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Abstract: Deep learning constitutes a recent, modern technique for image processing and 

data analysis, with promising results and large potential. As deep learning has been 

successfully applied in various domains, it has recently entered also the domain of 

agriculture. In this paper, we perform a survey of 40 research efforts that employ deep 

learning techniques, applied to various agricultural and food production challenges. We 

examine the particular agricultural problems under study, the specific models and 

frameworks employed, the sources, nature and pre-processing of data used, and the 

overall performance achieved according to the metrics used at each work under study. 

Moreover, we study comparisons of deep learning with other existing popular techniques, 

in respect to differences in classification or regression performance. Our findings indicate 

that deep learning provides high accuracy, outperforming existing commonly used image 

processing techniques. 
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1. Introduction 

Smart farming (Tyagi, 2016) is important for tackling the challenges of agricultural 

production in terms of productivity, environmental impact, food security and sustainability 

(Gebbers & Adamchuk, 2010). As the global population has been continuously increasing 

(Kitzes, et al., 2008), a large increase on food production must be achieved (FAO, 2009), 

maintaining at the same time availability and high nutritional quality across the globe, 

protecting the natural ecosystems by using sustainable farming procedures. 

To address these challenges, the complex, multivariate and unpredictable agricultural 

ecosystems need to be better understood by monitoring, measuring and analyzing 

continuously various physical aspects and phenomena. This implies analysis of big 

agricultural data (Kamilaris, Kartakoullis, & Prenafeta-Boldú, A review on the practice of 

big data analysis in agriculture, 2017), and the use of new information and communication 

technologies (ICT) (Kamilaris, Gao, Prenafeta-Boldú, & Ali, 2016), both for short-scale 

crop/farm management as well as for larger-scale ecosystems’ observation, enhancing the 

existing tasks of management and decision/policy making by context, situation and 

location awareness. Larger-scale observation is facilitated by remote sensing 

(Bastiaanssen, Molden, & Makin, 2000), performed by means of satellites, airplanes and 

unmanned aerial vehicles (UAV) (i.e. drones), providing wide-view snapshots of the 

agricultural environments. It has several advantages when applied to agriculture, being a 

well-known, non-destructive method to collect information about earth features while data 

may be obtained systematically over large geographical areas. 

A large subset of the volume of data collected through remote sensing involve images. 

Images constitute, in many cases, a complete picture of the agricultural environments and 

could address a variety of challenges (Liaghat & Balasundram, 2010), (Ozdogan, Yang, 

Allez, & Cervantes, 2010). Hence, imaging analysis is an important research area in the 

agricultural domain and intelligent data analysis techniques are being used for image 
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identification/classification, anomaly detection etc., in various agricultural applications 

(Teke, Deveci, Haliloğlu, Gürbüz, & Sakarya, 2013), (Saxena & Armstrong, 2014), (Singh, 

Ganapathysubramanian, Singh, & Sarkar, 2016). The most popular techniques and 

applications are presented in Appendix I, together with the sensing methods employed to 

acquire the images. From existing sensing methods, the most common one is satellite-

based, using multi-spectral and hyperspectral imaging. Synthetic aperture radar (SAR), 

thermal and near infrared (NIR) cameras are being used in a lesser but increasing extent 

(Ishimwe, Abutaleb, & Ahmed, 2014), while optical and X-ray imaging are being applied in 

fruit and packaged food grading. The most popular techniques used for analyzing images 

include machine learning (ML) (K-means, support vector machines (SVM), artificial neural 

networks (ANN) amongst others), linear polarizations, wavelet-based filtering, vegetation 

indices (NDVI) and regression analysis (Saxena & Armstrong, 2014), (Singh, 

Ganapathysubramanian, Singh, & Sarkar, 2016). 

Besides the aforementioned techniques, a new one which is recently gaining momentum is 

deep learning (DL) (LeCun, Bengio, & Hinton, 2015), (LeCun & Bengio, 1995). DL belongs 

to the machine learning computational field and is similar to ANN. However, DL is about 

“deeper” neural networks that provide a hierarchical representation of the data by means 

of various convolutions. This allows larger learning capabilities and thus higher 

performance and precision. A brief description of DL is attempted in Section 3.  

The motivation for preparing this survey stems from the fact that DL in agriculture is a 

recent, modern and promising technique with growing popularity, while advancements and 

applications of DL in other domains indicate its large potential. The fact that today there 

exists at least 40 research efforts employing DL to address various agricultural problems 

with very good results, encouraged the authors to prepare this survey. To the authors’ 

knowledge, this is the first such survey in the agricultural domain, while a small number of 

more general surveys do exist (Deng & Yu, 2014), (Wan, et al., 2014), (Najafabadi, et al., 



4 

 

2015), covering related work in DL in other domains. 

2. Methodology 

The bibliographic analysis in the domain under study involved two steps: a) collection of 

related work and b) detailed review and analysis of this work. In the first step, a keyword-

based search for conference papers or journal articles was performed from the scientific 

databases IEEE Xplore and ScienceDirect, and from the web scientific indexing services 

Web of Science and Google Scholar. As search keywords, we used the following query:  

["deep learning"] AND ["agriculture" OR ”farming"] 

In this way, we filtered out papers referring to DL but not applied to the agricultural domain. 

From this effort, 47 papers had been initially identified. Restricting the search for papers 

with appropriate application of the DL technique and meaningful findings2, the initial 

number of papers reduced to 40. 

In the second step, the 40 papers selected from the previous step were analyzed one-by-

one, considering the following research questions:  

1. Which was the agricultural- or food-related problem they addressed? 

2. Which was the general approach and type of DL-based models employed? 

3. Which sources and types of data had been used? 

4. Which were the classes and labels as modeled by the authors? Were there any 

variations among them, observed by the authors? 

5. Any pre-processing of the data or data augmentation techniques used? 

6. Which has been the overall performance depending on the metric adopted? 

7. Did the authors test the performance of their models on different datasets? 

8. Did the authors compare their approach with other techniques and, if yes, which 

was the difference in performance? 

Our main findings are presented in Section 4 and the detailed information per paper is 

                                                 
2 A small number of papers claimed of using DL in some agricultural-related application, but they did not 
show any results nor provided performance metrics that could indicate the success of the technique used. 
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listed in Appendix II. 

3. Deep Learning 

DL extends classical ML by adding more "depth" (complexity) into the model as well as 

transforming the data using various functions that allow data representation in a 

hierarchical way, through several levels of abstraction (Schmidhuber, 2015), (LeCun & 

Bengio, 1995). A strong advantage of DL is feature learning, i.e. the automatic feature 

extraction from raw data, with features from higher levels of the hierarchy being formed by 

the composition of lower level features (LeCun, Bengio, & Hinton, 2015). DL can solve 

more complex problems particularly well and fast, because of more complex models used, 

which allow massive parallelization (Pan & Yang, 2010). These complex models employed 

in DL can increase classification accuracy or reduce error in regression problems, 

provided there are adequately large datasets available describing the problem. DL 

consists of various different components (e.g. convolutions, pooling layers, fully connected 

layers, gates, memory cells, activation functions, encode/decode schemes etc.), 

depending on the network architecture used (i.e. Unsupervised Pre-trained Networks, 

Convolutional Neural Networks, Recurrent Neural Networks, Recursive Neural Networks). 

The highly hierarchical structure and large learning capacity of DL models allow them to 

perform classification and predictions particularly well, being flexible and adaptable for a 

wide variety of highly complex (from a data analysis perspective) challenges (Pan & Yang, 

2010). Although DL has met popularity in numerous applications dealing with raster-based 

data (e.g. video, images), it can be applied to any form of data, such as audio, speech, 

and natural language, or more generally to continuous or point data such as weather data 

(Sehgal, et al., 2017), soil chemistry (Song, et al., 2016) and population data (Demmers T. 

G., Cao, Parsons, Gauss, & Wathes, 2012). An example DL architecture is displayed in 

Figure 1, illustrating CaffeNet (Jia, et al., 2014), an example of a convolutional neural 

network, combining convolutional and fully connected (dense) layers. 
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Figure 1: CaffeNet, an example CNN architecture. Source: (Sladojevic, Arsenovic, Anderla, 

Culibrk, & Stefanovic, 2016) 

 

Convolutional Neural Networks (CNN) constitute a class of deep, feed-forward ANN, and 

they appear in numerous of the surveyed papers as the technique used (17 papers, 42%). 

As the figure shows, various convolutions are performed at some layers of the network, 

creating different representations of the learning dataset, starting from more general ones 

at the first larger layers, becoming more specific at the deeper layers. The convolutional 

layers act as feature extractors from the input images whose dimensionality is then 

reduced by the pooling layers. The convolutional layers encode multiple lower-level 

features into more discriminative features, in a way that is spatially context-aware. They 

may be understood as banks of filters that transform an input image into another, 

highlighting specific patterns. The fully connected layers, placed in many cases near the 

output of the model, act as classifiers exploiting the high-level features learned to classify 

input images in predefined classes or to make numerical predictions. They take a vector 

as input and produce another vector as output. An example visualization of leaf images 

after each processing step of the CaffeNet CNN, at a problem of identifying plant diseases, 

is depicted in Figure 2. We can observe that after each processing step, the particular 

elements of the image that reveal the indication of a disease become more evident, 

especially at the final step (Pool5). 
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Figure 2: Visualization of the output layers images after each processing step of the CaffeNet CNN 

(i.e. convolution, pooling, normalization) at a plant disease identification problem based on leaf 

images. Source: (Sladojevic, Arsenovic, Anderla, Culibrk, & Stefanovic, 2016) 

 

One of the most important advantages of using DL in image processing is the reduced 

need of feature engineering (FE). Previously, traditional approaches for image 

classification tasks had been based on hand-engineered features, whose performance 

affected heavily the overall results. FE is a complex, time-consuming process which needs 

to be altered whenever the problem or the dataset changes. Thus, FE constitutes an 

expensive effort that depends on experts’ knowledge and does not generalize well (Amara, 

Bouaziz, & Algergawy, 2017). On the other hand, DL does not require FE, locating the 

important features itself through training.  

A disadvantage of DL is the generally longer training time. However, testing time is 

generally faster than other methods ML-based methods (Chen, Lin, Zhao, Wang, & Gu, 

2014). Other disadvantages include problems that might occur when using pre-trained 

models on datasets that are small or significantly different, optimization issues because of 

the models’ complexity, as well as hardware restrictions. 

In Section 5, we discuss over advantages and disadvantages of DL as they reveal through 

the surveyed papers. 
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3.1 Available Architectures, Datasets and Tools 

There exist various successful and popular architectures, which researchers may use to 

start building their models instead of starting from scratch. These include AlexNet 

(Krizhevsky, Sutskever, & Hinton, 2012), CaffeNet (Jia, et al., 2014) (displayed in Figure 

1), VGG (Simonyan & Zisserman, 2014), GoogleNet (Szegedy, et al., 2015) and Inception-

ResNet (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017), among others. Each architecture has 

different advantages and scenarios where it is more appropriate to be used (Canziani, 

Paszke, & Culurciello, 2016). It is also worth noting that almost all of the aforementioned 

models come along with their weights pre-trained, which means that their network had 

been already trained by some dataset and has thus learned to provide accurate 

classification for some particular problem domain (Pan & Yang, 2010). Common datasets 

used for pre-training DL architectures include ImageNet (Deng, et al., 2009) and PASCAL 

VOC (PASCAL VOC Project, 2012) (see also Appendix III). 

Moreover, there exist various tools and platforms allowing researchers to experiment with 

DL (Bahrampour, Ramakrishnan, Schott, & Shah, 2015). The most popular ones are 

Theano, TensorFlow, Keras (which is an application programmer's interface on top of 

Theano and TensorFlow), Caffe, PyTorch, TFLearn, Pylearn2 and the Deep Learning 

Matlab Toolbox. Some of these tools (i.e. Theano, Caffe) incorporate popular architectures 

such as the ones mentioned above (i.e. AlexNet, VGG, GoogleNet), either as libraries or 

classes. For a more elaborate description of the DL concept and its applications, the 

reader could refer to existing bibliography (Schmidhuber, 2015), (Deng & Yu, 2014), (Wan, 

et al., 2014), (Najafabadi, et al., 2015), (Canziani, Paszke, & Culurciello, 2016), 

(Bahrampour, Ramakrishnan, Schott, & Shah, 2015). 

 

4. Deep Learning Applications in Agriculture 

In Appendix II, we list the 40 identified relevant works, indicating the agricultural-related 
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research area, the particular problem they address, DL models and architectures 

implemented, sources of data used, classes and labels of the data, data pre-processing 

and/or augmentation employed, overall performance achieved according to the metrics 

adopted, as well as comparisons with other techniques, wherever available. 

4.1 Areas of Use 

Sixteen areas have been identified in total, with the popular ones being identification of 

weeds (5 papers), land cover classification (4 papers), plant recognition (4 papers), fruits 

counting (4 papers) and crop type classification (4 papers). 

It is remarkable that all papers, except from (Demmers T. G., et al., 2010), (Demmers T. 

G., Cao, Parsons, Gauss, & Wathes, 2012) and (Chen, Lin, Zhao, Wang, & Gu, 2014), 

were published during or after 2015, indicating how recent and modern this technique is, in 

the domain of agriculture. More precisely, from the remaining 37 papers, 15 papers have 

been published in 2017, 15 in 2016 and 7 in 2015. 

The large majority of the papers deal with image classification and identification of areas of 

interest, including detection of obstacles (e.g. (Steen, Christiansen, Karstoft, & Jørgensen, 

2016), (Christiansen, Nielsen, Steen, Jørgensen, & Karstoft, 2016)) and fruit counting (e.g. 

