineccius, 1991). Some studies reported low values of esters in

volatile dry-cured ham profiles (Martín *et al.*, 2006), whereas other studies carried out in cooked pork meat showed a greater content of these compounds (Gorbatov & Lyaskovskaya, 1980). According to this, it could be assumed that temperature affects the ester compound formation. However, this effect was not observed in the present study, since the CV samples showed the lowest total content of esters (1906.99 *vs.* 1680.82 *vs.*1385.33 AU x 10³ / g of dry-cured ham for CO, US and CV groups, respectively). This fact may be explained because the high temperature produced losses by volatilisation.

Regarding carboxylic acids, total content was 20% less in US group and 70% in CV treatment than in CO group. The highest differences were found between pentanoic acid and butanoic acid contents.

On the other hand, 2,6-dimethyl pyrazine was found as the main nitrogenous compound. Pyrazines are usual compounds in meat and meat products cooked at high temperatures (Mussinan & Walradt, 1974), and their formation is a result of the reaction between diketones and amino compounds at high temperatures (Shibamoto & Bernhard, 1976). According to this, CV samples showed higher significant values (*P*<0.001) than the other batches, whereas US batch did not show any difference compared with CO group. It is possible that the structural changes that were originated by US application can prevent reactions between diketones and amino compounds.

Finally, the temperature application also originated an important decrease in the sulfur compounds, being the dimethyl disulfide the most affected compound (1740.04 vs. 206.48 vs. 738.87 AU x 103 / g of dry-cured ham for CO, US and CV groups, respectively). The sulfur amino acids showed a negative and significant (P<0.01) correlation with dimethyl disulfide (r = -0.557, r = -0.614 and r = -0.512, for taurine, cysteine and methionine, respectively) and dimethyl trisulfide (r = -0.550, r = -0.599 and r = -0.493, for taurine, cysteine and methionine, respectively), suggesting that these compounds could be originated by the amino acids catabolism (Sabio et al., 1998).

3.5. Effect of treatment on sensory attributes

It is worth noting that not all the volatile compounds contribute in the same way to the final odour because only a small percentage of them are odour active and the sensory characteristics can change depending on their concentrations and on the synergies with other compounds of the matrix (Aparicio & Morales, 1998). Over the years, some authors have investigated the relationship between volatile compounds and the odour characteristics (Carrapiso *et al.*, 2010; García-González *et al.*, 2008; Narváez-Rivas *et al.*, 2012). In this context, Figure 3 shows the most odour compounds in dry-cured ham identifying and comparing their contents in the different treatments. Due to different amounts, selected sensory descriptors related to each volatile compound were grouped in three intervals for a better comprehension: A (0-15000 AU x 10³ / g of dry-cured ham), B (0-2000 AU x 10³ / g of dry-cured ham) and C (0-400 AU x 10³ / g of dry-cured ham).

In case of the hydrocarbons, only five compounds were previously described as odour descriptors, octane, heptane, hexane, ethyl benzene and 2-ethyl furan, whose contribution is related with sweet notes. As mentioned above, this chemical family has not very odorant impact, because of its high threshold. Considering their low threshold, aldehydes are the most intensive compounds followed by ketones and esters, and to a lesser extent by alcohols. Hexanal and 3methyl butanol are the most odour-active compounds identified in hams (Carrapiso et al., 2002) and were the main volatile compounds showed in CO samples, contributing principally with the characteristic greasy odour of ham and to a lesser extent with fruity notes. Significant lower levels of hexanal were found in treated groups, observing the lowest content in CV group. Lower contents in CV batch also detected for nonanal, octanal, heptanal, 2-methyl butanal, 3-methyl butanal, 2,4-decadienal, 4-nonenal, 2-octenal 2-methyl propanal, methional and benzaldehyde. According to this, the application of high temperature without ultrasound could promote an important reduction, specially, on fatty and grassy notes. Regarding ketones, the CV group presented higher levels in four of the six odour active ketones found in this study, so the odour of this group of hams could be more floral and fruity compared with the others. On the other hand, alcohols with a low molecular weight confer a sweet and spirituous odour to ham, but as the molecular weight increases a fatty and irritating odour is perceived (Narváez-Rivas *et al.*, 2016). Samples from CV group showed higher values of 3-methyl butanol, compound associated to biceps femoris muscle (Sánchez-Peña *et al.*, 2005), and 2-butanol than the other two groups. Additionally, it was observed fatty, balsamic and fruity notes reduction due to the lowest amounts of pentanol, octanol and butanol presented in these samples. It was not found significant differences in 1-octen-3-ol among the groups, a fact that was expected since this compound that contributes with a typical mushroom odour is derived from feeding system (Jurado *et al.*, 2009). Among the esters reported in previous studies, only one was detected here. Ethyl ester butanoic acid was identified as a specific odour-active compound in Iberian (Carrapiso *et al.*, 2010), Serrano (Flores, Grimm, Toldrá, & Spanier, 1997) and Jinhua (Song, Cadwallader, & Singh, 2008) hams.

Finally, dimethyl disulfide and some carboxylic acids (butanoic, propanoic, pentanoic and 3-methyl butanoic acid) were previously reported like spoiled ham odorants (Carrapiso, Martín, Jurado, & García, 2010). In this context, CO group showed higher spoiled and rancid odour due to its higher amounts of butanoic, pentanoic, 3-methyl butanoic acid and dimethyl disulfide (see Figure 3b and 3c).

4. Conclusions

The thermal treatment (5 hours at 50 °C) of sliced, vacuum packaged high proteolysis hams applied both alone and assisted by ultrasonic treatment during the first 7.5 minutes of thermal treatment significantly decreased the adhesiveness of hams. However, both treatments significantly affected the total and individual free amino acid content. These treatments had also a significant effect on the total volatile compounds and on the contents of the different families of volatiles. Taking into account the specific taste of some free amino acids and also the particular aroma notes of the different volatile compounds, and despite the limitations of the present work (no quantification or normalization was done for the extraction of volatile molecules and sensorial analyses were not carried out), an effect of these two treatments on the taste and odor of ham could be expected.

Acknowledgements

398

403

- This research was supported by Grant RTA 2013-00030-CO3-03 from INIA (Spain).

 Acknowledgements to INIA for granting Cristina Pérez Santaescolástica with a predoctoral
 scholarship (grant number CPD2015-0212). José M. Lorenzo is member of the MARCARNE
 network, funded by CYTED (ref. 116RT0503).
 - References
- Andres, A. I., Cava, R., Ventanas, S., Muriel, E., & Ruiz, J. (2007). Effect of salt content and processing conditions on volatile compounds formation throughout the ripening of Iberian ham. *European Food Research and Technology*, 225(5–6), 677–684.
- Aparicio, R., & Morales, M. T. (1998). Characterization of olive ripeness by green aroma compounds of virgin olive oil. *Journal of Agricultural and Food Chemistry*, *46*(3), 1116-1122.
- Armenteros, M., Aristoy, M. C., Barat, J. M., & Toldrá, F. (2009). Biochemical changes in dry-cured loins salted with partial replacements of NaCl by KCl. *Food Chemistry*, *117*(4), 627-633.
- Bermúdez, R., Franco, D., Carballo, J., & Lorenzo, J. M. (2014a). Physicochemical changes during manufacture and final sensory characteristics of dry-cured Celta ham. Effect of muscle type. *Food Control*, *43*, 263-269.
- Bermúdez, R., Franco, D., Carballo, J., & Lorenzo, J. M. (2015). Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham. *Food Science and Technology International*, *21*(8), 581-592.
- Bermúdez, R., Franco, D., Carballo, J., Sentandreu, M.A., & Lorenzo, J.M. (2014b).
 Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar
 proteins through the manufacturing process of Celta dry-cured ham. *Food Research*International, 56, 226-235.
- Carrapiso, A. I., Martín, L., Jurado, Á., & García, C. (2010). Characterization of the most odour-active compounds of bone tainted dry-cured Iberian ham. *Meat Science*, *85*(1), 54–58.
- Carrapiso, A. I., Ventanas, J., & García, C. (2002). Characterization of the most odor-active compounds of Iberian ham headspace. *Journal of Agricultural and Food Chemistry, 50*(7), 1996-2000.
- Contreras, M., Benedito, J., Bon, J., & Garcia-Perez, J. V. (2018). Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound. *Ultrasonics* Sonochemistry, 41, 206-212.

