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ABSTRACT 19 

Pesticides help to control weeds, pests, and diseases contributing, therefore, to food 20 
availability. However, pesticide fractions not reaching the intended target may have adverse 21 
effects on the environment and the field ecosystems. Modeling pesticide emissions and the 22 
link with characterizing associated impacts is currently one of the main challenges in Life 23 
Cycle Assessment (LCA) of agricultural systems. To address this challenge, this study takes 24 
advantage of the latest recommendations for pesticide emission inventory and impact 25 
assessment and frames a suitable interface for those LCA stages and the related mass 26 
distribution of pesticide avoiding a temporal overlapping. Here, freshwater ecotoxicity 27 
impacts of the production of feed crops (maize, grass, winter wheat, spring barley, rapeseed, 28 
and peas) in Denmark were evaluated during a 3-year period, testing the effects of inventory 29 
modeling and the recent updates of the characterization method (USEtox). Potential 30 
freshwater ecotoxicity impacts were calculated in two functional units reflecting crop impact 31 
profiles per ha and extent of cultivation, respectively. Ecotoxicity impacts decreased over the 32 
period, mainly because of the reduction of insecticides use (e.g., cypermethrin). Three 33 
different emission modeling scenarios were tested; they differ on the underlining assumptions 34 
and data requirements. The main aspects influencing impact results are the interface between 35 
inventory estimates and impact assessment, and the consideration of intermedia processes, 36 
such as crop growth development and pesticide application method. Impact scores for AS2 37 
were higher than RS and AS1, but the differences in the crops ranking was less apparent. On 38 
the other hand, the influence on the estimation of impacts for individual AIs was considerable 39 
and statistical differences were found in the impact results modeled in scenarios RS and AS2. 40 
Thereby indicating the effect of inventory models on ecotoxicity impact assessment. 41 
 42 
Keywords: Pesticide emission factors, inventory modeling, ecotoxicity characterization, life 43 
cycle impact assessment (LCIA), feed crops, agriculture.*1

 44 

                                                 
1 Abbreviations 
AI: Active ingredient 
AS: Alternative scenario 
CF: Characterization factors 
DK: Denmark 
EF: Effect factor 
FF: Fate factor 
Fun: Fungicides 
GAP: Good agricultural practices  
Gly_agri: Total agricultural use of glyphosate 
Hrb: Herbicides 
Ins: Insecticides  
IS: Impact scores 
LAI: Leaf area index 
NAP: National Action Plans 
Pgr: Plant growth regulators 
RS: Reference scenario 
XF: Exposure factor 
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1 INTRODUCTION 45 

With the increased global demand for agricultural products for food, fiber and bioenergy, and 46 

the interrelated concerns on the environmental impact hereof, there is a need to have efficient 47 

tools to evaluate the environmental performance profiles of agricultural production, to 48 

facilitate a move towards more sustainable production systems. Life Cycle Assessment (LCA) 49 

is widely applied to quantify the potential impacts of products and systems along with their 50 

entire life cycles. One of the main challenges in assessing the environmental performance of 51 

agricultural systems in LCA is modeling emissions from pesticide use and the subsequent 52 

coupling with the impact characterization model (van Zelm et al., 2014). Over the past years, 53 

a significant number of LCA studies on agricultural systems were conducted (Gasol et al., 54 

2012; Milà et al., 2006; Noya et al., 2017; Torrellas et al., 2012).  However, ecotoxicity 55 

impacts as currently modeled may lead to inconsistent results and wrong conclusions in few 56 

cases (e.g., comparing conventional vs organic farming), mostly due to the lack of agreement 57 

and precise definitions on the modeling framework for this impact category (Fantke et al., 58 

2018; Meier et al., 2015; Müller et al., 2017; Notarnicola et al., 2017; Saouter et al., 2017a, 59 

2017b).  60 

The development of the life cycle inventory (LCI) analysis and subsequent life cycle impact 61 

assessment (LCIA) (e.g., pesticide emission quantification and related characterization of 62 

ecotoxicity impacts) are the core phases of an LCA study. The robustness and reliability of 63 

the LCA results depend mainly on the quality and representativeness of the LCI and LCIA 64 

data and models selected. Different modeling options, hence, will affect the impact profiles of 65 

a study, and this is especially relevant for agricultural systems (Anton et al., 2014).  66 

Quantifying the chemical emissions to the environment in the LCI phase is typically based on 67 

generic assumptions, often based on standard emission factors (e.g., expressed in percentages 68 

of applied mass) or dynamic models based on specific application scenarios that describe the 69 

emission distribution of organic pesticides. The consensus effort on the delimitation between 70 
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pesticide emission inventory and impact assessment for LCA already provides guidelines on 71 

what should be quantified in those LCA steps but explicitly exclude how to do it avoiding 72 

recommendations on specific models (Rosenbaum et al., 2015). The implications of choosing 73 

different emission models in the LCA of crop production have been discussed for some 74 

agricultural systems (Goglio et al., 2018; Schmidt Rivera et al., 2017; van Zelm et al., 2014). 75 