(Rahnemoonfar & Sheppard, 2017), (Sa, et al., 2016)). Some papers focus on predicting 

future parameters, such as corn yield (Kuwata & Shibasaki, 2015) soil moisture content at 

the field (Song, et al., 2016) and weather conditions (Sehgal, et al., 2017).  

From another perspective, most papers (20) target crops, while few works consider issues 

such as weed detection (8 papers), land cover (4 papers), research on soil (2 papers), 

livestock agriculture (3 papers), obstacle detection (3 papers) and weather prediction (1 

paper). 

4.2 Data Sources 

Observing the sources of data used to train the DL model at every paper, large datasets of 

images are mainly used, containing thousands of images in some cases, either real ones 
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(e.g. (Mohanty, Hughes, & Salathé, 2016), (Reyes, Caicedo, & Camargo, 2015), 

(Dyrmann, Karstoft, & Midtiby, 2016 )), or synthetic produced by the authors 

(Rahnemoonfar & Sheppard, 2017), (Dyrmann, Mortensen, Midtiby, & Jørgensen, 2016). 

Some datasets originate from well-known and publicly-available datasets such as 

PlantVillage, LifeCLEF, MalayaKew, UC Merced and Flavia (see Appendix III), while 

others constitute sets of real images collected by the authors for their research needs (e.g. 

(Sladojevic, Arsenovic, Anderla, Culibrk, & Stefanovic, 2016), (Bargoti & Underwood, 

2016), (Xinshao & Cheng, 2015), (Sørensen, Rasmussen, Nielsen, & Jørgensen, 2017)). 

Papers dealing with land cover, crop type classification and yield estimation, as well as 

some papers related to weed detection employ a smaller number of images (e.g. tens of 

images), produced by UAV (Lu, et al., 2017), (Rebetez, J., et al., 2016), (Milioto, Lottes, & 

Stachniss, 2017), airborne (Chen, Lin, Zhao, Wang, & Gu, 2014), (Luus, Salmon, van den 

Bergh, & Maharaj, 2015) or satellite-based remote sensing (Kussul, Lavreniuk, Skakun, & 

Shelestov, 2017), (Minh, et al., 2017), (Ienco, Gaetano, Dupaquier, & Maurel, 2017), 

(Rußwurm & Körner, 2017). A particular paper investigating segmentation of root and soil 

uses images from X-ray tomography (Douarre, Schielein, Frindel, Gerth, & Rousseau, 

2016). Moreover, some papers use text data, collected either from repositories (Kuwata & 

Shibasaki, 2015), (Sehgal, et al., 2017) or field sensors (Song, et al., 2016), (Demmers T. 

G., et al., 2010), (Demmers T. G., Cao, Parsons, Gauss, & Wathes, 2012). In general, the 

more complicated the problem to be solved, the more data is required. For example, 

problems involving large number of classes to identify (Mohanty, Hughes, & Salathé, 

2016), (Reyes, Caicedo, & Camargo, 2015), (Xinshao & Cheng, 2015) and/or small 

Variation among the classes (Luus, Salmon, van den Bergh, & Maharaj, 2015), (Rußwurm 

& Körner, 2017), (Yalcin, 2017 ), (Namin, Esmaeilzadeh, Najafi, Brown, & Borevitz, 2017), 

(Xinshao & Cheng, 2015), require large number of input images to train their models. 
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4.3 Data Variation 

Variation between classes is necessary for the DL models to be able to differentiate 

features and characteristics, and perform accurate classifications3. Hence, accuracy is 

positively correlated with variation among classes. Nineteen papers (47%) revealed some 

aspects of poor data variation. Luus et al. (Luus, Salmon, van den Bergh, & Maharaj, 

2015) observed high relevance between some land cover classes (i.e. medium density 

and dense residential, buildings and storage tanks) while Ienko et al. (Ienco, Gaetano, 

Dupaquier, & Maurel, 2017) found that tree crops, summer crops and truck farming were 

classes highly mixed. A confusion between maize and soybeans was evident in (Kussul, 

Lavreniuk, Skakun, & Shelestov, 2017) and variation was low in botanically related crops, 

such as meadow, fallow, triticale, wheat, and rye (Rußwurm & Körner, 2017). Moreover, 

some particular views of the plants (i.e. flowers and leaf scans) offer different classification 

accuracy than branches, stems and photos of the entire plant. A serious issue in plant 

phenology recognition is the fact that appearances change very gradually and it is 

challenging to distinguish images falling into the growing durations that are in the middle of 

two successive stages (Yalcin, 2017 ), (Namin, Esmaeilzadeh, Najafi, Brown, & Borevitz, 

2017). A similar issue appears when assessing the quality of vegetative development 

(Minh, et al., 2017). Furthermore, in the challenging problem of fruit counting, the models 

suffer from high occlusion, depth variation, and uncontrolled illumination, including high 

color similarity between fruit/foliage (Chen, et al., 2017), (Bargoti & Underwood, 2016). 

Finally, identification of weeds faces issues with respect to lighting, resolution, and soil 

type, and small variation between weeds and crops in shape, texture, color and position 

(i.e. overlapping) (Dyrmann, Karstoft, & Midtiby, 2016 ), (Xinshao & Cheng, 2015), 

(Dyrmann, Jørgensen, & Midtiby, 2017). In the large majority of the papers mentioned 

above (except from (Minh, et al., 2017)), this low variation has affected classification 

                                                 
3 Classification accuracy is defined in Section 4.7 and Table 1. 
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accuracy significantly, i.e. more than 5%. 

4.4 Data Pre-Processing 

The large majority of related work (36 papers, 90%) involved some image pre-processing 

steps, before the image or particular characteristics/features/statistics of the image were 

fed as an input to the DL model. The most common pre-processing procedure was image 

resize (16 papers), in most cases to a smaller size, in order to adapt to the requirements of 

the DL model. Sizes of 256x256, 128x128, 96x96 and 60x60 pixels were common. Image 

segmentation was also a popular practice (12 papers), either to increase the size of the 

dataset (Ienco, Gaetano, Dupaquier, & Maurel, 2017), (Rebetez, J., et al., 2016), (Yalcin, 

2017 ) or to facilitate the learning process by highlighting regions of interest (Sladojevic, 

Arsenovic, Anderla, Culibrk, & Stefanovic, 2016), (Mohanty, Hughes, & Salathé, 2016), 

(Grinblat, Uzal, Larese, & Granitto, 2016), (Sa, et al., 2016), (Dyrmann, Karstoft, & Midtiby, 

2016 ), (Potena, Nardi, & Pretto, 2016) or to enable easier data annotation by experts and 

volunteers (Chen, et al., 2017), (Bargoti & Underwood, 2016). Background removal 

(Mohanty, Hughes, & Salathé, 2016), (McCool, Perez, & Upcroft, 2017), (Milioto, Lottes, & 

Stachniss, 2017), foreground pixel extraction (Lee, Chan, Wilkin, & Remagnino, 2015) or 

non-green pixels removal based on NDVI masks (Dyrmann, Karstoft, & Midtiby, 2016 ), 

(Potena, Nardi, & Pretto, 2016) were also performed to reduce the datasets’ overall noise. 

Other operations involved the creation of bounding boxes (Chen, et al., 2017), (Sa, et al., 

2016), (McCool, Perez, & Upcroft, 2017), (Milioto, Lottes, & Stachniss, 2017) to facilitate 

detection of weeds or counting of fruits. Some datasets were converted to grayscale 

(Santoni, Sensuse, Arymurthy, & Fanany, 2015), (Amara, Bouaziz, & Algergawy, 2017) or 

to the HSV color model (Luus, Salmon, van den Bergh, & Maharaj, 2015), (Lee, Chan, 

Wilkin, & Remagnino, 2015). 

Furthermore, some papers used features extracted from the images as input to their 

models, such as shape and statistical features (Hall, McCool, Dayoub, Sunderhauf, & 
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Upcroft, 2015), histograms (Hall, McCool, Dayoub, Sunderhauf, & Upcroft, 2015), (Xinshao 

& Cheng, 2015), (Rebetez, J., et al., 2016), Principal Component Analysis (PCA) filters 

(Xinshao & Cheng, 2015), Wavelet transformations (Kuwata & Shibasaki, 2015) and Gray 

Level Co-occurrence Matrix (GLCM) features (Santoni, Sensuse, Arymurthy, & Fanany, 

2015). Satellite or aerial images involved a combination of pre-processing steps such as 

orthorectification (Lu, et al., 2017), (Minh, et al., 2017) calibration and terrain correction 

(Kussul, Lavreniuk, Skakun, & Shelestov, 2017), (Minh, et al., 2017) and atmospheric 

correction (Rußwurm & Körner, 2017).  

4.5 Data Augmentation 

It is worth-mentioning that some of the related work under study (15 papers, 37%) 

employed data augmentation techniques (Krizhevsky, Sutskever, & Hinton, 2012), to 

enlarge artificially their number of training images. This helps to improve the overall 

learning procedure and performance, and for generalization purposes, by means of 

feeding the model with varied data. This augmentation process is important for papers that 

possess only small datasets to train their DL models, such as (Bargoti & Underwood, 

2016), (Sladojevic, Arsenovic, Anderla, Culibrk, & Stefanovic, 2016), (Sørensen, 

Rasmussen, Nielsen, & Jørgensen, 2017), (Mortensen, Dyrmann, Karstoft, Jørgensen, & 

Gislum, 2016), (Namin, Esmaeilzadeh, Najafi, Brown, & Borevitz, 2017) and (Chen, et al., 

2017). This process was especially important in papers where the authors trained their 

models using synthetic images and tested them on real ones (Rahnemoonfar & Sheppard, 

2017) and (Dyrmann, Mortensen, Midtiby, & Jørgensen, 2016). In this case, data 

augmentation allowed their models to generalize and be able to adapt to the real-world 

problems more easily. 

Transformations are label-preserving, and included rotations (12 papers), dataset 

partitioning/cropping (3 papers), scaling (3 papers), transposing (Sørensen, Rasmussen, 

Nielsen, & Jørgensen, 2017), mirroring (Dyrmann, Karstoft, & Midtiby, 2016 ), translations 
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and perspective transform (Sladojevic, Arsenovic, Anderla, Culibrk, & Stefanovic, 2016), 

adaptations of objects’ intensity in an object detection problem (Steen, Christiansen, 

Karstoft, & Jørgensen, 2016) and a PCA augmentation technique (Bargoti & Underwood, 

2016). 

Papers involving simulated data performed additional augmentation techniques such as 

varying the HSV channels and adding random shadows (Dyrmann, Mortensen, Midtiby, & 

Jørgensen, 2016) or adding simulated roots to soil images (Douarre, Schielein, Frindel, 

Gerth, & Rousseau, 2016). 

4.6 Technical Details 

From a technical side, almost half of the research works (17 papers, 42%) employed 

popular CNN architectures such as AlexNet, VGG16 and Inception-ResNet. From the rest, 

14 papers developed their own CNN models, 2 papers adopted a first-order Differential 

Recurrent Neural Networks (DRNN) model, 5 papers preferred to use a Long Short-Term 

Memory (LSTM) model (Gers, Schmidhuber, & Cummins, 2000), one paper used deep 

belief networks (DBN) and one paper employed a hybrid of PCA with auto-encoders (AE). 

Some of the CNN approaches combined their model with a classifier at the output layer, 

such as logistic regression (Chen, Lin, Zhao, Wang, & Gu, 2014), Scalable Vector 

Machines (SVM) (Douarre, Schielein, Frindel, Gerth, & Rousseau, 2016), linear regression 

(Chen, et al., 2017), Large Margin Classifiers (LCM) (Xinshao & Cheng, 2015) and 

macroscopic cellular automata (Song, et al., 2016). 

Regarding the frameworks used, all the works that employed some well-known CNN 

architecture had also used a DL framework, with Caffe being the most popular (13 papers, 

32%), followed by Tensor Flow (2 papers) and deeplearning4j (1 paper). Ten research 

works developed their own software, while some authors decided to build their own 

models on top of Caffe (5 papers), Keras/Theano (5 papers), Keras/TensorFlow (4 

papers), Pylearn2 (1 paper), MatConvNet (1 paper) and Deep Learning Matlab Toolbox (1 
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paper). A possible reason for the wide use of Caffe is that it incorporates various CNN 

frameworks and datasets, which can be used then easily and automatically by its users. 

Most of the studies divided their dataset between training and testing/verification data 

using a ratio of 80-20 or 90-10 respectively. In addition, various learning rates have been 

recorded, from 0.001 (Amara, Bouaziz, & Algergawy, 2017) and 0.005 (Mohanty, Hughes, 

& Salathé, 2016) up to 0.01 (Grinblat, Uzal, Larese, & Granitto, 2016). Learning rate is 

about how quickly a network learns. Higher values help avoid the solver being stuck in 

local minima, which can reduce performance significantly. A general approach used by 

many of the evaluated papers is to start out with a high learning rate and lower it as the 

training goes on. We note that learning rate is very dependent on the network architecture. 