- Domínguez, R., Gómez, M., Fonseca, S., & Lorenzo, J.M. (2014). Influence of thermal
- 431 treatment on formation of volatile compounds, cooking loss and lipid oxidation in foal meat. LWT-
- 432 Food Science and Technology, 58, 439-445.
- 433 Flores, M., Barat, J. M., Aristoy, M. C., Peris, M. M., Grau, R., & Toldrá, F. (2006).
- Accelerated processing of dry-cured ham. Part 2. Influence of brine thawing/salting operation on
- proteolysis and sensory acceptability. *Meat Science*, 72(4), 766-772.
- Flores, M., Grimm, C. C., Toldrá, F., & Spanier, A. M. (1997). Correlations of Sensory and
- 437 Volatile Compounds of Spanish "Serrano" Dry-Cured Ham as a Function of Two Processing
- Times. Journal of Agricultural and Food Chemistry, 45(6), 2178–2186.
- Fulladosa, E., Austrich, A., Muñoz, I., Guerrero, L., Benedito, J., Lorenzo, J. M., & Gou, P.
- 440 (2018). Texture characterization of dry-cured ham using multi energy X-ray analysis. Food
- 441 Control, 89, 46-53.
- Garcia, C., Berdagué, J. J., Antequera, T., López-Bote, C., Córdoba, J. J., & Ventanas, J.
- 443 (1991). Volatile components of dry cured Iberian ham. Food Chemistry, 41(1), 23–32.
- García-González, D. L., Tena, N., Aparicio-Ruiz, R., & Morales, M. T. (2008). Relationship
- between sensory attributes and volatile compounds qualifying dry-cured hams. *Meat Science*,
- 446 *80*(2), 315–325.
- Gorbatov, V. M., & Lyaskovskaya, Y. N. (1980). Review of the flavour-contributing volatiles
- and water-soluble non-volatiles in pork meat and derived products. *Meat Science*, 4(3), 209-225.
- Gou, P., Morales, R., Serra, X., Guàrdia, M. D., & Arnau, J. (2008). Effect of a 10-day
- ageing at 30 C on the texture of dry-cured hams processed at temperatures up to 18 C in relation
- to raw meat pH and salting time. *Meat Science*, 80(4), 1333-1339.
- Hu, Y., Yu, H., Dong, K., Yang, S., Ye, X., & Chen, S. (2014). Analysis of the tenderization
- of jumbo squid (Dosidicus gigas) meat by ultrasonic treatment using response surface
- 454 methodology. Food Chemistry, 160, 219-225.
- 455 ISO (1997). Determination of moisture content, ISO 1442:1997 standard. In International
- 456 standards meat and meat products. Geneva, Switzerland: International Organization for
- 457 Standardization.
- Jambrak, A. R., Mason, T. J., Lelas, V., Paniwnyk, L., & Herceg, Z. (2014). Effect of
- 459 ultrasound treatment on particle size and molecular weight of whey proteins. *Journal of Food*
- 460 Engineering, 121, 15-23.
- Jurado, Á., Carrapiso, A. I., Ventanasa, J., & García, C. (2009). Changes in SPME-
- extracted volatile compounds from Iberian ham during ripening. Grasas y Aceites, 60(3), 262-
- 463 270.

- Jurado, Á., García, C., Timón, M. L., & Carrapiso, A. I. (2007). Effect of ripening time and
- rearing system on amino acid-related flavour compounds of Iberian ham. Meat Science, 75(4),
- 466 585-594.
- 467 Kang, D. C., Zou, Y. H., Cheng, Y. P., Xing, L. J., Zhou, G. H., & Zhang, W. G. (2016).
- 468 Effects of power ultrasound on oxidation and structure of beef proteins during curing processing.
- 469 Ultrasonics Sonochemistry, 33, 47-53.
- Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011).
- 471 Emerging Technologies in Food Processing. Annual Review of Food Science and Technology,
- 472 2(1), 203–235.
- López-Pedrouso, M., Pérez-Santaescolástica, C., Franco, D., Fulladosa, E., Carballo, J.,
- Zapata, C., & Lorenzo, J. M. (2018). Comparative proteomic profiling of myofibrillar proteins in
- dry-cured ham with different proteolysis indices and adhesiveness. Food Chemistry, 244, 238-
- 476 245.
- Lorenzo, J. M., Cittadini, A., Bermúdez, R., Munekata, P. E., & Domínguez, R. (2015b).
- Influence of partial replacement of NaCl with KCl, CaCl₂ and MgCl₂ on proteolysis, lipolysis and
- sensory properties during the manufacture of dry-cured lacón. *Food Control*, *55*, 90-96.
- Lorenzo, J.M. (2014). Influence of the type fiber coating and extraction time on foal dry-
- 481 cured loin volatile compounds extracted by solid-phase microextraction (SPME). *Meat Science*,
- 482 *96*, 179-186.
- Lorenzo, J.M., & Carballo, J. (2015). Changes in physico-chemical properties and volatile
- compounds throughout the manufacturing process of dry-cured foal loin. Meat Science, 99, 44-
- 485 51.
- Lorenzo, J.M., & Domínguez, R. (2014). Cooking losses, lipid oxidation and formation of
- 487 volatile compounds in foal meat as affected by cooking procedure. Flavour and Fragance
- 488 Journal, 29, 240-248.
- Lorenzo, J.M., Bedia, M., & Bañon, S. (2013). Relationship between flavour deterioration
- and the volatile compound profile of semi-ripened sausage. *Meat Science*, 93, 614-620.
- Lorenzo, J.M., Fonseca, S., Gómez, M., & Domínguez, R. (2015a). Influence of the salting
- time on physico-chemical parameters, lipolysis and proteolysis of dry-cured foal "cecina". LWT-
- 493 Food Science and Technology, 60, 332-338.
- Lorenzo, J.M., Montes, R., Purriños, L., & Franco, D. (2012). Effect of Pork fat addition on
- the volatile compounds of foal dry-cured sausage. *Meat Science*, *91*, 506-512.
- Luo, F.X., Huang, Q., & Yang, Y.E. (2003). Preparation and application of starch ester
- octenylsuccinate. Journal of South China University of Technology, 31, 82-85.

- Martín, A., Córdoba, J. J., Aranda, E., Córdoba, M. G., & Asensio, M. A. (2006).
- 499 Contribution of a selected fungal population to the volatile compounds on dry-cured ham.
- 500 International Journal of Food Microbiology, 110(1), 8–18.
- Martín, L., Antequera, T., Ventanas, J., Benítez-Donoso, R., & Córdoba, J. J. (2001). Free
- amino acids and other non-volatile compounds formed during processing of Iberian ham. Meat
- 503 Science, 59(4), 363-368.
- Ministerio de Agricultura y Pesca, A. y. M. A. (2017). Informe del consumo de alimentación
- 505 en España 2016. In Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente ed.
- 506 Madrid.
- Morales, R., Arnau, J., Serra, X., Guerrero, L., & Gou, P. (2008). Texture changes in dry-
- 508 cured ham pieces by mild thermal treatments at the end of the drying process. Meat Science,
- 509 *80*(2), 231-238.
- Mussinan, C. J., & Walradt, J. P. (1974). Volatile constituents of pressure cooked pork
- 511 liver. Journal of Agricultural and Food Chemistry, 22(5), 827-831.
- Narváez-Rivas, M., Gallardo, E., & León-Camacho, M. (2012). Analysis of volatile
- 513 compounds from Iberian hams: a review. *Grasas y Aceites*, 63(4), 432–454.
- Narváez-Rivas, M., Gallardo, E., & León-Camacho, M. (2016). Study of volatile alcohols
- and esters from the subcutaneous fat during ripening of Iberian dry-cured ham. A tool for
- predicting the dry-curing time. Grasas y Aceites, 67(4), 166.
- Önür, İ., Misra, N. N., Barba, F. J., Putnik, P., Lorenzo, J. M., Gökmen, V., & Alpas, H.
- 518 (2018). Effects of ultrasound and high pressure on physicochemical properties and HMF
- formation in Turkish honey types. Journal of Food Engineering, 219, 129-136.
- Pateiro, M., Franco, D., Carril, J. A., & Lorenzo, J. M. (2015). Changes on physico-chemical
- 521 properties, lipid oxidation and volatile compounds during the manufacture of Celta dry-cured loin.
- Journal of Food Science and Technology, 52(8), 4808-4818.
- 523 Pérez-Santaescolástica, C., Carballo, J., Fulladosa, E., Garcia-Perez, J. V., Benedito, J.,
- Lorenzo, J. M. (2018). Effect of proteolysis index level on instrumental adhesiveness, free
- 525 amino acids content and volatile compounds profile of dry-cured ham. Food Research
- 526 International, 107, 559-566.
- Prevolnik, M., Škrlep, M., Janeš, L., Velikonja-Bolta, Š., Škorjanc, D., & Čandek-Potokar,
- 528 M. (2011). Accuracy of near infrared spectroscopy for prediction of chemical composition, salt
- content and free amino acids in dry-cured ham. Meat Science, 88(2), 299-304.
- Pugliese, C., Sirtori, F., Škrlep, M., Piasentier, E., Calamai, L., Franci, O., & Čandek-
- Potokar, M. (2015). The effect of ripening time on the chemical, textural, volatile and sensorial