However, no studies are addressing the influence of the pesticide emission modeling 76 

approach, nor the evaluation of recent developments in impact assessment methods to 77 

determine pesticide ecotoxicity impacts in different crop production systems. 78 

Thus, there is a need to test different choices on how to quantify pesticide emission fractions 79 

(i.e., different modeling approaches) and the recent developments on the recommended 80 

method for freshwater ecotoxicity characterization in the production of feed crops. 81 

The purpose of the present study is to contribute to the evaluation of the ecotoxicological 82 

burden on freshwater ecosystems from pesticide use in crop production using the pesticide 83 

use in Denmark (DK) as a case study. It is focused on assessing the influence of pesticides on 84 

the environmental impact profiles of the cultivation of feed crops during the period 2013-85 

2015, testing the effects of modeling choices in the inventory analysis as well as in the impact 86 

characterization.  87 

2 MATERIALS AND METHODS 88 

This study followed the LCA methodology to evaluate the potential ecotoxicity impacts on 89 

freshwater ecosystems from pesticide use in DK’s crop production. This bottom-up analysis 90 

focuses on the evaluation and influence of pesticide application on the environmental impact 91 

profiles of maize, winter wheat, grass, spring barley, rapeseed, and peas during the period 92 

2013-2015.  93 

2.1 Definition of ecotoxicity impact scores 94 

The quantification of ecotoxicity impact scores for freshwater ecosystems includes i) Detailed 95 

LCI reporting on the pesticide active ingredient (AI); application methods, time and mass, 96 
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location, agricultural practices and crop stage development; ii) quantified AI emission 97 

fractions for both on-field and off-field; and iii) measures to avoid double counting of 98 

multimedia transfers considered in the quantification of emission fractions and the impact 99 

assessment fate modeling (Rosenbaum et al., 2015). Accordingly, the freshwater ecotoxicity 100 

impact scores (IS) can be described as: 101 

�� = ∑ (���,
 ∙ ��,
)�,
          (1) 102 

Where CFi,x is the characterization factor for freshwater ecotoxicity [PAF m3 d kg�������
�� ], 103 

and mi,x is the mass of AI x emitted to compartment i per area treated [kg�������	ha-1]. 104 

Potential freshwater ecotoxicity impacts (IScrop_ha) [PAF m3 d ha-1] were determined in 105 

relation to 1 hectare [ha] of crop in a given year t within 2013 and 2015. Additionally, 106 

freshwater ecotoxicity impact profiles at country or regional level (IScrop) [PAF m3 d crop-1] 107 

from pesticide use were derived from the product of crop impact scores and the total crop area 108 

in a given year in DK.  109 

The interface between LCI and LCIA and related mass distribution for pesticide application in 110 

crop production are presented in Figure 1. This approach follows the proposed framework for 111 

pesticide inventory and impact assessment (Rosenbaum et al., 2015; van Zelm et al., 2014). 112 

 113 

Figure 1 Interface between LCI and LCIA for pesticide application in crop production 114 
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This interface considers the boundaries between the emission inventory and impact 115 

assessment, setting also spatial and time dimensions, to quantify the AI emission fractions (in 116 

air, freshwater, and soil) and characterize ecotoxicity impacts, avoiding any overlap or double 117 

counting of the chemical fate process. Furthermore, the emission flows, both on and off the 118 

field, are clearly indicated and their link to the characterization factors for the impact pathway 119 

(i.e., freshwater ecotoxicity). 120 

2.2 Pesticide emission inventory 121 

Pesticide application practices in DK for the selected crops were determined. Concrete AI was 122 

used throughout the study, meaning, that the chemical that is the biologically active part of 123 

any pesticide was assessed (European Commission, 2017). The mass applied per AI was 124 

derived from the annual statistical report on pesticide use by crop in DK for 2013 (Ørum and 125 

Samsøe-Petersen, 2014), 2014 (Ørum and Hossy, 2015) and 2015 (Ørum and Holtze, 2017). 126 

We addressed nearly 60 different AIs from four distinct target classes, herbicides (Hrb), plant 127 

growth regulators (Pgr), fungicides (Fun), and insecticides (Ins). Additionally, glyphosate 128 

(CAS-RN107-83-6) use is not allocated to any specific crop cultivation, and it was assessed 129 

as the total agricultural use of the AI per 1 hectare [ha] in a given year, hereafter identified as 130 