Moreover, most of the research works that incorporated popular DL architectures took 

advantage of transfer learning (Pan & Yang, 2010), which concerns leveraging the already 

existing knowledge of some related task or domain in order to increase the learning 

efficiency of the problem under study by fine-tuning pre-trained models. As sometimes it is 

not possible to train a network from scratch due to having a small training data set or 

having a complex multi-task network, it is required that the network be at least partially 

initialized with weights from another pre-trained model. A common transfer learning 

technique is the use of pre-trained CNN, which are CNN models that have been already 

trained on some relevant dataset with possibly different number of classes. These models 

are then adapted to the particular challenge and dataset. This method was followed 

(among others) in (Lu, et al., 2017), (Douarre, Schielein, Frindel, Gerth, & Rousseau, 

2016), (Reyes, Caicedo, & Camargo, 2015), (Bargoti & Underwood, 2016), (Steen, 

Christiansen, Karstoft, & Jørgensen, 2016), (Lee, Chan, Wilkin, & Remagnino, 2015), (Sa, 

et al., 2016), (Mohanty, Hughes, & Salathé, 2016), (Christiansen, Nielsen, Steen, 

Jørgensen, & Karstoft, 2016), (Sørensen, Rasmussen, Nielsen, & Jørgensen, 2017), for 

the VGG16, DenseNet, AlexNet and GoogleNet architectures. 
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4.7 Outputs 

Finally, concerning the 31 papers that involved classification, the classes as used by the 

authors ranged from 2 (Lu, et al., 2017), (Pound, M. P., et al., 2016), (Douarre, Schielein, 

Frindel, Gerth, & Rousseau, 2016), (Milioto, Lottes, & Stachniss, 2017) up to 1,000 

(Reyes, Caicedo, & Camargo, 2015). A large number of classes was observed in (Luus, 

Salmon, van den Bergh, & Maharaj, 2015) (21 land-use classes), (Rebetez, J., et al., 

2016) (22 different crops plus soil), (Lee, Chan, Wilkin, & Remagnino, 2015) (44 plant 

species) and (Xinshao & Cheng, 2015) (91 classes of common weeds found in agricultural 

fields). In these papers, the number of outputs of the model was equal to the number of 

classes respectively. Each output was a different probability for the input image, segment, 

blob or pixel to belong to each class, and then the model picked the highest probability as 

its predicted class. 

From the rest 9 papers, 2 performed predictions of fruits counted (scalar value as output) 

(Rahnemoonfar & Sheppard, 2017), (Chen, et al., 2017), 2 identified regions of fruits in the 

image (multiple bounding boxes) (Bargoti & Underwood, 2016), (Sa, et al., 2016), 2 

predicted animal growth (scalar value) (Demmers T. G., et al., 2010), (Demmers T. G., 

Cao, Parsons, Gauss, & Wathes, 2012), one predicted weather conditions (scalar value) 

(Sehgal, et al., 2017), one crop yield index (scalar value) (Kuwata & Shibasaki, 2015) and 

one paper predicted percentage of soil moisture content (scalar value) (Song, et al., 2016). 

4.8 Performance Metrics 

Regarding methods used to evaluate performance, various metrics have been employed 

by the authors, each being specific to the model used at each study. Table 1 lists these 

metrics, together with their definition/description, and the symbol we use to refer to them in 

this survey. In some papers where the authors referred to accuracy without specifying its 

definition, we assumed they referred to classification accuracy (CA, first metric listed in 

Table 1). From this point onwards, we refer to “DL performance” as its score in some 
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performance metric from the ones listed in Table 1. 

Table 1: Performance metrics used in related work under study. 

No. 
Performance 

Metric 
Symbol 

Used 
Description 

1. 
Classification 

Accuracy 
CA 

The percentage of correct predictions where the top class (the one 

having the highest probability), as indicated by the DL model, is the 

same as the target label as annotated beforehand by the authors. For 

multi-class classification problems, CA is averaged among all the 

classes. CA is mentioned as Rank-1 identification rate in (Hall, 

McCool, Dayoub, Sunderhauf, & Upcroft, 2015). 

2. Precision P 

The fraction of true positives (TP, correct predictions) from the total 

amount of relevant results, i.e. the sum of TP and false positives (FP). 

For multi-class classification problems, P is averaged among the 

classes. P=TP/(TP+FP) 

3. Recall R 

The fraction of TP from the total amount of TP and false negatives 

(FN). For multi-class classification problems, R gets averaged among 

all the classes. R=TP/(TP+FN) 

4. F1 score F1 

The harmonic mean of precision and recall. For multi-class 

classification problems, F1 gets averaged among all the classes. It is 

mentioned as F-measure in (Minh, et al., 2017).  

F1=2 * (TP*FP) / (TP+FP) 

5. LifeCLEF metric LC 
A score4 related to the rank of the correct species in the list of retrieved 

species 

6. Quality Measure QM 

Obtained by multiplying sensitivity (proportion of pixels that were 

detected correctly) and specificity (which proportion of detected pixels 

are truly correct). QM=TP2 / ((TP+FP)(TP+FN)) 

7. Mean Square Error MSE 
Mean of the square of the errors between predicted and observed 

values. 

8. 
Root Mean Square 

Error 
RMSE 

Standard deviation of the differences between predicted values and 

observed values. A normalized RMSE (N-RMSE) has been used in 

(Sehgal, et al., 2017). 

9. 
Mean Relative 

Error 
MRE 

The mean error between predicted and observed values, in 

percentage. 

10. 
Ratio of total fruits 

counted 
RFC 

Ratio of the predicted count of fruits by the model, with the actual 

count. The actual count was attained by taking the average count of 

individuals (i.e. experts or volunteers) observing the images 

independently. 

11. L2 error L2 
Root of the squares of the sums of the differences between predicted 

counts of fruits by the model and the actual counts. 

12. 
Intersection over 

Union 
IoU 

A metric that evaluates predicted bounding boxes, by dividing the area 

of overlap between the predicted and the ground truth boxes, by the 

area of their union. An average (Dyrmann, Mortensen, Midtiby, & 

Jørgensen, 2016) or frequency weighted (Mortensen, Dyrmann, 

Karstoft, Jørgensen, & Gislum, 2016) IoU can be calculated. 

13. CA-IoU, F1-IoU,  CA-IoU These are the same CA, F1, P and R metrics as defined above, 

                                                 
4 LifeCLEF 2015 Challenge. http://www.imageclef.org/lifeclef/2015/plant  
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P-IoU or R-IoU F1-IoU  

P-IoU  

R-IoU 

combined with IoU in order to consider true/false positives/negatives. 
Used in problems involving bounding boxes. This is done by putting a 
minimum threshold on IoU, i.e. any value above this threshold would 
be considered as positive by the metric (and the model involved). 
Thresholds of 20% (Bargoti & Underwood, 2016), 40% (Sa, et al., 
2016) and 50% (Steen, Christiansen, Karstoft, & Jørgensen, 2016), 
(Christiansen, Nielsen, Steen, Jørgensen, & Karstoft, 2016), 
(Dyrmann, Jørgensen, & Midtiby, 2017) have been observed5. 

 

CA was the most popular metric used (24 papers, 60%), followed by F1 (10 papers, 25%). 

Some papers included RMSE (4 papers), IoU (3 papers), RFC (Chen, et al., 2017), 

(Rahnemoonfar & Sheppard, 2017) or others. Some works used a combination of metrics 

to evaluate their efforts. We note that some papers employing CA, F1, P or R, used IoU in 

order to consider a model’s prediction (Bargoti & Underwood, 2016), (Sa, et al., 2016), 

(Steen, Christiansen, Karstoft, & Jørgensen, 2016), (Christiansen, Nielsen, Steen, 

Jørgensen, & Karstoft, 2016), (Dyrmann, Jørgensen, & Midtiby, 2017). In these cases, a 

minimum threshold was put on IoU, and any value above this threshold would be 

considered as positive by the model.  

We note that in some cases, a trade-off can exist between metrics. For example, in a 

weed detection problem (Milioto, Lottes, & Stachniss, 2017), it might be desirable to have 

a high R to eliminate most weeds, but not eliminating crops is of a critical importance, 

hence a lower P might be acceptable. 

4.9 Overall Performance 

We note that it is difficult if not impossible to compare between papers, as different metrics 

are employed for different tasks, considering different models, datasets and parameters. 

Hence, the reader should consider our comments in this section with some caution. 

In 19 out of the 24 papers that involved CA as a metric, accuracy was high (i.e. above 

90%), indicating good performance. The highest CA has been observed in the works of 

(Hall, McCool, Dayoub, Sunderhauf, & Upcroft, 2015), (Pound, M. P., et al., 2016), (Chen, 

                                                 
5 In Appendix II, where we list the values of the metrics used at each paper, we denote CA-IoU(x), F1-IoU(x), 

P-IoU(x) or R-IoU(x), where x is the threshold (in percentage), over which results are considered as positive 
by the DL model employed. 



19 

 

Lin, Zhao, Wang, & Gu, 2014), (Lee, Chan, Wilkin, & Remagnino, 2015), (Minh, et al., 

2017), (Potena, Nardi, & Pretto, 2016) and (Steen, Christiansen, Karstoft, & Jørgensen, 

2016), with values of 98% or more, constituting remarkable results. From the 10 papers 

using F1 as metric, 5 had values higher than 0.90 with the highest F1 observed in 

(Mohanty, Hughes, & Salathé, 2016) and (Minh, et al., 2017) with values higher than 0.99. 

The works of (Dyrmann, Karstoft, & Midtiby, 2016 ), (Rußwurm & Körner, 2017), (Ienco, 

Gaetano, Dupaquier, & Maurel, 2017), (Mortensen, Dyrmann, Karstoft, Jørgensen, & 

Gislum, 2016), (Rebetez, J., et al., 2016), (Christiansen, Nielsen, Steen, Jørgensen, & 

Karstoft, 2016) and (Yalcin, 2017 ) were among the ones with the lowest CA (i.e. 73-79%) 

and/or F1 scores (i.e. 0.558 - 0.746), however state of the art work in these particular 

problems has shown lower CA (i.e. SVM, RF, Naïve- Bayes classifier). Particularly in 

(Rußwurm & Körner, 2017), the three-unit LSTM model employed provided 16.3% better 

CA than a CNN, which belongs to the family of DL. Besides, the above can be considered 

as “harder” problems, because of the use of satellite data (Ienco, Gaetano, Dupaquier, & 

Maurel, 2017), (Rußwurm & Körner, 2017) large number of classes (Dyrmann, Karstoft, & 

Midtiby, 2016 ), (Rußwurm & Körner, 2017), (Rebetez, J., et al., 2016), small training 

datasets (Mortensen, Dyrmann, Karstoft, Jørgensen, & Gislum, 2016), (Christiansen, 

Nielsen, Steen, Jørgensen, & Karstoft, 2016) or very low variation among the classes 

(Yalcin, 2017 ), (Dyrmann, Karstoft, & Midtiby, 2016 ), (Rebetez, J., et al., 2016).  

4.10 Generalizations on Different Datasets 

It is important to examine whether the authors had tested their implementations on the 

same dataset (e.g. by dividing the dataset into training and testing/validation sets) or used 

different datasets to test their solution. From the 40 papers, only 8 (20%) used different 

datasets for testing than the one for training. From these, 2 approaches trained their 

models by using simulated data and tested on real data (Dyrmann, Mortensen, Midtiby, & 

Jørgensen, 2016), (Rahnemoonfar & Sheppard, 2017) and 2 papers tested their models 
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on a dataset produced 2-4 weeks after, with a more advanced growth stage of plants and 

weeds (Milioto, Lottes, & Stachniss, 2017), (Potena, Nardi, & Pretto, 2016). Moreover, 3 

papers used different fields for testing than the ones used for training (McCool, Perez, & 

Upcroft, 2017), with a severe degree of occlusion compared to the other training field 

(Dyrmann, Jørgensen, & Midtiby, 2017), or containing other obstacles such as people and 

animals (Steen, Christiansen, Karstoft, & Jørgensen, 2016). Sa et al. (Sa, et al., 2016) 

used a different dataset to evaluate whether the model can generalize on different fruits. 

From the other 32 papers, different trees were used in training and testing in (Chen, et al., 

2017), while different rooms for pigs (Demmers T. G., Cao, Parsons, Gauss, & Wathes, 

2012) and chicken (Demmers T. G., et al., 2010) were considered. Moreover, Hall et al. 

applied condition variations in testing (i.e. translations, scaling, rotations, shading and 

occlusions) (Hall, McCool, Dayoub, Sunderhauf, & Upcroft, 2015) while scaling for a 

certain range translation distance and rotation angle was performed on the testing dataset 

in (Xinshao & Cheng, 2015). The rest 27 papers did not perform any changes between the 

training/testing datasets, a fact that lowers the overall confidence for the results presented. 

Finally, it is interesting to observe how these generalizations affected the performance of 

the models, at least in cases where both data from same and different datasets were used 

in testing. In (Sa, et al., 2016), F1-IoU(40) was higher for the detection of apples (0.938), 

strawberry (0.948), avocado (0.932) and mango (0.942), than in the default case of sweet 

pepper (0.838). In (Rahnemoonfar & Sheppard, 2017), RFC was 2% less in the real 

images than in the synthetic ones. In (Potena, Nardi, & Pretto, 2016), CA was 37.6% less 

at the dataset involving plants of 4-weeks more advanced growth. According to the 

authors, the model was trained based on plants that were in their first growth stage, thus 

without their complete morphological features, which were included in the testing dataset. 

Moreover, in (Milioto, Lottes, & Stachniss, 2017) P was 2% higher at the 2-weeks more 

advanced growth dataset, with 9% lower R.  
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Hence, in the first case there was improvement in performance (Sa, et al., 2016), and in 

the last three cases a reduction, slight one in (Rahnemoonfar & Sheppard, 2017) and 

(Milioto, Lottes, & Stachniss, 2017) but considerable in (Potena, Nardi, & Pretto, 2016). 

From the other papers using different testing datasets, as mentioned above, high 

percentages of CA (94-97.3%), P-IoU (86.6%) and low values of MRE (1.8 -10%) have 

been reported. These show that the DL models were able to generalize well to different 

datasets. However, without more comparisons, this is only a speculation that can be 

figured out of the small number of observations available. 