- traits of Bicep femoris and Semimembranosus muscles of the Slovenian dry-cured ham Kraški
- 533 pršut. *Meat Science*, *100*, 58-68.
- Purriños, L., Carballo, J., & Lorenzo, J.M. (2013). The Influence of *Debaryomyces hansenii*,
- 535 Candida deformans and Candida zeylanoides on the aroma formation of dry-cured "lacón". Meat
- 536 Science, 93, 344-350.
- Purriños, L., Franco, D., Bermudez, R., Carballo, J., & Lorenzo, J.M. (2011a). Development
- of volatile compounds during the manufacture of dry-cured "lacón", a Spanish traditional meat
- product. Journal of Food Science, 76, 89-97.
- Purriños, L., Franco, D., Bermúdez, R., Temperan, S., Carballo, J., & Lorenzo, J.M.
- 541 (2011b). Influence of salt content and processing time on sensory characteristics of cooked
- 542 "lacón". Meat Science, 87, 436-442.
- Purriños, L., Franco, D., Carballo, J., & Lorenzo, J.M. (2012). Influence of the Salting Time
- on Volatile Compounds during the Manufacture of Dry-cured Pork Shoulder "Lacón". Meat
- 545 *Science*, *92*, 627-634.
- Raichel, D. R. (2006). The science and applications of acoustics: Springer Science &
- 547 Business Media.
- Ramirez, R., & Cava, R. (2007). Volatile profiles of dry-cured meat products from three
- 549 different Iberian x Duroc genotypes. Journal of Agricultural and Food Chemistry, 55(5), 1923-
- 550 1931.
- Reineccius, G. A. (1991). Role of carbohydrates in flavor encapsulation. *Journal of Dairy*
- 552 Science, 45, 144-146.
- Robles-Ozuna, L., & Ochoa-Martínez, L. (2012). Ultrasonido y sus aplicaciones en el
- procesamiento de alimentos. Revista Iberoamericana de Tecnología Postcosecha, 13(2), 109-
- 555 122.
- Rowe, R. W. D. (1989). Electron microscopy of bovine muscle: II—the effects of heat
- denaturation on post rigor sarcolemma and endomysium. *Meat Science*, 26(4), 281-294.
- Sabio, E., Vidal-Aragón, M., Bernalte, M., & Gata, J. (1998). Volatile compounds present
- in six types of dry-cured ham from south European countries. *Food Chemistry*, 61(4), 493–503.
- Sajas, J., & Gorbatow, W. (1978). The use of ultrasonics in meat technology.
- 561 Fleischwirtschaft (Germany, FR).
- Sánchez-Peña, C. M., Luna, G., García-González, D. L., & Aparicio, R. (2005).
- 563 Characterization of French and Spanish dry-cured hams: Influence of the volatiles from the
- muscles and the subcutaneous fat quantified by SPME-GC. *Meat Science*, 69(4), 635–645.

- Shibamoto, T., & Bernhard, R. A. (1976). Effect of time, temperature, and reactant ratio on pyrazine formation in model systems. *Journal of Agricultural and Food Chemistry, 24*(4), 847-852.
- Škrlep, M., Čandek-Potokar, M., Mandelc, S., Javornik, B., Gou, P., Chambon, C., & Santé-Lhoutellier, V. (2011). Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness. *Meat Science*, *88*(4), 657-667.
- 571 Song, H., Cadwallader, K. R., & Singh, T. K. (2008). Odour-active compounds of Jinhua 572 ham. *Flavour and Fragrance Journal*, *23*(1), 1–6.
- Tornberg, E. (2005). Effects of heat on meat proteins–Implications on structure and quality of meat products. *Meat Science*, *70*(3), 493-508.
- World Health Organization (2012). Guideline: Sodium intake for adults and children. 2012. Geneva: World Health Organization.
- Yang, L. F. X. H. Q., & Lian-sheng, Y. E. Y. (2003). Preparation and application of starch ester octenylsuccinate. *Journal of South China University of Technology, 31*, 82-85.

579

Caption to figures

Figure 1. Effect of temperature treatment alone (CV) or US assisted (US) on instrumental adhesiveness of dry-cured ham. Plotted values are means and standard deviations of the results from twenty-six samples of each group

Figure 2. Effect of temperature treatment alone (CV) or US assisted (US) on moisture content of dry-cured ham. Plotted values are means and standard deviations of the results from twenty-six samples of each group

Figure 3. Comparative sensory descriptors among treatments. Sensory descriptions are given in agreement with: Garcia Gonzalez *et al.* (2008), Carrapiso *et al.* (2010); Carrapiso *et al.* (2002) and Narváez-Rivas *et al.* (2012). Selected sensory descriptors related to each volatile compound were grouped in three intervals for a better comprehension: A (0-15000AU x 10³ / g of dry-cured ham), B (0-2000AU x 10³ / g of dry-cured ham) and C (0-400 AU x 10³ / g of dry-cured ham.

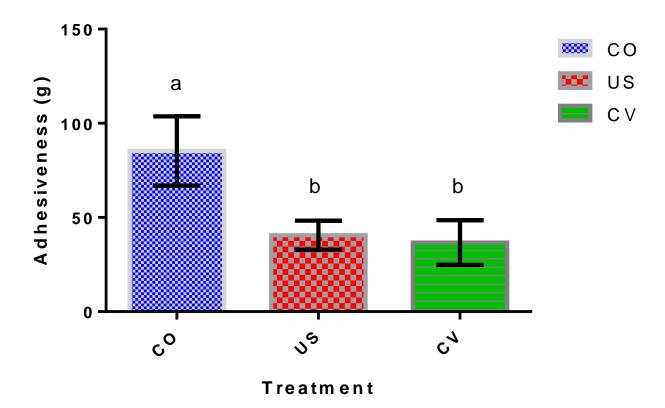


Figure 1

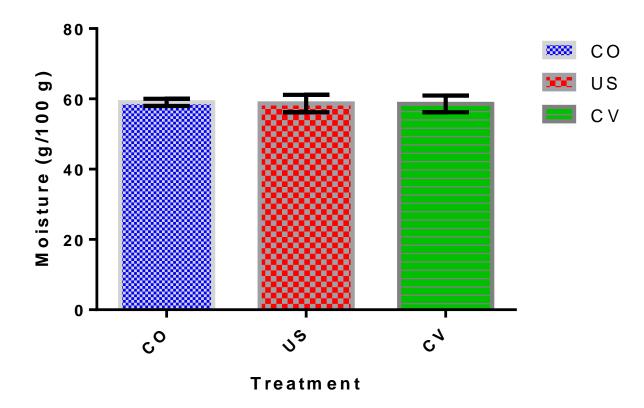
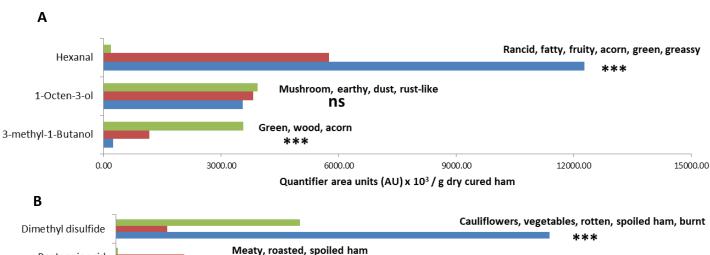
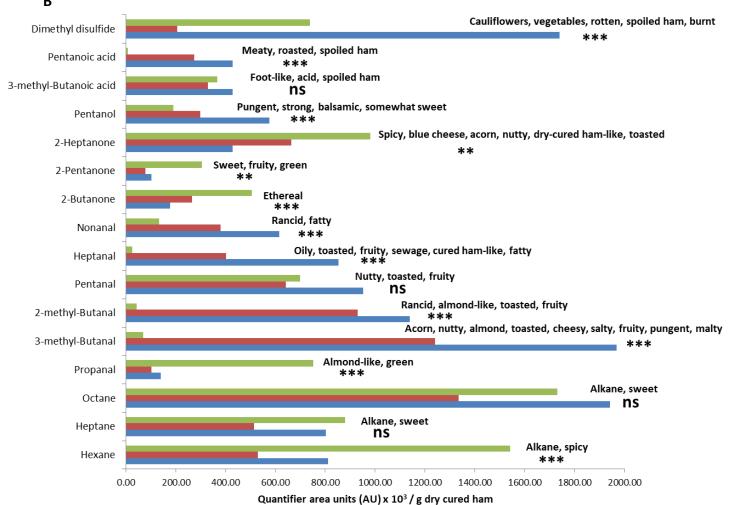




Figure 2

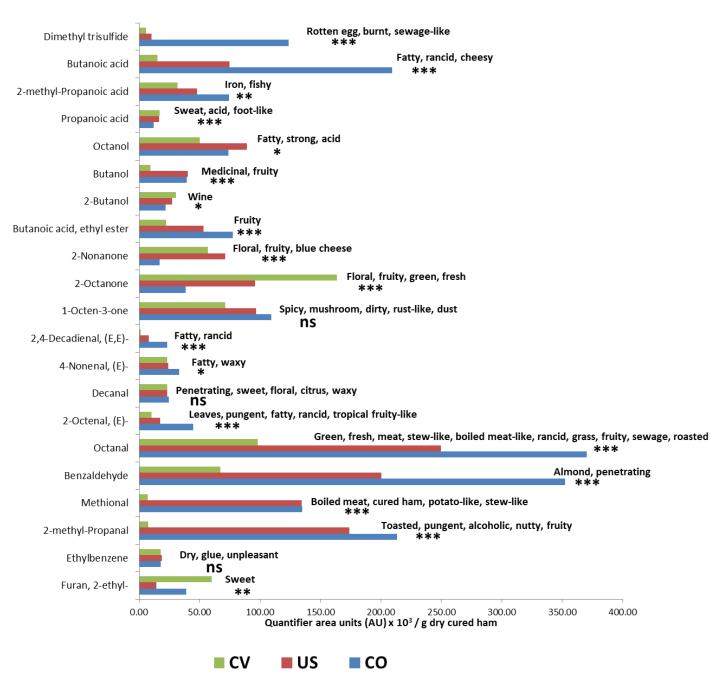


Figure 3

Application of temperature and ultrasound as corrective measures to decrease the adhesiveness in dry-cured ham. Influence on free amino acid and volatile compound profile.