(Gly_agri). All AI identification (CAS registry numbers-RN and names), and classes are 131 

reported in Supporting Information (SI), Table S1. 132 

2.3 Pesticide emission quantification 133 

Crops are treated by foliar spray application (typically boom sprayers), and the reported DK 134 

statistics on pesticide treatments were used as a proxy for agricultural practices. The 135 

agricultural field is considered as part of the ecosphere. The total emission fraction of an AI 136 

[kg kg-1] is quantified as the sum of the fractions initially emitted to the different 137 

environmental compartments:  138 

��� = ���

����
= ���_ �! + ���_#$ + ���_%&�'. )!� + ���_%&�'.&*+�! + ���_,!&-  (2) 139 
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Where fem is the fraction of the applied mass of pesticide that becomes an emission to the 140 

environment, mem the mass emitted, mapp the mass of pesticide applied, fem_air the fraction of 141 

applied mass that is emitted to air, fem_fw the fraction of applied mass that is emitted to 142 

freshwater, fem_soil.agri the fraction of applied mass that is emitted to on-field soil, fem_soil.other the 143 

emission fraction reaching off-field soil and other surfaces, and fem_crop is the fraction reaching 144 

crop surfaces. These pesticide emissions were modeled in two sequential steps, initial 145 

distribution (primary processes) and secondary emission transfers. 146 

Primary distribution 147 

The primary distribution processes between compartments occur during the initial minutes 148 

after pesticide application. These primary processes are emission by wind drift (fd_lost), 149 

pesticide deposition and the fraction intercepted by the crop or weed (further details are 150 

presented in SI, Table S2). Since the fractions from initial distribution to environmental media 151 

should sum up to 100% of the applied mass, considering losses via degradation during the 152 

initial minutes negligible, the aggregated emission fractions will be equal to one (Fantke et 153 

al., 2011a; Juraske et al., 2007). Consequently, the crop/weed interception fraction (fint_crop) of 154 

an AI directly after the application will be given by: 155 

��.�_/012 = 1 − 5�6_'&%* + �6�-_%&�'. )!�7         (3) 156 

The fraction lost by wind drift fd_lost [kg kg-1], depends on the application method, i.e., the 157 

spray equipment and elevation, and wind speed. Based on models for conventional spray 158 

equipment on field crops and deposition curve parameters assuming good agricultural 159 

practices (GAP), the fd_lost was fixed to a value of 0.1 (Gil et al., 2014; Gil and Sinfort, 2005; 160 

Gyldenkrne et al., 1999; van de Zande et al., 2007). The soil deposition fdep_soil.agri [kg kg-1], 161 

depends on crop-specific leaf area index (LAI), thereby affecting fractions reaching soil 162 

surfaces of the treated field area (Fantke et al., 2011b). With an exponential model 163 

(Gyldenkærne et al., 2000; Juraske et al., 2007), based on crop growth stage and capture 164 

efficacy, the fraction reaching the soil surface is described as: 165 
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�6�-_%&�'. )!� = 8�9�×;<=           (4) 166 

Where kp is the capture coefficient [-] and set to 0.55 for pesticide spray solutions prepared 167 

with adjuvants (Gyldenkrne et al., 1999). Pesticide target class and specific application time 168 

were used to define crop-specific growth stages in the selected crops. The LAI was derived 169 

for plant growth regulators, insecticides and fungicides distinctly as a value dependent on the 170 

target class/crop growth stage/application time combination, (Fantke et al., 2011b; Itoiz et al., 171 

2012; Olesen and Jensen, 2013); for herbicide application on weeds the corresponding LAI of 172 

0.5 is used. This value is based on the reported leaf cover factor for fallow lands (Panagos et 173 

al., 2015). 174 

Secondary distribution 175 

The subsequent secondary emission transfers include re-volatilization after deposition and 176 

off-field emissions allocation. The volatilization from fractions deposited in the different 177 

compartments is derived from the default Tier 1 emission factors per AI from their vapor 178 

pressures (Webb et al., 2016) see Table S1 and S3 in SI. The emission factor emF was 179 

calculated for each AI (see, SI Table S1), the inter-media transfer and the final emission 180 

factors are presented in SI, SI-1, and SI-2. Finally, the water to soil area ratio for DK (0.016) 181 

was used to allocate the off-field emissions (i.e., drift fraction deposited in off-field surfaces) 182 

see SI, Table S2. This value is based on reported data of the Danish ministry of environment 183 

(Stockmarr and Thomsen, 2009). 184 

2.4 Freshwater ecotoxicity characterization 185 

For assessing the ecotoxicity of pesticides on freshwater ecosystems, we followed the LCIA 186 

emission-to-damage framework that links emissions to impacts through environmental fate, 187 

exposure and effects (Jolliet et al., 2004). According to (Hauschild and Huijbregts, 2015; 188 