4.11 Performance Comparison with Other Approaches 

A critical aspect of this survey is to examine how DL performs in relation to other existing 

techniques. The 14th column of Appendix II presents whether the authors of related work 

compared their DL-based approach with other techniques used for solving their problem 

under study. We focus only on comparisons between techniques used for the same 

dataset at the same research paper, with the same metric. 

In almost all cases, the DL models outperform other approaches implemented for 

comparison purposes. CNN show 1-8% higher CA in comparison to SVM (Chen, Lin, 

Zhao, Wang, & Gu, 2014), (Lee, Chan, Wilkin, & Remagnino, 2015), (Grinblat, Uzal, 

Larese, & Granitto, 2016), (Pound, M. P., et al., 2016), 41% improvement of CA when 

compared to ANN (Lee, Chan, Wilkin, & Remagnino, 2015) and 3-8% higher CA when 

compared to RF (Kussul, Lavreniuk, Skakun, & Shelestov, 2017), (Minh, et al., 2017), 

(McCool, Perez, & Upcroft, 2017), (Potena, Nardi, & Pretto, 2016), (Hall, McCool, Dayoub, 

Sunderhauf, & Upcroft, 2015). CNN also seem to be superior than unsupervised feature 

learning with 3-11% higher CA (Luus, Salmon, van den Bergh, & Maharaj, 2015), 2-44% 

improved CA in relation to local shape and color features (Dyrmann, Karstoft, & Midtiby, 

2016 ), (Sørensen, Rasmussen, Nielsen, & Jørgensen, 2017), and 2% better CA (Kussul, 

Lavreniuk, Skakun, & Shelestov, 2017) or 18% less RMSE (Song, et al., 2016) compared 
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to multilayer perceptrons. CNN had also superior performance than Penalized 

Discriminant Analysis (Grinblat, Uzal, Larese, & Granitto, 2016), SVM Regression (Kuwata 

& Shibasaki, 2015), area-based techniques (Rahnemoonfar & Sheppard, 2017), texture-

based regression models (Chen, et al., 2017), LMC classifiers (Xinshao & Cheng, 2015), 

Gaussian Mixture Models (Santoni, Sensuse, Arymurthy, & Fanany, 2015) and Naïve-

Bayes classifiers (Yalcin, 2017 ). 

In cases where Recurrent Neural Networks (RNN) (Mandic & Chambers, 2001) 

architectures were employed, the LSTM model had 1% higher CA than RF and SVM in 

(Ienco, Gaetano, Dupaquier, & Maurel, 2017), 44% improved CA than SVM in (Rußwurm 

& Körner, 2017) and 7-9% better CA than RF and SVM in (Minh, et al., 2017). 

In only one case, DL showed worse performance against another technique, and this was 

when a CNN was compared to an approach involving local descriptors to represent 

images together with KNN as the classification strategy (20% worse LC) (Reyes, Caicedo, 

& Camargo, 2015). 

 

5. Discussion 

Our analysis has shown that DL offers superior performance in the vast majority of related 

work. When comparing the performance of DL-based approaches with other techniques at 

each paper, it is of paramount importance to adhere to the same experimental conditions 

(i.e. datasets and performance metrics). From the related work under study, 28 out of the 

40 papers (70%) performed direct, valid and correct comparisons among the DL-based 

approach employed and other state-of-art techniques used to solve the particular problem 

tackled at each paper. Due to the fact that each paper involved different datasets, pre-

processing techniques, metrics, models and parameters, it is difficult if not impossible to 

generalize and perform comparisons between papers. Thus, our comparisons have been 

strictly limited among the techniques used at each paper. Thus, based on these 
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constraints, we have observed that DL has outperformed traditional approaches used such 

as SVM, RF, ANN, LMC classifiers and others. It seems that the automatic feature 

extraction performed by DL models is more effective than the feature extraction process 

through traditional approaches such as Scale Invariant Feature Transform (SIFT), GLCM, 

histograms, area-based techniques (ABT), statistics-, texture-, color- and shape-based 

algorithms, conditional random fields to model color and visual texture features, local de-

correlated channel features and other manual feature extraction techniques. This is 

reinforced by the combined CNN+LSTM model employed in (Namin, Esmaeilzadeh, Najafi, 

Brown, & Borevitz, 2017), which outperformed a LSTM model which used hand crafted 

feature descriptors as inputs by 25% higher CA. Interesting attempts to combine hand-

crafted features and CNN-based features were performed in (Hall, McCool, Dayoub, 

Sunderhauf, & Upcroft, 2015) and (Rebetez, J., et al., 2016). 

Although DL has been associated with computer vision and image analysis (which is also 

the general case in this survey), we have observed 5 related works where DL-based 

models have been trained based on field sensory data (Kuwata & Shibasaki, 2015), 

(Sehgal, et al., 2017) and a combination of static and dynamic environmental variables 

(Song, et al., 2016), (Demmers T. G., et al., 2010), (Demmers T. G., Cao, Parsons, Gauss, 

& Wathes, 2012). These papers indicate the potential of DL to be applied in a wide variety 

of agricultural problems, not only those involving images.  

Examining agricultural areas where DL techniques have been applied, leaf classification, 

leaf and plant disease detection, plant recognition and fruit counting have some papers 

which present very good performance (i.e. CA > 95%, F1 > 0.92 or RFC > 0.9). This is 

probably because of the availability of datasets in these domains, as well as the distinct 

characteristics of (sick) leaves/plants and fruits in the image. On the other hand, some 

papers in land cover classification, crop type classification, plant phenology recognition 

and weed detection showed average performance (i.e. CA < 87% or F1 < 0.8). This could 
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be due to leaf occlusion in weed detection, use of noise-prone satellite imagery in land 

cover problems, crops with low variation and botanical relationship or the fact that 

appearances change very gradually while plants grow in phenology recognition efforts. 

Without underestimating the quality of any of the surveyed papers, we highlight some that 

claim high performance (CA > 91%, F1-IoU(20) > 0.90 or RFC > 0.91), considering the 

complexity of the problem in terms of its definition or the large number of classes involved 

(more than 21 classes). These papers are the following: (Mohanty, Hughes, & Salathé, 

2016), (Luus, Salmon, van den Bergh, & Maharaj, 2015), (Lee, Chan, Wilkin, & 

Remagnino, 2015), (Rahnemoonfar & Sheppard, 2017), (Chen, et al., 2017), (Bargoti & 

Underwood, 2016), (Xinshao & Cheng, 2015) and (Hall, McCool, Dayoub, Sunderhauf, & 

Upcroft, 2015). We also highlight papers that trained their models on simulated data, and 

tested them on real data, which are (Dyrmann, Mortensen, Midtiby, & Jørgensen, 2016), 

(Rahnemoonfar & Sheppard, 2017), and (Douarre, Schielein, Frindel, Gerth, & Rousseau, 

2016). These works constitute important efforts in the DL community, as they attempt to 

solve the problem of inexistent or not large enough datasets in various problems. 

Finally, as discussed in Section 4.10, most authors used the same datasets for training 

and testing their implementation, a fact that lowers the confidence in the overall findings, 

although there have been indications that the models seem to generalize well, with only 

small reductions in performance. 

5.1 Advanced Deep Learning Applications 

Although the majority of papers used typical CNN architectures to perform classification 

(23 papers, 57%), some authors experimented with more advanced models in order to 

solve more complex problems, such as crop type classification from UAV imagery (CNN + 

HistNN using RGB histograms) (Rebetez, J., et al., 2016), estimating number of tomato 

fruits (Modified Inception-ResNet CNN) (Rahnemoonfar & Sheppard, 2017) and estimating 

number of orange or apple fruits (CNN adapted for blob detection and counting + Linear 
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Regression) (Chen, et al., 2017). Particularly interesting were the approaches employing 

the Faster Region-based CNN + VGG16 model (Bargoti & Underwood, 2016), (Sa, et al., 

2016), in order not only to count fruits and vegetables, but also to locate their placement in 

the image by means of bounding boxes. Similarly, the work in (Dyrmann, Jørgensen, & 

Midtiby, 2017) used the DetectNet CNN to detect bounding boxes of weed instances in 

images of cereal fields. These approaches (Faster Region-based CNN, DetectNet CNN) 

constitute a very promising research direction, since the task of identifying the bounding 

box of fruits/vegetables/weeds in an image has numerous real-life applications and could 

solve various agricultural problems 

Moreover, considering not only space but also time series, some authors employed RNN-

based models in land cover classification (one-unit LSTM model + SVM) (Ienco, Gaetano, 

Dupaquier, & Maurel, 2017), crop type classification (three-unit LSTM) (Rußwurm & 

Körner, 2017), classification of different accessions of Arabidopsis thaliana based on 

successive top-view images (CNN+ LSTM) (Namin, Esmaeilzadeh, Najafi, Brown, & 

Borevitz, 2017), mapping winter vegetation quality coverage (Five-unit LSTM, Gated 

Recurrent Unit) (Minh, et al., 2017), estimating the weight of pigs or chickens (DRNN) 

(Demmers T. G., et al., 2010), (Demmers T. G., Cao, Parsons, Gauss, & Wathes, 2012) 

and for predicting weather based on previous year’s conditions (LSTM) (Sehgal, et al., 

2017). RNN-based models offer higher performance, as they can capture the time 

dimension, which is impossible to be exploited by simple CNN. RNN architectures tend to 

exhibit dynamic temporal behavior, being able to record long-short temporal 

dependencies, remembering and forgetting after some time or when needed (i.e. LSTM). 

Differences in performance between RNN and CNN are distinct in the related work under 

study, as shown in Table 2. This 16% improvement in CA could be attributed to the 

additional information provided by the time series. For example, in the crop type 

classification case (Rußwurm & Körner, 2017), the authors mention, “crops change their 
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spectral characteristics due to environmental influences and can thus not be monitored 

effectively with classical mono-temporal approaches. Performance of temporal models 

increases at the beginning of vegetation period”. LSTM-based approaches work well also 

for low represented and difficult classes, as demonstrated in (Ienco, Gaetano, Dupaquier, 

& Maurel, 2017). 

Table 2: Difference in Performance between CNN and RNN. 

No. 
Application in 

Agriculture 
Performan

ce Metric 
Difference in Performance 

Reference 

1. 
Crop type classification 

considering time series 
CA, F1 

Three-unit LSTM: 76.2% (CA), 

0.558  (F1) 

CNN: 59.9% (CA), 0.236 (F1) 

(Rußwurm & Körner, 2017) 

2. 

Classify the phenotyping 

of Arabidopsis in four 

accessions 

CA 
CNN+ LSTM: 93% 

CNN: 76.8% 

(Namin, Esmaeilzadeh, 

Najafi, Brown, & Borevitz, 

2017) 

 

Finally, the critical aspect of fast processing of DL models in order to be easily used in 

robots for real-time decision making (e.g. detection of weeds) was examined in (McCool, 

Perez, & Upcroft, 2017), and it is worth-mentioning. The authors have showed that a 

lightweight implementation had only a small penalty in CA (3.90%), being much faster (i.e. 

processing of 40.6 times more pixels per second). They proposed the idea of “teacher and 

student networks”, where the teacher is the more heavy approach that helps the student 

(light implementation) to learn faster and better. 

5.2 Advantages of Deep Learning 

Except from improvements in performance of the classification/prediction problems in the 

surveyed works (see Sections 4.9 and 4.11), the advantage of DL in terms of reduced 

effort in feature engineering was demonstrated in many of the papers. Hand-engineered 

components require considerable time, an effort that takes place automatically in DL. 

Besides, sometimes manual search for good feature extractors is not an easy and obvious 

task. For example, in the case of estimating crop yield (Kuwata & Shibasaki, 2015), 

extracting manually features that significantly affected crop growth was not possible. This 
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was also the case of estimating the soil moisture content (Song, et al., 2016). 

Moreover, DL models seem to generalize well. For example, in the case of fruit counting, 

the model learned explicitly to count (Rahnemoonfar & Sheppard, 2017). In the banana 

leaf classification problem (Amara, Bouaziz, & Algergawy, 2017), the model was robust 

under challenging conditions such as illumination, complex background, different 

resolution, size and orientation of the images. Also in the fruits counting papers (Chen, et 

al., 2017), (Rahnemoonfar & Sheppard, 2017), the models were robust to occlusion, 

variation, illumination and scale. The same detection frameworks could be used for a 

variety of circular fruits such as peaches, citrus, mangoes etc. As another example, a key 

feature of the DeepAnomaly model was the ability to detect unknown objects/anomalies 

and not just a set of predefined objects, exploiting the homogeneous characteristics of an 

agricultural field to detect distant, heavy occluded and unknown objects (Christiansen, 

Nielsen, Steen, Jørgensen, & Karstoft, 2016). Moreover, in the 8 papers mentioned in 

Section 4.10 where different datasets were used for testing, the performance of the model 

was generally high, with only small reductions in performance in comparison with the 

performance when using the same dataset for training and testing. 

Although DL takes longer time to train than other traditional approaches (e.g. SVM, RF), its 

testing time efficiency is quite fast. For example, in detecting obstacles and anomaly 

(Christiansen, Nielsen, Steen, Jørgensen, & Karstoft, 2016), the model took much longer 

to train, but after it did, its testing time was less than the one of SVM and KNN. Besides, if 

we take into account the time needed to manually design filters and extract features, “the 

time used on annotating images and training the CNN becomes almost negligible” 

(Sørensen, Rasmussen, Nielsen, & Jørgensen, 2017).  

Another advantage of DL is the possibility to develop simulated datasets to train the 

model, which could be properly designed in order to solve real-world problems. For 

example, in the issue of detecting weeds and maize in fields (Dyrmann, Mortensen, 
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Midtiby, & Jørgensen, 2016), the authors overcame the plant foliage overlapping problem 

by simulating top-down images of overlapping plants on soil background. The trained 

network was then capable of distinguish weeds from maize even in overlapping conditions. 