Highlights:

- Temperature and ultrasound were essayed for decrease adhesiveness in ham.
- The effect of these treatments on free amino acid and volatile contents was studied.
- Temperature and ultrasound significantly decreased the adhesiveness of hams.
- Total free amino acid content significantly increased after both treatments.
- Temperature and ultrasound significantly decreased the total volatile content.

Table 1. Effect of treatments on free amino acids content (expressed as mg/100 g dry matter) in dry-cured ham. Values are means of the results from twenty-six samples of each group

		Tratamiento	ı	CEM		
	CO	US	CV	SEM	p-value	
Aspartic acid	164.65ª	212.10 ^b	149.32ª	5.122	<0.001	
Serine	191.48ª	243.71 ^b	204.82a	5.820	< 0.001	
Glutamic acid	430.61a	544.77 ^b	463.93 ^a	12.375	< 0.001	
Glycine	187.99ª	245.58°	216.85 ^b	5.917	< 0.001	
Histidine	99.02ª	133.55 ^b	113.51ª	3.641	< 0.001	
Taurine	80.95ª	102.75 ^b	100.04 ^b	2.592	< 0.001	
Arginine	364.86a	518.93 ^b	361.99ª	14.676	< 0.001	
Threonine	218.46a	281.96°	250.30 ^b	6.642	< 0.001	
Alanine	398.16a	544.41°	461.75 ^b	12.949	< 0.001	
Proline	287.99a	372.34°	330.99 ^b	8.804	< 0.001	
Cisteine	287.14a	437.18 ^b	417.09 ^b	17.045	< 0.001	
Tyrosine	181.33ª	228.49 ^b	219.62 ^b	6.942	< 0.001	
Valine	385.79a	484.95 ^b	428.48 ^a	10.053	< 0.001	
Metionine	213.90 ^a	259.31 ^b	250.63 ^b	6.074	< 0.001	
Lysine	247.69a	351.95 ^b	276.72a	9.506	< 0.001	
Isoleucine	364.94a	411.06 ^b	421.89 ^b	8.196	< 0.001	
Leucine	608.59ª	750.85 ^b	700.38 ^b	15.831	< 0.001	
Phenilalanine	391.01ª	495.85 ^b	459.91 ^b	11.808	< 0.001	
Total Aas	5278.18 ^a	6691.53 ^b	6067.45 ^b	148.807	<0.001	
Sweet ¹	1328.43 ^a	1705.69°	1499.88 ^b	33.752	<0.001	
Bitter ²	2014.89 ^a	2289.93 ^b	2256.99 ^b	36.002	<0.001	
Acid ³	699.95 ^a	904.94 ^b	765.60 ^a	16.902	<0.001	
Aged ⁴	601.69 ^a	767.19 ^b	645.23 ^a	14.888	<0.001	

a-b Mean values in the same row (corresponding to the same parameter) not followed by a common letter differ significantly (*P*<0.05; Tukey's Test)

Treatments: CO= control (without treatment), CV= conventional thermal treatments and US= thermal treatment assisted by power ultrasound

SEM: standard error of mean.

¹Sweet flavor = \sum of alanine, glycine, threonine, serine and proline; ² Bitter flavor = \sum of leucine, valine, isoleucine, methionine and phenylalanine; ³Acid flavor = \sum of glutamic acid, aspartic acid and histidine; ⁴Aged flavor = \sum of lysine, tyrosine and aspartic acid

Table 2Effect of treatments on volatile compounds content (expressed as quantifier area units (AU) $x = 10^3 / g$ dry cured ham. Values are means of the results from twenty-six samples of each group

				Treatment				P-
Compound	m/z	LRI	R	СО	US	CV	SEM	value
Pentane	43	500	ms, Iri, s	883.71a	688.22ª	1471.54 ^b	94.956	0.005
Pentane, 2-methyl-	71	543	ms, Iri	2.57 ^a	3.29 ^{ab}	4.50 ^b	0.289	0.023
1-Butene, 2,3-dimethyl-	57	571	ms	19.51a	10.68a	30.18 ^b	1.734	< 0.001
n-Hexane	69	600	ms, Iri, s	810.40 ^b	529.80 ^a	1541.71°	61.771	< 0.001
Heptane	71	700	ms, Iri, s	802.78	514.56	879.78	68.817	0.103
Pentane, 2,3,4-trimethyl-	71	756	ms, Íri	232.76a	365.58 ^{ab}	437.24 ^b	26.540	0.003
Pentane, 2,3,3-trimethyl-	71	763	ms, Iri	319.34a	508.02b	620.06 ^b	34.305	< 0.001
Pentane, 3-ethyl-	70	770	ms, Iri	51.97a	77.48 ^{ab}	85.39 ^b	5.219	0.015
1-Pentene, 3-ethyl-2-methyl-	83	774	ms	32.98	37.73	45.65	2.220	0.069
Hexane, 2,2,5-trimethyl-	57	799	ms	374.97a	655.05 ^{ab}	705.58 ^b	51.550	0.010
Octane	85	800	ms, Iri, s	1942.31	1335.15	1731.67	154.326	0.257
2-Octene, (E)-	112	833	ms, Iri	201.22	122.73	157.6	14.935	0.078
Heptane, 3,4,5-trimethyl-	85	842	ms	67.19 ^a	110.46 ^b	120.25 ^b	7.106	0.002
3-Octene, (E)-	112	845	ms, Iri	84.68	59.41	70.66	6.160	0.217
Octane, 2-methyl-	71	899	ms	12.42	15.12	13.79	1.002	0.530
Hexane, 2,2,5,5-tetramethyl-	57	914	ms, Iri	301.96	409.36	394.91	26.669	0.168
4-Nonene	70	926	ms	130.55	148.11	173.08	7.236	0.057
Nonane	126	900	ms, Iri, s	131.63a	167.86ab	193.45 ^b	9.614	0.024
Heptane, 2-methyl-3-	57	930	mo	12.74 ^a	14.51 ^{ab}	17.80 ^b	0.743	0.020
methylene-	57	930	ms	12.74	14.51	17.00	0.743	0.020
2-Octene, 4-ethyl-	69	982	ms	121.06	109.24	139.94	7.447	0.322
Octane, 3-methyl-6-methylene-	70	985	ms	204.18 ^a	223.88ab	286.28 ^b	12.678	0.028
Octane, 4-ethyl-	69	991	ms	72.43 ^a	83.39 ^{ab}	99.48 ^b	4.114	0.026
Heptane, 3,3,4-trimethyl-	69	994	ms	6.01a	11.98 ^b	3.49 ^a	0.730	<0.001
Pentane, 3,3-dimethyl-	85	995	ms	6.14	5.74	7.14	0.432	0.483
Decane	57	1000	ms, Iri, s	392.40	484.05	448.96	35.082	0.536
Nonane, 2,3-dimethyl-	71	1003	ms	62.32	61.17	73.08	3.761	0.440
1-Octene, 2,6-dimethyl-	56	1010	ms	72.47	78.95	89.54	4.118	0.252
3-Octene, 4-ethyl-	69	1012	ms	23.62	22.29	26.35	1.302	0.519
Nonane, 3-methylene-	70	1022	ms	165.31	193.91	219.60	9.675	0.068
Heptane, 2,2,4,6,6-	57	1027	ms, Iri	3130.36ab	6386.68b	2772.86a	571.676	0.023
pentamethyl-								
3-Ethyl-3-hexene	83	1042	ms	46.18 ^a	68.29ª	99.93 ^b	5.404	<0.001
Undecane, 3,6-dimethyl-	57	1068	ms	247.95 ^{ab}	333.34 ^b	119.46a	31.537	0.042
Tridecane, 6-methyl-	57	1079	ms, Iri	241.55	296.61	296.67	18.192	0.326
Undecane, 2,5-dimethyl-	57	1085	ms	159.26	140.65	150.96	11.186	0.788
Decane, 2,3,5-trimethyl-	57	1099	ms	102.23b	56.83ª	81.27 ^{ab}	7.435	0.032
Undecane (7)	57	1100	ms, Iri, s	930.86	1346.47	1216.44	83.082	0.085
2,3-Dimethyl-3-heptene, (Z)-	83	1123	ms, Iri	56.04 ^b	25.71 ^a	10.65 ^a	4.093	<0.001
2-Undecene, 9-methyl-, (Z)-	70	1132	ms	368.85	345.35	367.91	22.501	0.900
5-Undecene, 6-methyl-	168	1144	ms	11.24	8.17	9.33	0.741	0.202
4,4-Dipropylheptane	85	1153	ms	51.23	43.30	50.12	3.096	0.548
2-Undecene, 3-methyl-, (E)-	70 70	1181	ms	60.96	55.41	61.11	3.488	0.774
4-Nonene, 5-butyl-	70	1197	ms	24.26	23.38	20.87	1.532	0.678
Dodecane	57 57	1200	ms, Iri, s	664.51	948.13	849.77	53.501	0.066
Decane, 3-ethyl-3-methyl-	57 57	1228	ms	50.22	42.58	46.32	2.933	0.551
Dodecane, 2-methyl-	57 07	1233	ms ma lri	23.00 ^a	38.36 ^b	30.39 ^{ab}	2.057	0.005
1-Tetradecene	97 71	1236	ms, Iri	31.84	30.42	28.93	2.097	0.857
Tridecane 3 methyl	71 95	1300	ms, Iri, s	228.76	318.27	217.88	21.114	0.131
Tridecane, 3-methyl-	85	1304	ms	31.82 15578.28	38.27 19062.05	37.84 17144.10	1.868 1014.413	0.252 0.356
Total Aliphatic hydrocarbons	81	703	me Iri	38.75 ^{ab}	19062.05 14.06a	60.00b	4.756	0.001
Furan, 2-ethyl- Toluene	92	703 804	ms, Iri ms	38.75 ^{ab} 122.47 ^a	14.06° 131.23°	178.32 ^b	4.756 5.716	<0.001
Cyclobutane, 1,1,2,3,3-	32	004	ms	144.41	131.23	170.32~	5.710	<0.001
pentamethyl-	70	813	ms	247.78	268.52	288.93	13.907	0.490
Ethylbenzene	91	917	ms, Iri	17.64	18.84	17.70	0.814	0.811
Eary Don Zono	J 1	517	1110, 111	17.04	10.04	17.70	0.014	0.011