Rosenbaum et al., 2008) characterization factors CF for freshwater ecotoxicity of chemical 189 

emissions can be expressed as: 190 

CF�,
 = ���→#$,
 × A�#$,
 × B�#$,
	       (5) 191 
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Where FFi
�

fw,x is the fate factor in [kgin_compartment / (kgemitted d
-1)] describing the mass 192 

transport, distribution and degradation in the environment. The ecosystem exposure factor, 193 

XFfw,x, is defined as the bioavailable fraction of a chemical in freshwater; and an effect factor 194 

(EFfw,x) expressing the ecotoxicological effects associated with the bioavailable fraction, in 195 

the exposed ecosystems integrated over the surrounding water volume. CFs were estimated 196 

with USEtox 2.02 as characterization model, with the specific European landscape dataset 197 

(i.e., representing DK conditions) (Fantke et al., 2017; Westh et al., 2015). New CFs for 10 198 

additional AIs, following the procedure in Fantke et al. (2017) were derived. A detailed 199 

description of the resulting CF and the data used can be found in SI, SI-3. 200 

Recent developments for the estimation of CFs, such as the improvements in the calculation 201 

of the fate factors now accounting for the influence of pH on partitioning processes ionizing 202 

organic chemicals, were introduced in USEtox version 2.02 (Fantke et al., 2017). The 203 

differences in the potential freshwater ecotoxicity impact results, coming from the different 204 

model versions (USEtox 1.01 and 2.02) were tested. This evaluation was performed taking 205 

into account AIs available in both USEtox versions.  206 

2.5 Sensitivity analysis 207 

Two types of local sensitivity tests were conducted. First, a scenario sensitivity analysis was 208 

performed testing the sensitivity on IS results of different modeling scenarios in the impact 209 

profiles of feed crop cultivation in DK.  210 

There are very different approaches and assumptions in order to provide emission estimates 211 

for quantifying lifecycle emission inventories of pesticides in any LCA study involving 212 

agricultural systems (Fantke, 2018). The most simplified approaches are based on generic 213 

assumptions regarding varying percentages for pesticide application.  The most frequently 214 

used approach and the more simplified is the assumption that all pesticides remain in the soil 215 

(i.e., 100% emitted to soil) (Nemecek and Kagi, 2007). Following this line of fixed 216 

percentages, there are several approaches that distribute pesticide emissions on more than one 217 
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environmental compartment (Berthoud et al., 2011; Margni et al., 2002; Neto et al., 2013). A 218 

different approach is the more complex emission modeling as in PestLCI model. This model 219 

estimates emissions to three environmental compartments: air, surface water, and 220 

groundwater. It considers the agricultural field down to 1 m depth into the soil and up 100 m 221 

into the air as part of the technosphere, thus excluding emissions to soil on-field and off-field 222 

(Birkved and Hauschild, 2006; Dijkman et al., 2012). The main differences between the 223 

methods are the underlining assumptions (e.g., boundaries between ecosphere and 224 

technosphere), the level of sophistication (fixed percentages vs. modeling), the data 225 

requirements and applicability for quantifying pesticides emissions. All these different 226 

approaches, may offer inconsistent results, which in some cases are partially overlapping 227 

(spatially or temporally) with the impact pathways for pesticides. Therefore, IS results tend to 228 

be not compatible or comparable.  229 

For the present study, modeling approaches that allowed the inclusion of agricultural soil in 230 

the assessment and that involve simplified assumptions for application methods were selected. 231 

Three scenarios were considered, the above proposed simplified estimation routine (section 232 

2.3), was selected as a reference scenario (RS) and two alternative scenarios (AS1-AS2) that 233 

represent different modeling approaches to quantify emissions from pesticide use. The 234 

alternative scenario AS1 followed Margni et al. (2002), which represents a usually used 235 

pesticide emission modeling, and furthermore is one of the first approaches that account for 236 

pesticide emission distribution in different environmental media in LCA studies for 237 

agricultural systems. In this approach, the pesticide emissions are distributed in environmental 238 

media based on fixed share percentages. They assume that the fraction of AI emitted to the 239 

soil will be 85% of the total application, 5% will stay on leaves and the remaining 10% is lost 240 

into the air across crops and pesticides. The second tested scenario AS2 represents fixed 241 

emission fractions dependent on the foliar spray application and drift distributions for field 242 

crops. This approach was chosen to represent a modeling framework where the initial 243 
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distribution (i.e., application method and crop relation) is taken into account but also allowing 244 

the inclusion of field emissions in the assessment (Balsari et al., 2007; Felsot et al., 2010; Gil 245 

and Sinfort, 2005). Table 1 displays the emission fractions in the three scenarios considered. 246 