5.3 Disadvantages and Limitations of Deep Learning 

A considerable drawback and barrier in the use of DL is the need of large datasets, which 

would serve as the input during the training procedure. In spite of data augmentation 

techniques which augment some dataset with label-preserving transformations, in reality at 

least some hundreds of images are required, depending on the complexity of the problem 

under study (i.e. number of classes, precision required etc.). For example, the authors in 

(Mohanty, Hughes, & Salathé, 2016) and (Sa, et al., 2016) commented that a more diverse 

set of training data was needed to improve CA. A big problem with many datasets is the 

low variation among the different classes (Yalcin, 2017 ), as discussed in Section 4.3, or 

the existence of noise, in the form of low resolution, inaccuracy of sensory equipment 

(Song, et al., 2016), crops’ occlusions, plants overlapping and clustering, and others. 

As data annotation is a necessary operation in the large majority of cases, some tasks are 

more complex and there is a need for experts (who might be difficult to involve) in order to 

annotate input images. As mentioned in (Amara, Bouaziz, & Algergawy, 2017), there is a 

limited availability of resources and expertise on banana pathology worldwide. In some 

cases, experts or volunteers are susceptible to errors during data labeling, especially when 

this is a challenging task e.g. fruit count (Chen, et al., 2017), (Bargoti & Underwood, 2016) 

or to determine if images contain weeds or not (Sørensen, Rasmussen, Nielsen, & 

Jørgensen, 2017), (Dyrmann, Jørgensen, & Midtiby, 2017). 

Another limitation is the fact that the DL models can learn some problem particularly well, 

even generalize in some aspects as mentioned in Section 5.2, but they cannot generalize 

beyond the “boundaries of the dataset’s expressiveness”. For example, classification of 

single leaves, facing up, on a homogeneous background is performed in (Mohanty, 
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Hughes, & Salathé, 2016). A real world application should be able to classify images of a 

disease as it presents itself directly on the plant. Many diseases do not present 

themselves on the upper side of leaves only. As another example, plant recognition in 

(Lee, Chan, Wilkin, & Remagnino, 2015) was noticeably affected by environmental factors 

such as wrinkled surface and insect damages. The model for counting tomatoes in 

(Rahnemoonfar & Sheppard, 2017) could count ripe and half-ripe fruits, however, “it failed 

to count green fruits because it was not trained for this purpose”. If an object size in a 

testing image was significantly less than that of a training set, the model missed the 

detection in (Sa, et al., 2016). Difficulty in detecting heavily occluded and distant objects 

was observed in (Christiansen, Nielsen, Steen, Jørgensen, & Karstoft, 2016). Occlusion 

was a serious issue also in (Hall, McCool, Dayoub, Sunderhauf, & Upcroft, 2015). 

A general issue in computer vision, not only in DL, is that data pre-processing is 

sometimes a necessary and time-consuming task, especially when satellite or aerial 

photos are involved, as we saw in Section 4.4. A problem with hyperspectral data is their 

high dimensionality and limited training samples (Chen, Lin, Zhao, Wang, & Gu, 2014). 

Moreover, sometimes the existing datasets do not describe completely the problem they 

target (Song, et al., 2016). As an example, for estimating corn yield (Kuwata & Shibasaki, 

2015), it was necessary to consider also external factors other than the weather by 

inputting cultivation information such as fertilization and irrigation.  

Finally, in the domain of agriculture, there do not exist many publicly available datasets for 

researchers to work with, and in many cases, researchers need to develop their own sets 

of images. This could require many hours or days of work.  

5.4 Future of Deep Learning in Agriculture 

Observing Appendix I, which lists various existing applications of computer vision in 

agriculture, we can see that only the problems of land cover classification, crop type 

estimation, crop phenology, weed detection and fruit grading have been approximated 
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using DL. It is interesting to see how DL would behave also in other agricultural-related 

problems listed in Appendix I, such as seeds identification, soil and leaf nitrogen content, 

irrigation, plants’ water stress detection, water erosion assessment, pest detection, 

herbicide use, identification of contaminants, diseases or defects on food, crop hail 

damage and greenhouse monitoring. Intuitively, since many of the aforementioned 

research areas employ data analysis techniques (see Appendix I) with similar concepts 

and comparable performance to DL (i.e. linear and logistic regression, SVM, KNN, K-

means clustering, Wavelet-based filtering, Fourier transform) (Singh, 

Ganapathysubramanian, Singh, & Sarkar, 2016), then it could be worth to examine the 

applicability of DL on these problems too. 

Other possible application areas could be the use of aerial imagery (i.e. by means of 

drones) to monitor the effectiveness of the seeding process, to increase the quality of wine 

production by harvesting grapes at the right moment for best maturity levels, to monitor 

animals and their movements to consider their overall welfare and identify possible 

diseases, and many other scenarios where computer vision is involved.  

In spite of the limited availability of open datasets in agriculture, In Appendix III, we list 

some of the most popular, free to download datasets available on the web, which could be 

used by researchers to start testing their DL architectures. These datasets could be used 

to pre-train DL models and then adapt them to more specific future agricultural challenges. 

In addition to these datasets, remote sensing data containing multi-temporal, multi-spectral 

and multi-source images that could be used in problems related to land and crop cover 

classification are available from satellites such as MERIS, MODIS, AVHRR, RapidEye, 

Sentinel, Landsat etc. 

More approaches adopting LSTM or other RNN models are expected in the future, 

exploiting the time dimension to perform higher performance classification or prediction. 

An example application could be to estimate the growth of plants, trees or even animals 
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based on previous consecutive observations, to predict their yield, assess their water 

needs or avoid diseases from occurring. These models could find applicability in 

environmental informatics too, for understanding climatic change, predicting weather 

conditions and phenomena, estimating the environmental impact of various physical or 

artificial processes (Kamilaris, Assumpcio, Blasi, Torrellas, & Prenafeta-Boldú, 2017) etc. 

Related work under study involved up to a five-unit LSTM model (Minh, et al., 2017). We 

expect in the future to see more layers stacked together in order to build more complex 

LSTM architectures (Ienco, Gaetano, Dupaquier, & Maurel, 2017). We also believe that 

datasets with increasing temporal sequence length will appear, which could improve the 

performance of LSTM (Rußwurm & Körner, 2017). 

Moreover, more complex architectures would appear, combining various DL models and 

classifiers together, or combining hand-crafted features with automatic features extracted 

by using various techniques, fused together to improve the overall outcome, similar to 

what performed in (Hall, McCool, Dayoub, Sunderhauf, & Upcroft, 2015) and (Rebetez, J., 

et al., 2016). Researchers are expected to test their models using more general and 

realistic dataset, demonstrating the ability of the models to generalize to various real-world 

situations. A combination of popular performance metrics, such as the ones mentioned in 

Table 1, are essential to be adopted by the authors for comparison purposes. It would be 

desirable if researchers made their datasets publicly available, for use also by the general 

research community. 

Finally, some of the solutions discussed in the surveyed papers could have a commercial 

use in the near future. The approaches incorporating Faster Region-based CNN and 

DetectNet CNN (Bargoti & Underwood, 2016), (Chen, et al., 2017), (Rahnemoonfar & 

Sheppard, 2017) would be extremely useful for automatic robots that collect crops, remove 

weeds or for estimating the expected yields of various crops. A future application of this 

technique could be also in microbiology for human or animal cell counting (Chen, et al., 
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2017). The DRNN model controlling the daily feed intake of pigs or chicken, predicting 

quite accurately the required feed intake for the whole of the growing period, would be 

useful to farmers when deciding on a growth curve suitable for various scenarios. 

Following some growth patterns would have potential advantages for animal welfare in 

terms of leg health, without compromising the idea animals’ final weight and total feed 

intake requirement (Demmers T. G., et al., 2010), (Demmers T. G., Cao, Parsons, Gauss, 

& Wathes, 2012).  

 

6. Conclusion 

In this paper, we have performed a survey of deep learning-based research efforts applied 

in the agricultural domain. We have identified 40 relevant papers, examining the particular 

area and problem they focus on, technical details of the models employed, sources of data 

used, pre-processing tasks and data augmentation techniques adopted, and overall 

performance according to the performance metrics employed by each paper. We have 

then compared deep learning with other existing techniques, in terms of performance. Our 

findings indicate that deep learning offers better performance and outperforms other 

popular image processing techniques. For future work, we plan to apply the general 

concepts and best practices of deep learning, as described through this survey, to other 

areas of agriculture where this modern technique has not yet been adequately used. Some 

of these areas have been identified in the discussion section. 

Our aim is that this survey would motivate more researchers to experiment with deep 

learning, applying it for solving various agricultural problems involving classification or 

prediction, related to computer vision and image analysis, or more generally to data 

analysis. The overall benefits of deep learning are encouraging for its further use towards 

smarter, more sustainable farming and more secure food production. 
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Appendix I: Applications of computer vision in agriculture and popular techniques used. 

No. 
Application in 

Agriculture 
Remote sensing Techniques for data analysis 

1. 
Soil and 

vegetation/crop 

mapping 

Hyperspectral imaging 

(satellite and airborne), 

multi‐spectral imaging 

(satellite), synthetic 

aperture radar (SAR) 

Image fusion, SVM, end-member extraction algorithm, 

co-polarized phase differences (PPD), linear 

polarizations (HH, VV, HV), distance-based 

classification, decision trees, linear mixing models, 

logistic regression, ANN, NDVI 

2. 
Leaf area index 

and crop canopy 

Hyperspectral imaging 

(airborne), multi‐spectral 

imaging (airborne) 
Linear regression analysis, NDVI 

3. Crop phenology 
Satellite remote sensing 

(general) 
Wavelet-based filtering, Fourier transforms, NDVI 

4. 

Crop height, 

estimation of 

yields, fertilizers' 

effect and 

biomass 

Light Detection and 

Ranging (LIDAR), 

hyperspectral and multi-

spectral imaging, SAR, 

red-edge camera, 

thermal infrared 

Linear and exponential regression analysis, linear 
polarizations (VV), wavelet-based filtering, vegetation 

indices (NDVI, ICWSI), ANN 

5. Crop monitoring 

Satellite remote sensing, 

(hyperspectral and multi-

spectral imaging), NIR 

camera, SAR 

Stepwise discriminate analysis (DISCRIM) feature 

extraction, linear regression analysis, co-polarized phase 

differences (PPD), linear polarizations (HH, VV, HV, RR 

and RL), classification and regression tree analysis 

6. 

Identification of 

seeds and 

reorganization of 

species 

Remote sensing in 

general, cameras and 

photo-detectors, 

hyperspectral imaging 

Principal component analysis, feature extraction,  linear 

regression analysis 

7. 

Soil and leaf 

nitrogen content 

and treatment, 

salinity detection 

Hyperspectral and multi-

spectral imaging, thermal 

imaging 

Linear and exponential regression analysis 
 

8. 
Irrigation 
 

Satellite remote sensing 

(hyperspectral and multi-

spectral imaging), red-

edge camera, thermal 

infrared 

Image classification techniques (unsupervised 

clustering, density slicing with thresholds), decision 

trees, linear regression analysis, NDVI 

9. 

Plants water 

stress detection 

and drought 

conditions 

Satellite remote sensing 

(hyperspectral and multi-

spectral imaging, radar 

images), thermal 

imaging, NIR camera, 

red-edge camera 

Fraunhofer Line Depth (FLD) principle, linear regression 

analysis, NDVI 

10. 
Water erosion 

assessment 

Satellite remote sensing 

(optical and radar 

images), SAR, NIR 

camera 

Interferometric SAR image processing, linear and 

exponential regression analysis, contour tracing, linear 

polarizations (HH, VV) 
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11. 
Pest detection 

and 

management 

Hyperspectral and multi-

spectral imaging, 

microwave remote 

sensing, thermal camera 

Image processing using sample imagery, linear and 

exponential regression analysis, statistical analysis, 

CEM nonlinear signal processing, NDVI 

12. Weed detection 

Remote sensing in 

general, optical cameras 

and photo-detectors, 

hyperspectral and multi-

spectral imaging 

Pixel classification based on k-means clustering and 

Bayes classifier, feature extraction techniques with FFT 

and GLCM, wavelet-based classification and Gabor 

filtering, genetic algorithms, fuzzy techniques, artificial 

neural networks, erosion and dilation segmentation, 

logistic regression, edge detection, color detection, 

principal component analysis 

13. Herbicide 

Remote sensing in 

general, optical cameras 

and photo-detectors 
 

Fuzzy techniques, discriminant analysis 

14. Fruit grading 

Optical cameras and 

photo-detectors, 

monochrome images 

with different 

illuminations 

K-means clustering, image fusion, color histogram 

techniques, machine learning (esp. SVM), Bayesian 

discriminant analysis, Bayes filtering, linear discriminant 

analysis 

15. 

Packaged food 

and food 

products – 

identification of 

contaminants, 

diseases or 

defects, bruise 

detection 

X-ray imaging (or 

transmitted light), CCD 

cameras, monochrome 

images with different 

illuminations, thermal 

cameras, multi-spectral 

and hyperspectral NIR-

based imaging 

3D vision, invariance, pattern recognition and image 

modality,  multivariate image analysis with principal 

component analysis, K-mean clustering, SVM, linear 

discriminant analysis, classification trees, K-nearest 

neighbors, decision trees, fusion, feature extraction 

techniques with FFT, standard Bayesian discriminant 

analysis, feature analysis, color, shape and geometric 

features using discrimination analysis, pulsed-phase 

thermography 

16. 
Crop hail 

damage 

Multi-spectral imaging, 

polarimetric radar 

imagery 

Linear and exponential regression analysis, 

unsupervised image classification 

17. 
Agricultural 

expansion and 

intensification 

Satellite remote sensing 

in general 
Wavelet-based filtering 

18. 
Greenhouse 

monitoring 

Optical and thermal 

cameras 

Linear and exponential regression analysis, 

unsupervised classification, NDVI, IR thermography 
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Appendix II: Applications of deep learning in agriculture. 