Benzene, 1,3-climelthyl-	Danzana 4.0 dimathul	400	000	m 0	10.44	24.44	04.00	0.000	0.007
Cyclopentane, 1-ethyl-3-methyl- 83 1123 ms, 56,04* 25,71* 10,65* 4,093 <0,001 Total Hydrocarbons									
Cyclopertane, ethyl-									
Total Hydrocarbons									
Total Hydrocarbons				1113, 111					
Propanal 58 526 ms, n 5 102 55 75 47 74 43 500 0.001		ocarbo	115						
Propanal, 2-methyl- 72 557 ms, fri 213.22° 173.69° 7.43° 16.502 <0.001			500	man lui n					
Butianal 72 584 ms, lnf, s 23.16° 10.81° 1.45° 1.688 <0.001									
Butlanal, 3-methy - 58 659 ms, ir 1986,06° 1240,06° 68,91° 142,214 <0,001 Pentanal 57 778 ms, ir 139,71° <0,001 Pentanal 57 778 ms, ir 139,71° <0,001 Pentanal 57 778 ms, ir 139,71° <0,001 Pentanal 56 865 ms, ir 143,75° 155,38° 27,29° 7,58° <0,001 Pentanal 70 974 ms, ir 3 833,54° 401,98° 25,49° 68,60° 0.001 Pentanal 104 999 ms, ir 134,75° 134,52° 7,04° 12,331 <0,001 Pentanal 106 104 999 ms, ir 32,99° 17,82° 10,03° 2,308 <0,001 Pentanal 106 104 109 ms 32,99° 17,82° 10,03° 2,308 <0,001 Pentanal 107 1123 ms, ir 44,78° 17,22° 10,03° 2,308 <0,001 Pentanal 107 1123 ms, ir 44,78° 17,22° 10,23° 31,12 <0,001 Pentanal 108 108 1129 ms, ir 3,81° 17,22° 10,23° 31,12 <0,001 Pentanal 108 108 1129 ms, ir 3,81° 14,28° 366,03° 37,88° 52,70 3,78° 35									
Butanal 2-methyl-									
Pentanal									
2-Butenal, 2-methyl-	•								
Hexanan									
Heptanal 70 974 ms, lr, s 853.64 401.98° 52.49° 68.206 < 0.001									
Methional 104 999 ms, iri 134.75° 134.52° 7.04° 2.2.052 <0.001									
Benzaldehyde									
Cottanal									
S-Ethylcyclopent-1- enecarboxaldehyde									
Benzeneactaldehyde		30		1113, 111, 3					
Benzeneactaldehyde		124	1099	ms	32.99 ^b	17.82a	10.03ª	2.308	<0.001
2-Octenal (E)		91	1110	me Iri	796 26°	356 03b	37 78a	52 710	- 0.001
Decanal Nonanal S1 1129 ms, lri, s 24.68 23.26 23.18 1.663 0.912									
Nonanal									
4-Nonenal, (Ε)- Benzaldehyde, 3-ethyl- 2-Decenal, (Ε)- 70 83 1201 1209 ms 33.24b 23.96bb 23.29a 1.657 0.013 2-Decenal, (Ε)- 2-Decenal, (Ε)- 2-Undecenal 70 1272 ms, lri 28.90b 19.66bb 13.75c 1.793 0.001 2-Undecenal 95 1339 ms, lri 23.10b 8.08a 1.22a 2.199 <0.001									
Benzaldehyde									
2-Decenal, (E)- 70 1272 ms, iri 28.90\(b) 19.66\(c\) 13.75\(c\) 1.793 0.001 2,4-Decadienal, (E,E)- 81 1315 ms, iri 23.10\(b) 8.08\(a\) 1.22\(c\) 2.19\(c\) < 0.001 2,4-Decadienal, (E,E)- 81 1315 ms, iri 23.10\(b\) 8.08\(a\) 1.22\(c\) 2.19\(c\) < 0.001 2-Undecenal 95 133\(d\) ms, iri 23.10\(b\) 8.08\(a\) 1.22\(c\) 2.19\(c\) < 0.001 Pentadecanal 82 1516 ms, iri, \(s\) 3.90\(a\) 9.02\(c\) 4.73\(a\) 0.682\(c\) 0.003 Total Aldehyde 2826.04\(a\) 438.13\(a\) 958.64\(c\) 50.416\(c\) < 0.001 2,3-Hexanedione 41 562 ms 391.05\(b\) 226.53\(a\) 696.97\(c\) 30.694\(c\) < 0.001 2,3-Hexanedione 72 596 ms 177.17\(a\) 264.28\(b\) 504.65\(c\) 22.63\(c\) 0.001 Cyclopentanone, 3-methyl- 56 667 ms 30.74\(a\) 18.76\(a\) 305.65\(b\) 22.65\(a\) 30.694\(c\) 0.001 Cyclopentanone, 3-methyl- 56 667 ms 30.74\(a\) 18.76\(a\) 305.65\(b\) 22.65\(a\) 0.001 Cyclopentanone 45 787 ms, iri 484.13\(a\) 301.51\(b\) 15.67\(a\) 0.001 3-Heptanone 57 960 ms, iri 43.80\(a\) 37.03\(a\) 37.54\(a\) 15.87\(a\) 0.001 3-Heptanone 57 960 ms, iri 427.95\(a\) 664.14\(a\) 980.43\(a\) 62.048\(a\) 0.001 Cyclopexanone, 2-ethyl- 69 972 ms 39.00\(a\) 42.78\(a\) 806.71\(a\) 15.87\(a\) 0.002 2-Nonen-4-one 6-methyl- 69 972 ms 13.48\(a\) 14.36\(a\) 17.24\(a\) 0.94\(a\) 0.272 2-Hepten-2-one, 6-methyl- 69 1056\(ms, iri \) 109.18\(a\) 96.80\(a\) 71.31\(a\) 8.502 0.202 2-Hepten-2-one, 6-methyl- 69 1056\(ms, iri \) 109.18\(a\) 96.80\(a\) 71.31\(a\) 8.502 0.202 2-Hepten-2-one, 6-methyl- 105\(a\) 1137\(ms \) 15.19\(a\) 16.85\(a\) 15.84\(a\) 0.001 2-Nonanone 113\(a\) 134\(ms \) 13.85\(a\) 13.40\(a\) 1.564\(a\) 0.001 2-Nonanone 58\(a\) 1148\(ms \) 116.85\(a\) 1158\(a\) 1158\(a\)	,								
2.4-Decadienal, (E,E)- 2-Undecenal 95 1339									
2-Undecenal 95 1339 ms, hr 6.66° 2.44° 2.76° 0.624 0.004 Total Aldehyde 23509.08° 10307.72° 2381.68° 1562.858 0.001 Acetone 58 528 ms 246.04° 248.13° 958.64° 50.416 0.001 2,3-Hexanedione 41 562 ms 391.05° 266.33° 696.97° 30.694 0.001 2,3-Hexanedione 72 596 ms 177.17° 264.22° 504.65° 22.630 0.001 Cyclopentanone, 3-methyl- 56 667 ms 30.74° 18.76° 34.05° 22.630 0.001 Cyclopentanone 86 720 ms, hr 101.75° 78.17° 305.68° 25.871 0.001 Acetoin 45 787 ms, hr 43.80 37.03 37.54 1.883 0.225									
Pentadecanal-									
Total Aldehyde									
Acetone			1010	,,					
2,3-Hexanedione 72 596 ms 391.05b 226.53a 696.97c 30.694 <0.001 2-Butanone 72 596 ms 177.17a 264.28b 504.65c 32.630 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00		58	528	ms					
2-Butanone 72 596 ms 177.17° 264.28° 504.65° 22.630 <0.001 Cyclopentanone, 3-methyl- 56 667 ms 30.74° 18.76° 34.05° 2.45° 0.043 2-Pentanone 86 720 ms, Iri 101.75° 78.17° 305.68° 25.871 0.001 Acetoin 45 787 ms, Iri 484.13° 501.60° 2031.51° 153.676 <0.001 3-Heptanone 57 960 ms, Iri 43.80 37.03 37.54 1.883 0.225 2-Heptanone 58 967 ms, Iri 427.95° 6664.14° 980.43° 62.048 0.001 Cyclohexanone, 2-ethyl- 69 972 ms 39.00° 42.78° 65.73° 3.247 0.002 2-Nonen-4-one 69 979 ms 13.48 14.36 17.24 0.940 0.272 2-Hepten-4-one, 6-methyl- 69 992 ms 72.65° 80.61° 99.82° 3.864 0.015 4-Octanone, 5-hydroxy-2,7-dimethyl- 69 1042 ms 9.29° 18.03° 21.64° 1.615 0.003 1-Octen-3-one 70 1046 ms, Iri 109.18 96.80 71.31 8.502 0.202 2-Octanone 58 1059 ms, Iri 38.35° 95.71° 163.52° 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1-phenyl- 105 1137 ms 15.19° 28.98° 24.08° 1.564 <0.001 2-Nonanone 58 1141 ms, Iri 16.85° 71.11° 56.62° 6.375 <0.001 2-Social Ketone 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2-G-Bis(1,1-dimethylethyl)-4-(1-20xopropyl)phenol 58 ms ms 107.45 162.28 142.48 13.452 0.210 4-Octanone 86 588 ms 26.26 7 199.86 8.500 0.156 2-Octanone 58 1168 ms Iri 10.46° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.46° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.45° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.46° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.46° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.46° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.46° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.46° 0.00° 0.00° 1.497 0.001 3-Nonanone 58 1168 ms Iri 10.46° 0.00°									