Table 1 Comparison of pesticide emission fractions (fem) calculated by the RS (reference 247 
scenario), AS1 (Margni et al. 2002) and AS2 (application method and crop relation)     248 

Emission 
scenarios 

Average fraction 
emitted [kg kg-1] 

Standard deviation 
on fractions 

RS   
fem_air 1.16x10-1 2.03x10-1 
fem_fw 1.60x10-3 N/A 
fem_soil.agri 3.75x10-1 3.11x10-1 
fem_soil.other 8.70x10-2 2.01x10-2 
AS1   
fem_air 1.00x10-1 N/A 
fem_crop 5.00x10-2 N/A 
fem_soil 8.50x10-1 N/A 
AS2   
fem_air 1.70x10-1 N/A 
fem_fw 1.00x10-2 N/A 
fem_soil 4.50x10-1 N/A 
fem_crop 3.70x10-1 N/A 

Note: fem is the fraction emitted. Indices air, fw (freshwater), soil and crop denote environmental 249 
compartment were the emission occurs.  250 

Second, input parameter sensitivity analysis was performed to test the sensitivity of the RS by 251 

evaluating the change in the impact scores (propagated from the change in emission fractions) 252 

as a function of the variation of several input parameters by a factor of 2 larger of their initial 253 

values, one at the time. Local sensitivity to input Sin [-] was further expressed as the effect on 254 

the model output due to a change in an input parameter (for further details see SI, SI-5). 255 

Finally, a statistical analysis between impact results of the different scenarios was conducted.   256 

3 RESULTS AND DISCUSSION 257 

3.1 Pesticides use in Danish crop production (2013-2015) 258 

The AIs considered in the study cover 98.3% of the total pesticide applications in relation to 259 

the mass applied for the selected crops: maize, winter wheat, grass, spring barley, rapeseed, 260 

peas and the agricultural use of glyphosate (Gly_agri). The total pesticide use was 3165 tons in 261 

2013, 1438 tons in 2014 and 2105 tons in 2015. The average pesticide application rates per 262 
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crop vary between 2 and 3 orders of magnitude (SI, Table S6). Grass is the crop with the 263 

lowest application rates and pesticide use; together, fungicides and insecticides represent 264 

nearly 20% of the total use in grass-2013; additionally, in 2014-2015, there was no use of 265 

insecticides, and fungicides use was reduced by less than 2.5%. Gly_agri sum up to 2722 tons 266 

in the 3 years and represents near 40% of the total use of pesticides in DK. Winter wheat 267 

(2672 tons) is the crop with higher pesticide use followed by spring barley (748 tons) (SI, 268 

Table S7). The most used pesticide target class is Herbicides, and prosulfocarb is the most 269 

used AI after Gly_agri within this target class. Regarding pesticide use it is important to 270 

mention that the farmer’s choice for an AI or another can be influenced by many different 271 

external factors, such as climate variations or the emergence of pests and diseases, crop 272 

rotations, market needs and many others (Steingrímsdóttir et al., 2018). For annual crops, a 273 

three year assessment period could balance somehow the fluctuations in the crop growing 274 

conditions (e.g., as recommended for the assessment of greenhouse gas emissions) and the 275 

variations of the factors mentioned above (BSI, 2012; Knudsen et al., 2014).  276 

3.2 Ecotoxicity impact profiles of feed crops (2013-2015) 277 

The IScrop from pesticide use decreased over the three years (Figure 2). The reduction of the 278 

IScrop was more apparent in 2014 (59%) than in 2015 (33%) with respect to the base year 279 

(2013). Most of the decrease in the IScrop was due to the non-use of a single substance: 280 

cypermethrin. This insecticide was the major contributor to IScrop in 2013 across crops (e.g., 281 

87% in maize, 60% in spring barley and 47% in winter wheat) and was no longer used in 282 

2014-2015 (see Table S8 in SI). Furthermore, the fact that maize and grass did not require the 283 

use of insecticides in 2015 also contributes to the reduction of IScrop. However, it is essential 284 

to note that this may be the result of unfavorable climatic conditions for the emergence of 285 

pests, different insect population cycles (affecting abundance), competition and predation 286 

(e.g., natural enemies) among many other different reasons.     287 
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 288 

Figure 2 Freshwater ecotoxicity impact profiles for crop production (2013-2015), impact 289 
scores IScrop expressed in [PAF m3 d crop-1]. *Glyphosate (CAS RN-107-83-6) assessed as the 290 
total agricultural use in Denmark 291 
 292 