No. 
Agri 

Area 
Problem 

Description 
Data Used 

Classes and 

Labels 

Variation 

among 

Classes 

DL 

Model 

Used 

FW 

Used 

Data Pre-

Processing 

Data 

augmenta

tion 

Data for 

Training 

vs. 

Testing 

Perfor

mance 

Metric 

Used 

Value of 

Metric 

Used 

Comparison 

with other 

technique 

Ref. 

1. 

L
e
a
f 
c
la

s
s
if
ic

a
ti
o

n
 

Classify 

leaves of 

different 

plant species 

Flavia dataset, 

consisting of 1,907 

leaf images of 32 

species with at 

least 50 images 

per species and at 

most 77 images. 

32 classes: 32 

Different plant 

species 

N/A 

Author-
defined 
CNN + 

RF 
classifier 

Caffe 

Feature 

extraction 

based on 

Histograms of 

Curvature 

over Scale 

(HoCS), 

shape and 

statistical 

features, use 

of normalized 

excessive 

green (NExG) 

vegetative 

index, white 

border 

doubling 

image size, 

segmentation 

N/A 

Same. 

(condition 

variations 

applied in 

testing: 

translations, 

scaling, 

rotations, 

shading and 

occlusions) 

CA 
97.3% 
±0.6% 

Feature 

extraction 

(shape and 

statistical 

features) and 

RF classifier 

(91.2% ± 

1.6%) 

(Hall, 

McCool, 

Dayoub, 

Sunderha

uf, & 

Upcroft, 

2015) 

2. 

L
e
a
f 

d
is

e
a
s
e
 d

e
te

c
ti
o
n

 

13 different 

types of 

plant 

diseases out 

of healthy 

leaves 

Authors-created 

database 

containing 4,483 

images. 

15 classes: 

Plant diseases 

(13), healthy 

leaves (1) and 

background 

images (1) 

N/A 
CaffeNet 

CNN 
Caffe 

Cropping, 

square around 

the leaves to 

highlight 

region of 

interest, 

resized to 

256×256 pix, 

dupl. image 

removal 

 

Affine 

transform 

(translation, 

rotation), 

perspective 

transform, 

and image 

rotations. 

Same CA 96.30% 

Better results 

than SVM (no 

more details) 

(Sladojevi

c, 

Arsenovic

, Anderla, 

Culibrk, & 

Stefanovi

c, 2016) 
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3. 

P
la

n
t 
d

is
e
a
s
e

 d
e
te

c
ti
o

n
 

 

Identify 14 

crop species 

and 26 

diseases 

PlantVillage public 

dataset of 54,306 

images of 

diseased and 

healthy plant 

leaves collected 

under controlled 

conditions. 

38 class labels 

as crop- 

disease pairs 

N/A 

AlexNet, 
GoogleN
et CNNs 

Caffe 

Resized to 

256×256 pix., 

segmentation, 

background 

Information 

removal, fixed 

color casts 

N/A 

Same. Also 

tested on a 

dataset of 

downloaded 

images 

from Bing 

Image 

Search and 

IPM Images 

F1 0.9935 

Substantial 

margin in 

standard 

benchmarks 

with 

approaches 

using hand-

engineered 

features 

(Mohanty, 

Hughes, 

& 

Salathé, 

2016) 

4. 

Classify 

banana 

leaves’ 
diseases 

Dataset of 3,700 

images of banana 

diseases obtained 

from the 

PlantVillage 

dataset. 

3 classes: 

healthy, 

black sigatoka 

and black 

speckle 

N/A 
LeNet 
CNN 

deeplear

ning4j 

Resized to 

60x60 pix., 

converted to 

grayscale 

N/A Same CA, F1 

96+% 
(CA), 
0.968 
(F1) 

Methods 

using hand-

crafted 

features not 

generalize 

well 

(Amara, 

Bouaziz, 

& 

Algergaw

y, 2017) 

5. 

L
a
n
d

 c
o
v
e
r 

c
la

s
s
if
ic

a
ti
o
n

 

Identify 13 

different 

land-cover 

classes in 

KSC and 9 

different 

classes in 

Pavia 

A mixed 

vegetation site 

over Kennedy 

Space Center 

(KSC), FL, USA 

(Dataset 1), and 

an urban site over 

the city of Pavia, 

Italy (Dataset 2). 

Hyperspectral 

datasets. 

13 different 

land-cover 

classes 

(Dataset 1), 9 

land cover 

classes trees 

(Dataset 2): 

Soil, meadow, 

water, 

shadows, 

different 

materials 

N/A 

Hybrid of 
PCA, 

autoenc
oder 
(AE), 
and 

logistic 
regressi

on 

Develop

ed by 

the 

authors 

Some bands 

removed due 

to noise 

N/A Same CA 98.70% 

1% more 

precise than 

RBF-SVM 

(Chen, 

Lin, Zhao, 

Wang, & 

Gu, 2014) 

6. 

Identify 21 

land-use 

classes 

containing a 

variety of 

spatial 

patterns 

UC Merced land-

use data set. 

Aerial ortho-

imagery with a 

0.3048-m pixel 

resolution. Dataset 

compiled from a 

selection of 100 

images/class. 

21 land-use 

classes: 

Agricultural, 

airplane, 

sports, beach, 

buildings, 

residential, 

forest, freeway, 

harbor, parking 

lot, river etc. 

High relevance 

between 

medium density 

and dense 

residential, as 

well as between 

buildings and 

storage tanks 

Author-
defined 
CNN + 

multiview 
model 

averaging 

Theano 

From RGB to 

HSV (hue-

saturation-

value) color 

model, 

resized to 

96×96 pix., 

creation of 

multiscale 

views 

Views 

flipped 

horizontally 

or vertically 

with a 

probability 

of 0.5 

Same CA 93.48% 

Unsupervised 

feature 

learning 

(UFL): 82-

90%  

SIFT: 85% 

(Luus, 

Salmon, 

van den 

Bergh, & 

Maharaj, 

2015) 
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7. 

Extract 

information 

about 

cultivated 

land 

Images from UAV 

at the areas 

Pengzhou County 

and Guanghan 

County, Sichuan 

Province, China. 

2 classes: 

Cultivated vs. 

non-cultivated 

The cultivated 

land samples 

and part of 

forest land 

samples were 

easily confused 

Author-
defined 
CNN 

N/A 

Orthorectificati

on, image 

matching, 

linear land 

elimination, 

correct 

distortion, 

zoomed to 

40×40 pix. 

N/A Same CA 88-91% N/A 
(Lu, et al., 

2017) 

8. 

Land cover 

classification 

considering 

time series 

First dataset 

generated using a 

time series of 

Pléiades VHSR 

images at THAU 

Basin. Second 

dataset generated 

from an annual 

time series of 23 

Landsat 8 images 

acquired in 2014 

above Reunion 

Island. 

11 classes 

(dataset 1),  

9 classes 

(dataset 2). 

Land cover 

classes such 

as trees, crops, 

forests, water, 

soils, urban 

areas, 

grasslands, 

etc. (Image 

object or pixel) 

Tree Crops, 

Summer crops 

and Truck 

Farming were 

classes highly 

mixed 

One-unit 
LSTM + 

RFF, 
One-unit 
LSTM + 

SVM 

Keras/ 

Theano 

Multiresolution 

segmentation 

technique, 

feature 

extraction, 

pixel-wise 

multi-temporal 

linear 

interpolation, 

various 

radiometric 

indices 

calculated 

N/A Same CA, F1 

First 
Dataset: 
75.34% 
(CA), 
0.7463 
(F1) 
Second 
Dataset: 
84.61% 
(CA), 
0.8441 
(F1) 

RF and SVM 

(best of both): 

First Dataset: 

74.20% (CA), 

0.7158 (F1) 

Second 

Dataset: 

83.82% (CA), 

0.8274 (F1)  

(Ienco, 

Gaetano, 

Dupaquie

r, & 

Maurel, 

2017) 

9. 

C
ro

p
 t
y
p
e
 c

la
s
s
if
ic

a
ti
o
n

 

Classificatio

n of crops 

wheat, 

maize, 

soybeans 

sunflower 

and sugar 

beet 

19 multi-temporal 

scenes acquired 

by Landsat-8 and 

Sentinel-1A RS 

satellites from a 

test site in 

Ukraine. 

11 classes: 

water, forest, 

grassland, 

bare land, 

wheat, maize, 

rapeseed, 

cereals, sugar 

beet, 

sunflowers and 

soybeans. 

General 

confusion 

between maize 

and soybeans 

Author-
defined 
CNN 

Develop

ed by 

the 

authors 

Calibration, 

multi-looking, 

speckle 

filtering (3×3 

window with 

Refined Lee 

algorithm), 

terrain 

correction, 

segmentation, 

restoration of 

missing data 

N/A Same CA 94.60% 

Multilayer 

perceptron: 

92.7%,  

RF: 88% 

(Kussul, 

Lavreniuk

, Skakun, 

& 

Shelestov

, 2017) 
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10. 

Classificatio

n of crops oil 

radish, 

barley, 

seeded 

grass, weed 

and stump 

36 plots at Foulum 

Research Center, 

Denmark 

containing oil 

radish as a catch 

crop and amounts 

of barley, grass, 

weed and stump. 

352 patches in 

total. 

7 classes: oil 

radish, barley, 

weed, stump, 

soil, equipment 

and unknown 

(pixel of the 

image) 

Coarse features 

(radish leafs and 

soil) were 

predicted quite 

well. Finer 

features (barley, 

grass or stump) 

not so much. 

Adapted 
version 

of 
VGG16 

CNN 

Develop

ed by 

the 

authors 

Resized to 

1600x1600 

pix. centered 

on the sample 

areas, division 

into 400x400 

pix. patches 

Rotations 0, 

90, 180 and 

270 

degrees, 

flipped 

diagonally 

and same 

set of 

rotations 

Same CA, IoU  
79% 
(CA), 

0.66 (IoU) 

N/A 

(Mortens

en, 

Dyrmann, 

Karstoft, 

Jørgense

n, & 

Gislum, 

2016) 

11. 

Crop type 

classification 

considering 

time series 

A raster dataset of 

26 SENTINEL 2A 

images, acquired 

between 2015 

2016 at Munich 

Germany. 

Shortwave infrared 

1 and 2 bands 

were selected. 

19 classes: 

corn, meadow, 

asparagus, 

rape, hop, 

summer oats, 

winter spelt, 

fallow, wheat, 

barley, winter 

rye, beans and 

others 

Some classes 

represent 

distinct 

cultivated crops, 

others (such as 

meadow, fallow, 

triticale, wheat, 

and rye) are 

botanically 

related. 

Three-
unit 

LSTM 

TensorFl

ow 

Atmospherical

ly corrected 
N/A Same CA, F1 

76.2% 
(CA), 
0.558  
(F1) 

CNN: 59.9% 

(CA), 0.236 

(F1) 

SVM: 31.7 

(CA), 84.8% 

0.317 (F1) 

(Rußwur

m & 

Körner, 

2017) 

12. 

Crop type 

classification 

from UAV 

imagery 

Aerial images of 

experimental farm 

fields issued from 

a series of 

experiments 

conducted by the 

Swiss 

Confederation’s 
Agroscope 

research center. 

23 classes: 22 

different crops 

plus soil (pixel 

of the image) 

Lin and Simplex 

have very 

similar 

histograms 

CNN + 
HistNN 
(using 
RGB 

histogram
s) 

Keras 
Image 

segmentation 
N/A Same F1 

0.90 
(experime

nt 0), 
0.73 

(experime
nt 1) 

CNN: 0.83 

(experiment 

0), 0.70 

(experiment 1) 

HistNN: 0.86 

(experiment 

0), 0.71 

(experiment 1) 

(Rebetez, 

J., et al., 

2016) 

13.. 

P
la

n
t 
re

c
o

g
n
it
io

n
 

 

Recognize 7 

views of 

different 

plants: entire 

plant, 

branch, 

flower, fruit, 

LifeCLEF 2015 

plant dataset, 

which has 91,759 

images distributed 

in 13,887 plant 

observations. 

Each observation 

captures the 

1,000 classes: 

Species that 

include trees, 

herbs, and 

ferns, among 

others. 

Images of 

flowers and leaf 

scans offer 

higher accuracy 

than the rest of 

the views 

AlexNet 
CNN 

Caffe N/A N/A Same LC 48.60% 

20% worse 

than local 

descriptors to 

represent 

images and 

KNN, dense 

SIFT and a 

Gaussian 

(Reyes, 

Caicedo, 

& 

Camargo, 

2015) 
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leaf, stem 

and scans 

appearance of the 

plant from various 

points of view: 

entire plant, leaf 

branch, fruit, stem 

scan, flower. 

Mixture Model 

14. 

Root and 

shoot feature 

identification 

and 

localisation 

The first dataset 

contains 2,500 

annotated images 

of whole root 

systems. The 

second hand-

annotated 1,664 

images of wheat 

plants, labeling 

leaf tips, leaf 

bases, ear tips, 

and ear bases. 