Cyclopentanone, 3-methyl-2-Pentanone 56 667 ms, Iri 101.75² 78.17² 305.68³ 25.871 0.043 Acetoin 45 787 ms, Iri 101.75² 78.17² 305.68³ 25.871 0.001 3-Heptanone 57 960 ms, Iri 484.13³ 501.60³ 2031.51¹° 153.676 <0.001	·								
2-Pentanone									
Acetoin 3-Heptanone 57 960 ms, Iri 484.13a 501.60a 2031.51b 153.676 <0.001 3-Heptanone 57 960 ms, Iri 43.80 37.03 37.54 1.883 0.225 2-Heptanone 58 967 ms, Iri 427.95a 664.14ab 980.43b 62.048 0.001 Cyclohexanone, 2-ethyl- 69 972 ms 39.00a 42.78a 665.73b 32.247 0.002 2-Nonen-4-one 69 979 ms 13.48 14.36 17.24 0.940 0.272 2-Hepten-4-one, 6-methyl- 69 992 ms 72.65a 80.61ab 99.82b 3.864 0.015 4-Octanone, 5-hydroxy-2,7- 69 1042 ms 9.29a 18.03ab 21.64b 1.615 0.003 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60									
3-Heptanone 57 960 ms, lri 43.80 37.03 37.54 1.883 0.225 2-Heptanone 58 967 ms, lri 427.95a 664.14ab 980.43b 62.048 0.001 Cyclohexanone, 2-ethyl- 69 972 ms 39.00a 42.78a 65.73b 3.247 0.002 2-Nonen-4-one 69 979 ms 13.48 14.36 17.24 0.940 0.272 2-Hepten-4-one, 6-methyl- 69 992 ms 72.65a 80.61ab 99.82b 3.864 0.015 4-Octanone, 5-hydroxy-2,7-dimethyl- 69 1042 ms 9.29a 18.03ab 21.64b 1.615 0.003 1-0-cten-3-one 70 1046 ms, lri 109.18 96.80 71.31 8.502 0.202 5-Hepten-2-one, 6-methyl- 69 1056 ms, lri 104.35ab 93.37a 134.10b 5.814 0.026 2-Octanone 58 1059 ms, lri 38.35a 95.71a 163.52b 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1-phenyl- 105 1137 ms 15.19a 28.98b 24.08b 1.564 <0.001 2(3H)-Furanone, 5-ethyldihydro- 85 1158 ms, lri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5-ethyldihydro- 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1-233 1448 ms 11.04b 0.00a 0.00a 0.00a 1.497 0.001 Total Ketone 2322.78a ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- 83 611 ms 24.46 251.18 231.85 14.170 0.734 Propanoic acid, ethyl ester 71 855 ms 77.53c 53.05b 22.14a 4.569 <0.001 Butanoic acid, 2-methyl-, ethyl					484.13a		2031.51b		
2-Heptanone 58 967 ms, Iri 427.95° 664.14° 980.43° 62.048 0.001 Cyclohexanone, 2-ethyl-69 972 ms 39.00° 42.78° 65.73° 3.247 0.002 2-Nonen-4-one 69 979 ms 13.48 14.36 17.24 0.940 0.272 2-Hepten-4-one, 6-methyl-69 992 ms 72.65° 80.61° 99.82° 3.864 0.015 4-Octanone, 5-hydroxy-2,7-dimethyl-1-0cten-3-one 70 1046 ms, Iri 109.18 96.80 71.31 8.502 0.202 5-Hepten-2-one, 6-methyl-69 1056 ms, Iri 104.35° 93.37° 134.10° 5.814 0.026 2-Octanone 58 1059 ms, Iri 104.35° 95.71° 163.52° 12.65° 3 0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1-phenyl-2-Nonanone 58 1141 ms, Iri 16.85° 71.11° 56.62° 6.375 <0.001 2(3H)-Furanone, 5-ethyldihydro-5-Hexen-3-one 57 1161 ms 48.92 38.56° 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1- 0xopropyl)phenol 58 ms ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro-7737 ms 46.38° 15.79° 19.06° 3.404 0.001 Butanoic acid, ethyl ester 71 855 ms 77.53° 53.05° 22.14° 4.569 0.001 Butanoic acid, 2-methyl-, ethyl			960						
Cyclohexanone, 2-ethyl-2-Nonen-4-one 69 972 ms 39.00° ms 42.78° ms 65.73° ms 3.247 0.002 2-Nonen-4-one 69 979 ms 13.48 14.36 17.24 0.940 0.272 2-Hepten-4-one, 6-methyl-4-Octanone, 5-hydroxy-2,7-dimethyl-1-0cten-3-one 69 1042 ms 9.29° ms 18.03° ms 21.64° ms 1.615 0.003 5-Hepten-2-one, 6-methyl-2-Octanone 70 1046 ms, Iri 109.18 96.80 71.31 8.502 0.202 5-Hopten-2-one, 6-methyl-2-Octanone 58 1059 ms, Iri 104.35° ms 93.37° ms 134.10° ms 5.814 0.026 2-Octanone 58 1059 ms, Iri 38.35° ms 93.71° ms 134.50° ms 12.653 <0.001		58	967		427.95a	664.14 ^{ab}	980.43 ^b	62.048	0.001
2-Nonen-4-one 69 979 ms 13.48 14.36 17.24 0.940 0.272 2-Hepten-4-one, 6-methyl- 4-Octanone, 5-hydroxy-2,7- dimethyl- 1-Octen-3-one 70 1046 ms, Iri 109.18 96.80 71.31 8.502 0.202 5-Hepten-2-one, 6-methyl- 2-Octanone 58 1059 ms, Iri 104.35ab 93.37a 134.10b 5.814 0.026 2-Octanone 58 1059 ms, Iri 38.35a 95.71a 163.52b 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1- phenyl- 2-Nonanone 58 1141 ms, Iri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5- ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1- 0xopropyl)phenol 70 1161 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- Broad and short of the store of the	•							3.247	0.002
4-Octanone, 5-hydroxy-2,7-dimethyl-1-Octen-3-one 70 1046 ms, lri 109.18 96.80 71.31 8.502 0.202 5-Hepten-2-one, 6-methyl-69 1056 ms, lri 104.35ab 93.37a 134.10b 5.814 0.026 2-Octanone 58 1059 ms, lri 38.35a 95.71a 163.52b 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1-phenyl-2-Nonanone 58 1141 ms, lri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5-ethyldihydro-5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol 70 123 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 0.0		69	979	ms	13.48	14.36	17.24	0.940	0.272
dimethyl- 1-Octen-3-one 70 1046 ms, Iri 109.18 96.80 71.31 8.502 0.202 5-Hepten-2-one, 6-methyl- 69 1056 ms, Iri 104.35ab 93.37a 134.10b 5.814 0.026 2-Octanone 58 1059 ms, Iri 38.35a 95.71a 163.52b 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1- phenyl- 2-Nonanone 58 1141 ms, Iri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5- ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1- oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Ethyl Acetate 61 598 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- Butanoic acid, ethyl ester 71 855 ms 77.53c 53.05b 22.14a 4.569 <0.001 Butanoic acid, 2-methyl-, ethyl 102 908 ms 46.49 49.14 39.04 3.892 0.624	2-Hepten-4-one, 6-methyl-	69	992	ms	72.65 ^a	80.61 ^{ab}	99.82 ^b	3.864	0.015
1-Octen-3-one 70 1046 ms, lri 109.18 96.80 71.31 8.502 0.202 5-Hepten-2-one, 6-methyl- 69 1056 ms, lri 104.35ab 93.37a 134.10b 5.814 0.026 2-Octanone 58 1059 ms, lri 38.35a 95.71a 163.52b 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1- 105 1137 ms 15.19a 28.98b 24.08b 1.564 <0.001 2-Nonanone 58 1141 ms, lri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5- 6.375 1158 ms, lri 187.86 226.67 199.86 8.500 0.156 ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2.6-Bis(1,1-dimethylethyl)-4-(1- 0xopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001	4-Octanone, 5-hydroxy-2,7-	60	1042	m 0	0.202	10 02ah	04 64b	1 615	0.002