As shown in figure 2, winter wheat-2013 (1.6x109 PAF m3 d crop-1), spring barley-2013 293 

(1.4x109 PAF m3 d crop-1) and rapeseed-2013 (3.3x108 PAF m3 d crop-1) present the higher 294 

IScrop. The larger IScrop in those crops is associated with the use of insecticides (e.g., 295 

cypermethrin, pendimethalin, and lambda-cyhalothrin) and fungicides (e.g., pyraclostrobin, 296 

azoxystrobin, and folpet), AIs with relatively high CFs, and also because these are some of 297 

the crops more extensively cultivated in DK (i.e., cultivated area). Consequently, substance 298 

prioritization by LCA helps to identify potentially harmful AI for ecosystems and, with the 299 

restriction of their use or the implementation of more sustainable practices, significant 300 

changes in the impact profiles of the crops can be made more apparent (e.g., cypermethrin). In 301 

this sense, if farmers choose to use pesticides AIs causing lower impacts, the load on 302 

agricultural systems will decline, even if they continue to spray their fields as usual for pests 303 

and disease control. Moreover, linking this decision with integrated pest management (IPM) 304 

will further contribute to lowering the ecotoxicological burden on freshwater ecosystems from 305 

pesticide use. 306 
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3.3 Pressure of pesticide impacts by hectare and class (2013-2015)  307 

When calculating the potential ecotoxicity impacts on freshwater ecosystems per 1 hectare of 308 

crop per year (IScrop_ha) [PAF m3 d ha-1] the interaction of agricultural systems and practices is 309 

more apparent. The variations in pesticide use (almost 3 orders of magnitude) and impact 310 

scores for individual AIs (up to 9 orders of magnitude) are significant (see Table S9 in SI). 311 

Therefore, in the same year, the trends for the two indicators can move in different directions 312 

(Figure 3), meaning that pesticide use or application rates are not an adequate indicator of 313 

potential impacts (e.g., Gly_agri and rapeseed), since toxicity potentials might be higher for 314 

pesticides that are applied in lesser amounts (Fantke and Jolliet, 2016). 315 

 316 

 317 

Figure 3 Comparison between use of pesticide active ingredient (USE_crop) [tonnes] and 318 
potential freshwater ecotoxicity impacts (IScrop_ha) [PAF m3 d ha-1] for 5 analyzed crops 2013 319 
and *Glyphosate (CAS107-83-6) assessed as the total agricultural use in Denmark in 320 
logarithmic scale 321 

Peas appeared as the crop with the highest pressure by hectare cultivated in the entire period, 322 

with the maximum value (6440 PAF m3 d ha-1) in 2015. In 2013 rapeseed, spring barley and 323 

winter wheat showed IScrop_ha between 64% and 54% lower than peas, in 2014 the difference 324 

for the same crops was among 70% and 85% lower and for 2015 all crops showed IScrop_ha 325 
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80% lower than peas (see Figure 4). The IScrop_ha for the study varies up to 3.5 orders of 326 

magnitude, and the substances cypermethrin (Ins), aclonifen (Hrb), pendimethalin (Hrb) and 327 

lambda-cyhalothrin (Ins) present the most significant contribution to IScrop_ha, which his 328 

nearly 70% (see Table S9 in SI).  329 

 330 
Figure 4 Pressure of pesticide impact scores by hectare of crop cultivated for Danish crop 331 
production (2013-2015), impact scores IScrop_ha in [PAF m3 d ha-1]. *Glyphosate (CAS RN-332 
107-83-6) assessed as the total agricultural use in Denmark 333 

The large IScrop_ha for peas-2015, almost double than precedent years, is mainly explained 334 

by the bloated use of aclonifen (Hrb). This intensification of herbicide treatments in 2015 335 

could be potentially associated with the emergence of weed infestation in pea’s productions 336 

fields. Moreover, the sharp increment on IScrop_ha in part is explained by the dose increment 337 

by hectare and the relatively high CF for direct emissions to surface water of aclonifen (SI, 338 

Table S5), which is driven by a significant EF (1.3x10+4 PAF m3 kg-1). Furthermore, it is 339 

important to note that even if some substances have a high CF, their use could be justified at 340 

low doses, because of their agronomic importance and effectiveness of pest or disease control.  341 

The contribution by pesticide target class to freshwater IScrop_ha can be observed in Figure 342 

5. Insecticides are the class that contributes the most (56%) to impact scores, followed by 343 
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herbicides (36.4%) and fungicides (7%); plant growth regulators were not included in Figure 344 

5 as their contribution to IScrop_ha and IScrop_DK was lower than 1%. 345 

 346 

Figure 5 Share of freshwater ecotoxicity impact scores IScrop_ha in [%] for a) 2013, b) 2014 347 
and c) 2015; by pesticide class herbicides (Hrb), insecticides (Ins) and fungicides (Fun) taking 348 
IScrop_ha - 2013 as the reference year.  349 