2 classes: 

Prediction if a 

root tip is 

present or not 

(first dataset)  

5 classes: Leaf 

tips and bases, 

ear tips and 

bases, and 

negative 

(second 

dataset) 

N/A 

Author-
defined 
CNN 

Caffe 

Image 

cropping at 

annotated 

locations 

128x128 pix., 

resized to 

64x64 for use 

in the network 

N/A Same CA 

98.4% 
(first 

dataset)
97.3% 

(second 
dataset) 

Sparse coding 

approach 

using SIFT + 

SVM: 80-90% 

(Pound, 

M. P., et 

al., 2016) 

15. 
Recognize 

44 different 

plant species 

MalayaKew (MK) 

Leaf Dataset 

which consists of 

44 classes, 

collected at the 

Royal Botanic 

Gardens, Kew, 

England. 

44 classes: 

Species such 

as acutissima, 

macranthera, 

rubra,  robur f. 

purpurascens 

etc. 

N/A 
AlexNet 

CNN 
Caffe 

Foreground 

pixels 

extracted 

using HSV 

color space,  

image 

cropping 

within leaf 

area 

Rotation in 

7 different 

orientations 

Same CA 99.60% 
SVM: 95.1%, 

ANN: 58% 

(Lee, 

Chan, 

Wilkin, & 

Remagni

no, 2015) 

16. 

Identify 

plants from 

leaf vein 

patterns of 

white, soya 

and red 

beans 

866 leaf images 

provided by INTA 

Argentina. Dataset 

divided into three 

classes: 422 

images 

correspond to 

soybean leaves, 

272 to red bean 

leaves and 172 to 

white bean leaves. 

3 classes: 

Legume 

species white 

bean, 

red bean and 

soybean 

At soybean, 

informative 

regions are in 

the central vein. 

For white and 

red bean, outer 

and smaller 

veins are also 

relevant. 

Author-
defined 
CNN 

Pylearn2 

Vein 

segmentation, 

central patch 

extraction 

N/A Same CA 96.90% 

Penalized 

Discriminant 

Analysis 

(PDA): 95.1%  

SVM and RF 

slightly worse 

(Grinblat, 

Uzal, 

Larese, & 

Granitto, 

2016) 
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17. 

P
la

n
t 
p

h
e

n
o
lo

g
y
 r

e
c
o
g

n
it
io

n
 

Classify 

phenological 

stages of 

several 

types of 

plants purely 

based on the 

visual data 

Dataset collected 

through TARBIL 

Agro-informatics 

Research Center 

of ITU, for which 

over a thousand 

agrostations are 

placed throughout 

Turkey. Different 

images of various 

plants, at different 

phenological 

stages. 

9 classes: 

Different 

growth stages 

of plants, 

starting from 

plowing to 

cropping, for 

the plants 

wheat, barley, 

lentil, cotton, 

pepper and 

corn. (image 

segment) 

Appearances 

change very 

gradually and it 

is challenging to 

distinguish 

images falling 

into the growing 

durations that 

are in the middle 

of two 

successive 

stages. Some 

plants from 

different classes 

have 

similar color and 

texture 

distributions 

AlexNet 
CNN 

Develop

ed by 

the 

authors 

Image 

segmentation 

Images are 

divided into 

large 

patches and 

features are 

extracted 

for each 

patch. 

227x227 

pix. patches 

are carved 

from the 

original 

images 

Same CA, F1 

73.76 – 
87.14 
(CA), 

0.7417 – 
0.8728 

(F1) 

Hand crafted 

feature 

descriptors 

(GLCM and 

HOG) through 

a Naïve-

Bayes 

classifier: 

68.97 – 82.41 

(CA), 0.6931 

– 0.8226 (F1) 

(Yalcin, 

2017 ) 

18. 

Classify the 

phenotyping 

of 

Arabidopsis 

in four 

accessions 

Dataset composed 

of sequences of 

images captured 

from the plants in 

different days 

while they grow, 

successive top-

view images of 

different 

accessions of 

Arabidopsis 

thaliana. 

4 classes: 4 

different 

accessions of 

Arabidopsis: 

Genotype 

states SF-2, 

CVI, Landsberg 

(Ler) and 

Columbia (Col) 

Plants change in 

size rapidly 

during their 

growth, the 

decomposed 

images from the 

plant sequences 

are not 

sufficiently 

consistent 

CNN+ 
LSTM 

Keras/ 

Theano 

Camera 

distortion 

removal, color 

correction, 

temporal 

matching, 

plant 

segmentation 

through the 

GrabCut 

algorithm 

Image 

rotations by 

90, 180 and 

270 

degrees 

around its 

center 

Same CA 93% 

Hand crafted 

feature 

descriptors + 

LSTM: 68% 

CNN: 76.8% 

(Namin, 

Esmaeilz

adeh, 

Najafi, 

Brown, & 

Borevitz, 

2017) 

19. 

S
e
g

m
e
n

ta
ti
o
n
 

o
f 
ro

o
t 

a
n
d

 s
o
il 

Identify roots 

from soils 

Soil images 

coming from X-ray 

tomography. 

2 classes: Root 

or soil (pixel of 

the image) 

Soil/root 

contrast is 

sometimes very 

low 

Author-
defined 
CNN 
with 

SVM for 
classific

ation 

MatCon

vNet 

Image 

segmentation 

Simulated 

roots added 

to soil 

images 

Same QM 

0.23 
(simulati

on)  
0.57 
(real 
roots) 

N/A 

(Douarre, 

Schielein, 

Frindel, 

Gerth, & 

Roussea

u, 2016) 
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20. 

C
ro

p
 y

ie
ld

 e
s
ti
m

a
ti
o
n

 

Estimate 

corn yield of 

county level 

in U.S. 

Corn yields from 

2001 to 2010 in 

Illinois U.S., 

downloaded from 

Climate Research 

Unit (CRU), plus 

MODIS Enhanced 

Vegetation Index. 

Crop yield 

index (scalar 

value) 

N/A 

Author-
defined 
CNN 

Caffe 

Enhanced 

Vegetation 

Index (EVI), 

hard threshold 

algorithm, 

Wavelet 

transformation 

for detecting 

crop 

phenology 

N/A Same RMSE  6.298 

Support 

Vector 

Regression 

(SVR): 8.204 

(Kuwata 

& 

Shibasaki

, 2015) 

21. 

Mapping 

winter 

vegetation 

quality 

coverage 

considering 

time series 

Sentinel-1 dataset 

including 13 

acquisitions in 

TOPS mode from 

October 2016 to 

February 2017, 

with a temporal 

baseline of 12 

days. Dual-

polarization 

(VV+VH) data in 

26 images. 

5 classes: 

Estimations of 

the quality of 

vegetative 

development 

as bare soil, 

very low, low, 

average, high 

“Low” class 

intersects the 

temporal profiles 

of all the other 

classes multiple 

times. A 

misclassification 

rate exists 

between the 

“low” and “bare 

soil” classes 

Five-unit 
LSTM, 
Gated 

Recurre
nt Unit 
(GRU) 

Keras/ 

Theano 

Intensity 

image gen., 

radiometrical 

calibration, 

temporal 

filtering for 

noise 

reduction, 

orthorectificati

on into map 

coordinates, 

transformed to 

logarithm 

scale, 

normalized 

N/A Same CA, F1 
99.05% 
(CA), 

0.99 (F1) 

RF and SVM 

(best of both): 

91.77% (CA), 

0.9179 (F1) 

(Minh, et 

al., 2017) 

22. 

F
ru

it
 c

o
u

n
ti
n
g

 

Predict 

number of 

tomatoes in 

the images 

24,000 synthetic 

images produced 

by the authors. 

Estimated 

number of 

tomato fruits 

(scalar value) 

N/A 

Modified 
Inceptio

n-
ResNet 

CNN 

TensorFl

ow 

Blurred 

synthetic 

images by a 

Gaussian filter 

Generated 

synthetic 

128x128 

pix. images 

to train the 

network, 

colored 

circles to 

simulate 

background 

and tomato 

plant/crops. 

 

Trained 

entirely on 

synthetic 

data and 

tested on 

real data 

RFC, 

RMSE 

91% 
(RFC) 
1.16 

(RMSE) 
on real 
images, 

93% 
(RFC)  
2.52 

(RMSE) 
on 

synthetic 
images  

 ABT: 66.16% 

(RFC), 13.56 

(RMSE) 

(Rahnem

oonfar & 

Sheppard

, 2017) 
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23. 

Map from 

input images 

of apples 

and oranges 

to total fruit 

counts 

71 1280×960 

orange images 

(day time) and 21 

1920×1200 apple 

images (night 

time). 

Number of 

orange or 

apple fruits 

(scalar value) 

High variation in 

CA. For orange, 

dataset has high 

occlusion, depth 

variation, and 

uncontrolled 

illumination. For 

apples, data set 

has high color 

similarity 

between 

fruit/foliage 

CNN 
(blob 

detection 
and 

counting) 
+ Linear 

Regressi
on 

Caffe 

Image 

segmentation 

for easier data 

annotation by 

users, 

creation of 

bounding 

boxes around 

image blobs 

Training set 

partitioned 

into 100 

randomly 

cropped 

and flipped 

320×240 

pix. sub-

images 

Same (but 

different 

trees used 

in training 

and testing) 

RFC, 

L2 

 
0.968 
(RFC), 

13.8 (L2) 
for 

oranges 
0.913 
(RFC), 

10.5 (L2) 
for apples  

Best texture-

based 

regression 

model: 0.682 

(RFC) 

(Chen, et 

al., 2017) 

24. 

Fruit 

detection 

in orchards, 

including 

mangoes, 

almonds and 

apples 

Images of three 

fruit varieties: 

apples (726), 

almonds (385) and 

mangoes (1,154), 

captured at 

orchards in 

Victoria and 

Queensland, 

Australia. 

Sections of 

apples, 

almonds and 

mangoes at the 

image 

(bounding box) 

Within class 

variations due to 

distance to fruit 

illumination, fruit 

clustering, and 

camera view-

point. Almonds  

similar in color 

and texture to 

the foliage 

Faster 
Region-
based 
CNN 
with 

VGG16 
model 

Caffe 

Image 

segmentation 

for easier data 

annotation 

Flip, scale, 

flip-scale 

and the 

PCA 

augmentati

on 

technique 

presented 

in AlexNet 

Same 
F1-IoU 

(20) 

0.904 
(apples) 

0.908  
(mango) 

0.775 
(almonds)  

ZF network: 

0.892  

(apples) 

0.876  

(mango) 

0.726  

(almonds) 

(Bargoti & 

Underwo

od, 2016) 

25. 

Detection of 

sweet 

pepper and 

rock melon 

fruits 

122 images 

obtained from two 

modalities: color 

(RGB) and Near-

Infrared (NIR). 

Sections of 

sweet red 

peppers and 

rock melons on 

the image 

(bounding box) 

Variations to 

camera setup, 

time and 

locations of data 

acquisition. 

Time for data 

collection is day 

and night, sites 

are different. 

Varied fruit 

ripeness. 

Faster 
Region-
based 
CNN 
with 

VGG16 
model 

Caffe 

Early/late 

fusion 

techniques for 

combining the 

classification 

info from color 

and NIR 

imagery, 

bounding box 

segmentation, 

pairwise IoU 

N/A 

Same 

(authors 

demonstrat

e by using a 

small 

dataset that 

the model 

can 

generalize) 

F1-IoU 

(40) 
0.838 

Conditional 

Random Field 

to model color 

and visual 

texture 

features: 

0.807 

(Sa, et 

al., 2016) 

26. 

O
b
s
ta

c
le

 

d
e
te

c
ti
o
n

 Identify ISO 

barrel-

shaped 

obstacles in 

437 images from 

authors' 

experiments and 

recordings, 1,925 

positive and 

Identify if a 

barrel-shaped 

object is 

present in the 

image 

N/A 
AlexNet 

CNN 
Caffe 

Resized to 

114×114 pix., 

bounding 

boxes of the 

object created 

Various 

rotations at 

13 scales, 

intensity of 

the object 

Testing in 

different 

fields (row 

crops, grass 

mowing), 

CA-IoU 

(50) 

99.9% in 
row 
crops 
and 
90.8% in 

N/A 

(Steen, 

Christians

en, 

Karstoft, 

& 
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row crops 

and grass 

mowing 

11,550 negative 

samples. 

(bounding box) adapted containing 

other 

obstacles 

(people and 

animals) 

grass 
mowing 

Jørgense

n, 2016) 

27. 

Detect 

obstacles 

that are 

distant, 

heavily 

occluded 

and 

unknown 

Background data 

of 48 images and 

test data of 48 

images from 

annotations of 

humans, houses, 

barrels, wells and 

mannequins. 

Classify each 

pixel as either 

foreground 

(contains a 

human) or 

background 

(anomaly 

detection) 

N/A 

AlexNet 
and 
VGG 
CNNs 

Caffe 

Image 

cropping, 

resized by a 

factor of 0.75 

N/A Same 
F1-IoU 

(50) 
0.72 

Local de-

correlated 

channel 

features: 

0.113 

(Christian

sen, 

Nielsen, 

Steen, 

Jørgense

n, & 

Karstoft, 

2016) 

28. 

Id
e
n
ti
fi
c
a
ti
o
n
 o

f 
w

e
e
d
s
 

Classify 91 

weed seed 

types 

Dataset of 3,980 

images containing 

91 types of weed 

seeds. 

91 classes: 

Different 

common 

weeds found in 

agricultural 

fields 

Similarity 

between some 

classes is very 

high (only slight 

differences in 

shape, texture, 

and color) 

PCANet 
+ LMC 

classifier
s 

Develop

ed by 

the 

authors 

Image filter 

extraction 

through PCA 

filters bank, 

binarization 

and 

histograms’ 
counting 

N/A 

Same (also 

scaling for a 

certain 

range 

translation 

distance 

and rotation 

angle 

CA 90.96% 

Manual 

feature 

extraction 

techniques + 

LMC 

classifiers: 

64.80% 

(Xinshao 

& Cheng, 

2015) 

29. 