5-Hepten-2-one, 6-methyl-2-Octanone 58 1059 ms, Iri 38.35a 93.37a 134.10b 5.814 0.026 2-Octanone 58 1059 ms, Iri 38.35a 95.71a 163.52b 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1-phenyl-2-Nonanone 58 1141 ms, Iri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5-ethyldihydro-5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol 70 233 1448 ms 11.04b 0.00a 0.00a 0.00a 1.497 0.001 2322.78a 3046.03b 6772.32c 265.182 <0.001 2322.78a 3046.03b 6772.32c 265.182 <0.001 2024.46 251.18 231.85 14.170 0.734 Propanoic acid, ethyl ester 57 737 ms 46.38b 15.79a 19.06a 3.404 <0.001 Butanoic acid, 2-methyl-, ethyl 102 908 ms 46.49 49 14 39 0.4 3.892 0.624	dimethyl-	69	1042	ms	9.29 ^d	16.03	21.04°	1.015	0.003
2-Octanone 58 1059 ms, lri 38.35a 95.71a 163.52b 12.653 <0.001 3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1- 105 1137 ms 15.19a 28.98b 24.08b 1.564 <0.001 phenyl- 2-Nonanone 58 1141 ms, lri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5- 85 1158 ms, lri 187.86 226.67 199.86 8.500 0.156 ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1- 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001	1-Octen-3-one			ms, Iri					
3-Nonanone 113 1134 ms 23.48 21.34 23.80 1.588 0.818 1-Hexanone, 5-methyl-1-phenyl- 105 1137 ms 15.19a 28.98b 24.08b 1.564 <0.001 2-Nonanone 58 1141 ms, Iri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5-ethyldihydro-5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 2322.78a 3046.03b 6772.32c 265.182 <0.001 2322.78a 3046.03b 6772.32c 265.182 <0.001 24.001 25.0	5-Hepten-2-one, 6-methyl-	69	1056	ms, Iri	104.35 ^{ab}	93.37 ^a	134.10 ^b	5.814	0.026
1-Hexanone, 5-methyl-1-phenyl- 2-Nonanone 58 1141 ms, lri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5-ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Ethyl Acetate 61 598 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro-Butanoic acid, ethyl ester 71 855 ms 77.53c 53.05b 22.14a 4.569 <0.001 Butanoic acid, 2-methyl-, ethyl 102 908 ms 46.49 49.14 39.04 3.892 0.624				ms, Iri	38.35 ^a	95.71a	163.52 ^b	12.653	
phenyl- 2-Nonanone 58 1141 ms, Iri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5- ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1- oxopropyl)phenol 70 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Acetic acid ethenyl ester 86 588 ms 25.62a 17.51a 50.61b 3.166 <0.001 Ethyl Acetate 61 598 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- Propanoic acid, ethyl ester 57 737 ms 46.38b 15.79a 19.06a 3.404 <0.001 Butanoic acid, 2-methyl-, ethyl 102 908 ms 46.49 49.14 39.04 3.892 0.624	3-Nonanone	113	1134	ms	23.48	21.34	23.80	1.588	0.818
2-Nonanone 58 1141 ms, Iri 16.85a 71.11b 56.62b 6.375 <0.001 2(3H)-Furanone, 5- ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1- oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Acetic acid ethenyl ester 86 588 ms 25.62a 17.51a 50.61b 3.166 <0.001 Ethyl Acetate 61 598 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- Royal Butanoic acid, ethyl ester 57 737 ms 46.38b 15.79a 19.06a 3.404 <0.001 Butanoic acid, 2-methyl-, ethyl 102 908 ms 46.49 49.14 39.04 3.892 0.624		105	1137	ms	15 10a	28 98b	24 08b	1 564	- 0.001
2(3H)-Furanone, 5-ethyldihydro-sthyldihydro-sthexen-3-one 85 1158 ms, Iri 187.86 226.67 199.86 8.500 0.156 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001									
ethyldihydro- 5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1- oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Acetic acid ethenyl ester 86 588 ms 25.62a 17.51a 50.61b 3.166 <0.001 Ethyl Acetate 61 598 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- Butanoic acid, ethyl ester 71 855 ms 77.53c 53.05b 22.14a 4.569 <0.001 Butanoic acid, 2-methyl-, ethyl 102 908 ms 46.49 49.14 39.04 3.892 0.624		58	1141	ms, Iri	16.85ª	71.11 ^b	56.62b	6.375	<0.001
Ethyldinydro-5-Hexen-3-one 57 1161 ms 48.92 38.56 53.49 3.652 0.298 2,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 Total Ketone Acetic acid ethenyl ester 86 588 ms 25.62a 17.51a 50.61b 3.166 <0.001		85	1158	ms Iri	187 86	226 67	199 86	8 500	0.156
Z,6-Bis(1,1-dimethylethyl)-4-(1-oxopropyl)phenol 233 1448 ms 11.04b 0.00a 0.00a 1.497 0.001 Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Acetic acid ethenyl ester 86 588 ms 25.62a 17.51a 50.61b 3.166 <0.001									
Oxopropyl)phenol 233 1446 ms 11.04° 0.00° 0.00° 1.497 0.00° Total Ketone 2322.78° 3046.03° 6772.32° 265.182 <0.001 Acetic acid ethenyl ester 86 588 ms 25.62° 17.51° 50.61° 3.166 <0.001		57	1161	ms	48.92	38.56	53.49	3.652	0.298
Total Ketone 2322.78a 3046.03b 6772.32c 265.182 <0.001 Acetic acid ethenyl ester 86 588 ms 25.62a 17.51a 50.61b 3.166 <0.001		233	1448	ms	11.04 ^b	0.00a	0.00a	1.497	0.001
Acetic acid ethenyl ester 86 588 ms 25.62a 17.51a 50.61b 3.166 <0.001 Ethyl Acetate 61 598 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- 83 611 ms 224.46 251.18 231.85 14.170 0.734 Propanoic acid, ethyl ester 57 737 ms 46.38b 15.79a 19.06a 3.404 <0.001									
Ethyl Acetate 61 598 ms 107.45 162.28 142.48 13.452 0.210 Methane, oxybis[dichloro- 83 611 ms 224.46 251.18 231.85 14.170 0.734 Propanoic acid, ethyl ester 57 737 ms 46.38b 15.79a 19.06a 3.404 <0.001									
Methane, oxybis[dichloro- 83 611 ms 224.46 251.18 231.85 14.170 0.734 Propanoic acid, ethyl ester 57 737 ms 46.38b 15.79a 19.06a 3.404 <0.001									
Propanoic acid, ethyl ester 57 737 ms 46.38b 15.79a 19.06a 3.404 <0.001	•								
Butanoic acid, ethyl ester 71 855 <i>ms</i> 77.53° 53.05 ^b 22.14 ^a 4.569 <0.001 Butanoic acid, 2-methyl-, ethyl 102 908 <i>ms</i> 46.49 49.14 39.04 3.892 0.624									
Butanoic acid, 2-methyl-, ethyl 102 908 ms 46.49 49.14 39.04 3.892 0.624									
102 906 708 46 49 49 14 39 04 3 692 10 624		71	855	ms	77.53°	53.U5 ⁰	22.14 ^a	4.569	<0.001
esiei	· · · · · · · · · · · · · · · · · · ·	102	908	ms	46.49	49.14	39.04	3.892	0.624
	ESIEI								