It is well known that pesticide treatments are a highly dynamic activity that varies year by 350 

year. It could be more static for herbicides than for the other pesticide classes (i.e., 351 

insecticides and fungicides) that are more closely correlated with the specific climatic 352 

conditions on the area and year of study and thus also the emergence of any specific pest or 353 
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disease. If these dynamics are to be considered, the relevant data (on, e.g., pesticide treatment 354 

and crop characteristics) have to be consistently reported (Fantke et al., 2016). Furthermore, 355 

the assessment period should also reflect these fluctuations in the crop growing conditions, 356 

that is why it should also carefully designated (Knudsen et al., 2014). 357 

Some other authors have found similar results than here (unallocated values by hectare and 358 

year). For example, similar trends are found by Nordborg et al. (2014) for the cultivation of 359 

maize, rapeseed and winter wheat for biofuel feedstock production; Parajuli et al. 2017 for 360 

grass, maize and winter wheat straw for bio-refinery, and Schmidt Rivera et al. 2017 for 361 

barley production in Italy and Denmark. The studies mentioned above use PestLCI (version 1 362 

or 2) as inventory model and USEtox 1.01 as characterization method for the impact 363 

assessment. Therefore, using a fewer data demanding and a simplified approach could lead to 364 

the same results for substance prioritization. Despite the similarities in the trends of IScrop_ha, 365 

when comparing the results with the absolute values of AI use per 1 ha in a given crop (in the 366 

same studies), the IScrop_ha are up to 2.2 orders of magnitude higher; considering the 367 

uncertainty range of the characterization method (between 1-2 orders of magnitude) this 368 

difference might be moderately significant, and more probably associated with differences in 369 

the LCI and the pesticide emission model. 370 

3.4 Effects of modeling choices on ecotoxicity impact score results  371 

3.4.1 Sensitivity of different pesticide emission modeling scenarios   372 

The selected methodologies are described in section 2.5, and the results of the three scenarios 373 

(RS, AS1, and AS2) were compared between the five crops in the 3-year period. The mean 374 

values for fem into air, freshwater and soil in the RS are ~1 order of magnitude higher than the 375 

alternative AS2 and greater than AS1 but within the same order of magnitude. The major 376 

difference between RS and AS2 comes from the fact that in the latter 37% of the mass applied 377 

is considered retained by the crop, degraded or taken up, and thus not been considered as an 378 

emission. When modeling soil emissions the mean values present lower differences in 379 
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comparison with the variations of freshwater and air emissions. Significant differences were 380 

found between RS and AS2 for freshwater emissions, and across the three scenarios for air 381 

emissions. All these variations in the emission fractions lead to further changes (propagated) 382 

in the resulting IS. 383 

Results for IScrop_ha in [PAF m3 d ha-1] in the scenarios RS, AS1 and AS2 are summarized in 384 

Table 2. AS1 presented the lowest impact results across crops and years; the highest impact 385 

results appear in AS2, whereas RS showed higher impacts than AS1 but in the same order of 386 

magnitude.  387 

Table 2 Comparison of scenarios to test different emission modeling approaches. Results for 388 
potential freshwater ecotoxicity impact scores IScrop_ha expressed as [PAF m3 d ha-1] in the 389 
reference scenario (RS) and alternative scenarios AS1 and AS2  390 
 391 

Crop RS AS1 AS2 
2013 2014 2015 2013 2014 2015 2013 2014 2015 

Maize 513 92 50 182 35 45 3041 475 138 
Grass 17 11 13 17 7 9 51 31 37 

Winter wheat 2210 434 551 883 221 256 12410 2502 3154 
Spring Barley 2086 458 631 669 167 182 13514 2701 3808 

Rape 1880 921 1394 1532 1312 1243 12244 4144 7267 
Peas 3454 2928 6440 2641 1275 3564 23547 14653 26057 

 392 

High variability in IScrop_ha results within RS and AS2 approaches were observed. Also, the 393 

Tukey's range test was conducted to determine statistical differences in the impact assessment 394 

of the three modeling approaches. AS2 estimated impact scores were significantly higher than 395 

the scores in RS, which did not differ significantly from the AS1 values.    396 

The different modeling approaches to calculate pesticide emission inventory from a given 397 

applied quantity  (i.e. elementary flows from the product system to the ecosphere) and the 398 

connection to the impact characterization have also previously shown to have considerable 399 

influence on the estimation of IS for individual AIs and the impact profiles of crop production 400 