Classify 

weed from 

crop species 

based on 22 

different 

species in 

total. 

Dataset of 10,413 

images, taken 

mainly from BBCH 

12-16 containing 

22 weed and crop 

species at early 

growth stages. 

22 classes: 

Different 

species of 

weeds and 

crops at early 

growth stages 

e.g. 

chamomile, 

knotweed, 

cranesbill, 

chickweed and 

veronica 

Variations with 

respect to 

lighting, 

resolution, and 

soil type. Some 

species 

(Veronica, Field 

Pancy) were 

very similar and 

difficult to 

classify 

Variation 
of 

VGG16 

Theano-

based 

Lasagne 

library 

for 

Python 

Green 

segmentation 

to detect 

green pixels, 

non-green 

pixels 

removal, 

padding 

added to 

make images 

square, 

resized to 

128x128 pix. 

Image 

mirroring 

and rotation 

in 90 

degree 

increments 

Same CA 86.2% 

Local shape 

and color 

features: 

42.5% and 

12.2% 

respectively 

(Dyrmann

, Karstoft, 

& Midtiby, 

2016 ) 

30. 
Identify 

thistle in 

4,500 images from 

10, 20, 30, and 

50m of altitude 

2 classes: 

Whether the 

image contains 

Small variations 

in some images 

depending on 

DenseN
et CNN 

Caffe 
Image 

cropping 

Random flip 

both 

horizontally 

Same (extra 

tests for the 

case of 

CA 97% 

Color feature-

based Thistle-

Tool: 95% 

(Sørense

n, 

Rasmuss
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winter wheat 

and spring 

barley 

images 

captured by a 

Canon PowerShot 

G15 camera. 

thistle in winter 

wheat or not  

(Heatmap of 

classes is 

generated at 

the output) 

the percentage 

of thistles they 

contain 

and 

vertically, 

random 

transposing 

winter 

barley) 

en, 

Nielsen, 

& 

Jørgense

n, 2017) 

31. 

Weed 

segmentatio

n for robotic 

platforms 

Crop/Weed Field 

Image Dataset 

(CW-FID), consists 

of 20 training and 

40 testing images. 

A dataset of 60 

top-down field 

images of a 

common culture 

(organic carrots) 

with the presence 

of intra-row and 

close-to-crop 

weeds. 

2 classes: 

carrot plants 

and weeds 

(image region) 

N/A 

Adapted 
version of 
Inception-

v3 + 
lightweigh
t DCNN + 
set of K 

lightweigh
t models 

as a 
mixture 
model 

(MixDCN
N) 

TensorFl

ow 

Image up-

sampling to 

299x299 pix., 

NDVI-based 

vegetation 

masks, 

extracting 

regions based 

on a sliding 

window on the 

color image 

N/A 

Same 

(different 

carrot fields 

used for 

testing) 

CA 93.90% 

Feature 

extraction 

(shape and 

statistical 

features) and 

RF classifier: 

85.9% 

(McCool, 

Perez, & 

Upcroft, 

2017) 

32. 

Automating 

weed 

detection in 

color images 

despite 

heavy leaf 

occlusion 

1,427 images from 

winter wheat 

fields, of which 

18,541 weeds 

have been 

annotated, 

collected using a 

camera mounted 

on an all-terrain 

vehicle. 

Detect single 

weed instances 

in images of 

cereal fields 

(bounding box). 

A coverage 

map is 

produced. 

 

Large parts of 

the weeds 

overlap with 

wheat plants 

Based on 
DetectNet 

CNN 
(which is 
based on 
GoogLeN
et CNN) 

Develop

ed by 

the 

authors 

Resized to 

1224×1024 

pix. 

N/A 

Different 

field used 

for testing. 

This field 

has a 

severe 

degree of 

occlusion 

compared 

to the 

others 

IoU 

P- IoU 

(50)  

R-IoU 

(50) 

0.64  
(IoU), 
86.6%  

(P- IoU), 
46.3% 
(R-IoU)  

N/A 

(Dyrmann

, 

Jørgense

n, & 

Midtiby, 

2017) 
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33. 

C
ro

p
/w

e
e
d
 d

e
te

c
ti
o
n

 a
n

d
 c

la
s
s
if
ic

a
ti
o
n

 

Detecting 

sugar beet 

plants and 

weeds in the 

field based 

on image 

data 

1,969 RGB+NIR 

images captured 

using a JAI 

camera in nadir 

view placed on a 

UAV. 

Identify if an 

image patch 

belongs to 

weed or sugar 

beet (image 

region) 

N/A 
Author-
defined 
CNN 

TensorFl

ow 

Separated 

vegetation/ 

background 

based on 

NDVI, binary 

mask to 

describe 

vegetation, 

blob 

segmentation, 

resized to 

64x64 pix., 

normalized 

and centered 

64 even 

rotations 

Same (also 

generalized 

to a second 

dataset 

produced 2-

weeks after, 

at a more 

advanced 

growth 

stage) 

P, R 

Dataset 
A: 97% 

(P), 98% 
(R) 

Dataset 
B: 99% 

(P), 89% 
(R) 

N/A 

(Milioto, 

Lottes, & 

Stachniss

, 2017) 

34. 

Detecting 

and 

classifying 

sugar beet 

plants and 

weeds 

1,600 4-channels 

RGB+NIR images 

captured before 

(700 images) and 

after (900 images) 

a 4-week period, 

provided by a 

multispectral JAI 

camera mounted 

on a BOSCH 

Bonirob farm 

robot. 

Identifies if a 

blob belongs to 

sugar beet 

crop, weeds or 

soil (image 

blob) 

N/A 
Author-
defined 
CNN 

TensorFl

ow 

Pixel-wise 

segmentation 

between 

green 

vegetation 

and soil based 

on NDVI and 

light CNN, 

unsupervised 

dataset 

summariz. 

N/A 

Same (also 

generalized 

to a second 

dataset 

produced 4-

weeks after, 

at a more 

advanced 

growth 

stage) 

CA 

98% 
(Dataset 

A), 
59.4% 

(Dataset 
B) 

Feature 

extraction 

(shape and 

statistical 

features) and 

RF classifier: 

95% 

(Potena, 

Nardi, & 

Pretto, 

2016) 
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35. 

Detecting 

and 

classifying 

weeds and 

maize in 

fields 

Simulated top-

down images of 

overlapping plants 

on soil background 

A total of 301 

images of soil and 

8,430 images of 

segmented plants. 

The plants cover 

23 different weed 

species and 

maize.  

Identifies if an 

image patch 

belongs to 

weed, soil or 

maize crop 

(image pixel) 

N/A 

Adapted 
version 

of 
VGG16 

CNN 

Develop

ed by 

the 

authors 

Image 

cropping in 

800x800 pix. 

Random 

scaling from 

80 to 100% 

of original 

size, 

random 

rotations in 

one degree 

increments, 

varied hue, 

saturation 

and 

intensity, 

random 

shadows 

Tested on 

real images 

while 

trained on 

simulated 

ones 

CA, 

IoU 

94% CA, 
0.71 IoU 
(crops), 
0.70 IoU 
(weeds) 
0.93 IoU 

(soil) 

N/A 

(Dyrmann

, 

Mortense

n, 

Midtiby, & 

Jørgense

n, 2016) 

36. 

P
re

d
ic

ti
o

n
 o

f 
s
o

il 
m

o
is

tu
re

 c
o
n
te

n
t 

Predict the 

soil moisture 

content over 

an irrigated 

corn field 

Soil data collected 

from an irrigated 

corn field (an area 

of 22 sq. km) in 

the Zhangye oasis, 

Northwest China. 

Percentage of 

soil moisture 

content (SMC) 

(scalar value) 

N/A 

Deep 
belief 

network-
based 

macrosc
opic 

cellular 
automat
a (DBN-
MCA) 

Develop

ed by 

the 

authors 

Geospatial 

interpolation 

for creation of 

soil moisture 

content maps, 

multivariate 

geostatistical 

approach for 

estimating 

thematic soil 

maps, maps 

converted to 

TIFF, 

resampled to 

10-m res. 

N/A Same RMSE 6.77 

Multi-layer 

perceptron 

MCA (MLP-

MCA): 18% 

reduction in 

RMSE 

(Song, et 

al., 2016) 
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37. 

A
n
im

a
l 
re

s
e
a
rc

h
 

Practical and 

accurate 

cattle 

identification 

from 5 

different 

races 

1,300 images 

collected by the 

authors. 

5 classes: 

Cattle races, 

Bali 

Onggole or 

Pasuruan, 

Aceh 

Madura and 

Pesisir 

N/A 
 GLCM – 

CNN 

Deep 

Learning 

Matlab 

Toolbox 

GLCM 

features 

extraction 

(contrast, 

energy and 

homogeneity), 

saliency maps 

to accelerate 

feature 

extraction 

N/A Same CA 93.76% 

CNN without 

extra inputs: 

89.68% 

Gaussian 

Mixture 

Model 

(GMM): 90% 

(Santoni, 

Sensuse, 

Arymurth

y, & 

Fanany, 

2015) 

38. 

Predict 

growth of 

pigs 

160 pigs, housed 

in two climate 

controlled rooms, 

four pens/room, 10 

pigs/pen. 

Ammonia, ambient 

and indoor air 

temperature and 

humidity, feed 

dosage and 

ventilation 

measured at 6-

minute intervals. 

Estimation of 

the weight of 

pigs (scalar 

value) 

N/A 
First-
order 
DRNN 

Develop

ed by 

the 

authors 

N/A N/A 

Tested on 

different 

rooms of 

pigs than 

the ones 

which were 

used for 

training 

MSE, 

MRE 

0.002 

(MSE) on 

same 

dataset), 

10% 

(MRE) in 

relation to 

a 

controller 

N/A 

(Demmer

s T. G., 

Cao, 

Parsons, 

Gauss, & 

Wathes, 

2012) 

39. 

Control of 

the growth of 

broiler 

chickens 

Collecting data 

from 8 rooms, 

each room 

housing 262 

broilers, 

measuring bird 

weight, feed 

amount, light 

intensity and 

relative humidity. 

Estimation of 

the weight of 

chicken (scalar 

value) 

N/A 
First-
order 
DRNN 

Develop

ed by 

the 

authors 

N/A N/A 

Tested on 

different 

rooms of 

chicken 

than the 

ones which 

were used 

for training 

MSE, 

MRE 

0.02 

(MSE), 

1.8% 

(MRE)  in 

relation to 

a 

controller 

N/A 

(Demmer

s T. G., et 

al., 2010) 
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40. 

W
e
a

th
e
r 

p
re

d
ic

ti
o
n

 Predict 

weather 

based on 

previous 

year’s 
conditions 

Syngenta Crop 

Challenge 2016 

dataset, containing 

6,490 sub-regions 

with three weather 

condition attributes 

from the years 

2000 to 2015. 

Predicted 

values of 

temperature, 

precipitation 

and solar 

radiation 

(scalar value) 

N/A LSTM Keras N/A N/A Same 

N-

RMSE, 

MRE 

78% 

(Temperat

ure), 73% 

(Precipitati

on), 2.8% 

(Solar 

Radiation) 

N-RMSE, 

1-3% 

MRE in all  

categories 

N/A 

(Sehgal, 

et al., 

2017) 

 1 

  2 
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Appendix III: Publicly-available datasets related to agriculture. 

No. Organization/Dataset Description of dataset Source 

1. Image-Net Dataset Images of various plants (trees, vegetables, flowers) http://image-net.org/explore?wnid=n07707451  

2. 
ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 
Images that allow object localization and detection 

http://image-net.org/challenges/LSVRC/2017/#det  

3. 
University of Arcansas, Plants 

Dataset 
Herbicide injury image database 

https://plants.uaex.edu/herbicide/  

http://www.uaex.edu/yard-garden/resource-library/diseases/  

4. EPFL, Plant Village Dataset Images of various crops and their diseases https://www.plantvillage.org/en/crops  

5. Leafsnap Dataset 
Leaves from 185 tree species from the Northeastern 

United States. 

http://leafsnap.com/dataset/  

6. LifeCLEF Dataset Identity, geographic distribution and uses of plants http://www.imageclef.org/2014/lifeclef/plant  

7. 
PASCAL Visual Object Classes 

Dataset 

Images of various animals (birds, cats, cows, dogs, 

horses, sheep etc.) 

http://host.robots.ox.ac.uk/pascal/VOC/  

8. 
Africa Soil Information Service 

(AFSIS) dataset 
Continent-wide digital soil maps for sub-Saharan Africa 

http://africasoils.net/services/data/  

9. UC Merced Land Use Dataset A 21 class land use image dataset http://vision.ucmerced.edu/datasets/landuse.html  

10. MalayaKew Dataset Scan-like images of leaves from 44 species classes. 
http://web.fsktm.um.edu.my/~cschan/downloads_MKLeaf_d

ataset.html  

11. Crop/Weed Field Image Dataset 
Field images, vegetation segmentation masks and 

crop/weed plant type annotations. 

https://github.com/cwfid/dataset  

https://pdfs.semanticscholar.org/58a0/9b1351ddb447e6abd

ede7233a4794d538155.pdf  

12. 
University of Bonn 

Photogrammetry, IGG 

Sugar beets dataset for plant classification as well as 

localization and mapping. 

http://www.ipb.uni-bonn.de/data/  

13. Flavia leaf dataset Leaf images of 32 plants. http://flavia.sourceforge.net/  

14. Syngenta Crop Challenge 2017 

2,267 of corn hybrids in 2,122 of locations between 

2008 and 2016, together with weather and soil 

conditions 

https://www.ideaconnection.com/syngenta-crop-

challenge/challenge.php  
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