Dutancia acid 2 mathyl athyl								
Butanoic acid, 3-methyl-, ethyl ester	88	913	ms	121.86 ^{ab}	138.61 ^b	67.83a	10.093	0.024
Oxalic acid, butyl propyl ester	57	936	ms	131.63ª	167.86 ^{ab}	193.45 ^b	9.614	0.024
Ethanol, 2-butoxy-	57	985	ms, Iri	394.15 ^b	296.66 ^{ab}	218.86 ^a	22.783	0.004
Carbonic acid, bis(2-ethylhexyl)								
ester	112	1003	ms	25.20	25.06	28.09	1.605	0.736
Hexanoic acid, ethyl ester	88	1050	ms	184.39 ^b	150.70 ^b	79.11a	11.285	< 0.001
2-Piperidinecarboxylic acid, 1-								
acetyl-, ethyl ester	84	1124	ms	30.54 ^b	18.80 ^a	15.15 ^a	1.887	0.001
Carbonic acid, tridecyl vinyl	57	1168	mo	010 112	160 668	189.81a	15.000	0.447
ester		1100	ms	210.11 ^a	163.66ª	109.01	15.263	0.447
Octanoic acid, ethyl ester	88	1204	ms	75.26 ^b	77.21 ^b	42.04 ^a	4.187	0.001
Decanoic acid, ethyl ester	88	1336	ms	33.57 ^b	27.32 ^b	12.77 ^a	2.519	0.002
2,2,4-Trimethyl-1,3-pentanediol	71	1442	ms	3.42a	3.40a	2.43a	0.182	0.064
diisobutyrate		· · · · -						
Total Esther and ether				1906.99 ^b	1680.82ab	1385.33ª	68.273	0.006
Isopropyl Alcohol	45	532	ms	119.01 ^{ab}	163.82 ^b	100.93a	9.654	0.039
1-Propanol	59	572	ms	39.39 ^{ab}	59.98 ^b	23.41a	3.963	0.002
2-Butanol	45	607	ms, Iri	21.64	27.36	30.26	1.483	0.043
1-Butanol	56	707	ms, Iri	39.26 ^b	40.08 ^b	9.13 ^a	3.127	<0.001
1-Penten-3-ol	57	730	ms	853.31	621.14	784.02	47.894	0.122
2-Pentanol	45	751	ms 	124.97	209.61	202.82	18.563	0.088
1-Butanol, 3-methyl-	55 57	808	ms, Iri	239.69 ^a	1169.80 ^b	3556.89°	253.843	<0.001
1-Butanol, 2-methyl-	57 55	812 847	ms ma Iri	39.06 ^a 576.25 ^b	238.09 ^b	581.42 ^c	42.813	<0.001 <0.001
1-Pentanol	55 59	894	ms, Iri	22.58 ^b	299.13ª 9.71ª	189.49 ^a 17.36 ^{ab}	43.802 1.924	0.016
2-Propanol, 2-methyl-	59 45	909	ms ms	69.08 ^b	9.71 ^a 8.56 ^a	2.13 ^a	7.003	< 0.016
2,3-Butanediol, [S-(R*,R*)]- 3-Pentanol, 2,4-dimethyl-	73	909 954	ms ms	13.50	18.68	24.18	7.003 2.149	0.129
1-Heptanol	73 70	1046	ms	109.18	96.80	71.31	8.502	0.129
1-Octen-3-ol	57	1040	ms, Iri	3543.17	3818.07	3922.68	236.699	0.202
1-Heptanol, 2,4-diethyl-	69	1085	ms	112.27	71.78	77.41	9.031	0.703
2-Ethyl-1-hexanol	57	1003	ms	11.36 ^{ab}	10.53 ^a	15.90 ^b	0.875	0.048
4-Ethylcyclohexanol	81	1104	ms	90.23a	129.55 ^{ab}	141.39 ^b	8.253	0.019
Benzyl alcohol	108	1124	ms, Iri	131.16	145.59	153.53	7.361	0.444
1-Octanol	56	1127	ms, Iri	73.90 ^{ab}	88.89 ^b	49.90 ^a	5.781	0.043
4-Methyl-5-decanol	55	1162	ms	25.30 ^a	36.53a	74.05 ^b	5.088	< 0.001
p-Cresol	107	1178	ms	30.50	31.28	28.20	1.333	0.687
Phenylethyl Alcohol	92	1182	ms	13.89 ^a	186.88a	883.92 ^b	65.261	< 0.001
1-Tetradecanol	68	1225	ms	28.08	31.26	33.29	1.363	0.281
1,4-Benzenediol, 2,5-bis(1,1-	222	1485	ms	0.27a	0.41 ^b	0.27 ^a	0.017	<0.001
dimethylethyl)-	222	1400	1118	0.27	0.41	0.27	0.017	<0.001
Total Alcohol				6548.61 ^a	8599.43 ^a	12199.24 ^b	487.720	<0.001
Propanoic acid	74	827	ms, Iri	12.07	16.39	16.71	2.193	0.606
Propanoic acid, 2-methyl-	73	888	ms, Iri	74.38 ^b	47.64 ^{ab}	31.63ª	5.693	0.005
Butanoic acid	60	918	ms, Iri	209.13 ^c	74.58 ^b	15.13ª	14.471	<0.001
Butanoic acid, 3-methyl-	60	969	ms, Iri	427.98	329.99	366.87	33.667	0.459
Pentanoic acid	60	1083	ms, Iri	428.30°	274.79 ^b	7.68 ^a	28.766	<0.001
Octanoic acid	60	1224	ms	36.67°	20.14 ^b	4.08a	2.717	<0.001
Total Carboxylic acid				1172.40°	950.08b	316.57a	58.148	<0.001
Fumaronitrile	78	646	ms	27.19 ^b	17.32a	23.53 ^{ab}	1.418	0.011
3-(1'-pyrrolidinyl)-2-butanone	98	906	ms 	92.62	95.73	121.88	5.438	0.078
Pyrazine, 2,6-dimethyl-	108	978	ms, Iri	347.01 ^a	337.27 ^a	478.72 ^b	14.720	<0.001
1-(1'-pyrrolidinyl)-2-butanone	84	982	ms	90.39	97.20	117.94	5.324	0.110
Total Nitrogenous				561.37 ^a	550.57 ^a	747.76 ^b	20.616	<0.001
compounds Carbon disulfide	76	533	me	157.74 ^b	77.69 ^a	195.02 ^b	11.366	∠ 0.001
	76 94	533 781	ms ms Iri	157.74 ^b 1740.04 ^b	77.69° 206.48°	795.02 ⁵ 738.87 ^a	141.238	<0.001 <0.001
Disulfide, dimethyl		1035	ms, Iri ms, Iri	1740.04 ⁵ 123.40 ^b	206.48 ^a 10.27 ^a	738.87° 5.82°	141.238	<0.001
Dimethyl trisulfide	126		ms, Iri	123.40		ე.გ∠"	10.579	<0.001
Sulfurous acid, decyl hexyl ester	85	1156	ms	110.15	122.77	104.36	11.499	0.835
Sulfurous acid, butyl dodecyl								
ester	85	1304	ms	31.82	38.24	37.81	1.862	0.254
Total Sulfur compounds				2213.62b	443.46a	1081.88ª	161.357	<0.001
Total Compounds				56662.84 ^b	45848.47 ^a	48407.25 ^{ab}	1697.399	0.013
. Jiai Joinpoullas				0000 <u>2</u> .07	10070.71	101120		0.010

^{a-c} Mean values in the same row (corresponding to the same parameter) not followed by a common letter differ significantly (*P*<0.05; Tukey's Test)

SEM: standard error of mean; m/z: Quantification ion; LRI: Lineal Retention Index calculated for DB-624 capillary column (J&W scientific: 30m×0.25mm id, 1.4 µm film thickness) installed on a gas chromatograph equipped with a mass selective detector; R: Reliability of identification; *Iri*: linear retention index in agreement with literature (Domínguez *et al.*, 2014; Lorenzo, Montes, Purriños, & Franco, 2012; Lorenzo, Bedia, & Bañon, 2013; Lorenzo, 2014; Lorenzo, & Dominguez, 2014; Lorenzo, & Carballo, 2015; Pateiro, Franco, Carril, & Lorenzo, 2015; Pérez-Santaescolástica *et al.*, 2018; Purriños et al., 2011b; Purriños, Franco, Carballo, & Lorenzo, 2012, Purriños, Carballo, & Lorenzo, 2013); *ms*: mass spectrum agreed with mass database (NIST14); *s*: mass spectrum and retention time identical with an authentic standard.

Treatments: CO= control (without treatment), CV= conventional thermal treatments and US= thermal treatment assisted by power ultrasound