(Rosenbaum et al., 2015; van Zelm et al., 2014). The consideration of inter-media transfer 401 

processes, crop growth development and application method allow for a more accurate 402 
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estimation of the real phenomena, which are also the aspects that usually have the highest 403 

influence on LCI and LCIA models (Dijkman et al., 2012; Fantke et al., 2012).  404 

On the other hand, the consistency showed for trend results (for substance prioritization) of 405 

others studies using PestLCI (a more sophisticated emission modeling approach) compared to 406 

the RS are satisfactory (see section 3.3). Keeping in mind that such a model is much more 407 

data demanding and since IScrop_ha represent potential impacts rather than actual damages, the 408 

substance prioritization with a simplified method as the RS may serve as a first proxy in LCA 409 

studies when more detailed data are lacking. 410 

Regarding the input parameter sensitivity analysis (performed on several input parameters of 411 

the RS and using Maize 2013 and Peas in 2015 as example), the primary sources of 412 

uncertainty in the RS are identified as i) the application method and the drift fractions, and ii) 413 

the allocation for the off-field emission, specifically the water to soil ratio as shown in Figure 414 

6 (further details, see SI-5). However, the uncertainty range associated with pesticide 415 

emissions have not yet been quantified and is beyond the scope of the present study.  416 

 417 
Figure 6 Sensitivity to model input parameters of the reference scenario (RS). Variation for 418 
ecotoxicity impact scores (IScrop_ha) expressed as [PAF m3 d ha-1] for the example of Maize 419 
in 2013  420 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 20 

3.4.2 Influence of choice of LCIA characterization method  421 

The range of variation for the CF of all AI in the study with USEtox 2.02 was almost 9 orders 422 

of magnitude. FF and XF vary by near 2 orders of magnitude, while EF varies up to 7 orders 423 

of magnitude indicating substantial differences in pesticide-specific ecotoxicity potential. The 424 

variation in the CF for direct emissions to surface water, continental air or agricultural soil 425 

was near to 10 orders of magnitude, but CF for direct emissions to continental air and 426 

agricultural soil was lower than the CF for direct emissions to freshwater (3 and 2 orders of 427 

magnitude, respectively). From which, the importance of modeling the impacts of the dose 428 

applied, with a coherent coupling of the LCI to the LCIA model results (i.e., characterized 429 

results).   430 

Results for IScrop_ha in the RS using USEtox versions 1.0 and 2.02 are summarized in Table 3. 431 

Improvements and scientific consensus have been achieved for the new features introduced in 432 

the USEtox 2.02 among which substances and updated substance data and continent-specific 433 

landscape parameters contribute to further improving the accuracy in the quantification of 434 

CFs, given that respective spatial emission data are available. The more substantial 435 

differences in the impact results might come from the updated EF or by the influence of 436 

considering ionization (acid/bases) in USEtox 2.02.  437 

Table 3 Comparison of scenarios to test developments of LCIA characterization method. 438 
Results for potential freshwater ecotoxicity impact scores IScrop_ha in [PAF m3 d ha-1] in the 439 
reference scenario (RS) and USEtox version 1.0 and 2.02   440 
 441 

Crop RS - USEtox 1.0 RS - USEtox 2.02 
2013 2014 2015 2013 2014 2015 

Maize 246 63 146 491 80 32 
Grass 24 12 14 17 11 13 

Winter wheat 1349 445 1223 2139 387 508 
Spring Barley 758 267 390 2068 435 622 

Rape 776 563 702 1880 921 1393 
Peas 1483 1893 6080 3454 2928 6440 

Glyphosate Agri-use 28 12 17 14 6 8 
 442 
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The uncertainty of CFs (USEtox 2.02) due to emissions to air, freshwater and agricultural soil 443 

is 176, 18 and 103 GSD2 (Rosenbaum, 2016).  The major sources of uncertainty are 444 

substances half-lives and ecotoxicity EF (Henderson et al., 2011). Without considering winter 445 

wheat-2015, in general, ISs characterized with the improved USEtox 2.02 are higher than the 446 

results obtained with the previous version. Furthermore, in comparison with the FF and XF, 447 

the EF shows a substantial variation among the AI in this study, explaining a large part of the 448 

variations in the CFs for the AI after emissions to freshwater.  449 

4 CONCLUSIONS 450 

The combination of the emission modelling scenario RS, shown in the present study, and the 451 

characterization model USEtox 2.0 has allowed to recognize trends of different pesticides 452 

treatments and burdens on freshwater ecosystems, thus accounting for interactions between 453 

different compartments and a defined clear interface between LCI and LCIA. LCI modeling 454 

options do affect the ecotoxicological burden on freshwater ecosystems from pesticide use, 455 

and directly affects substance prioritization in LCA studies. Furthermore, the updated CF with 456 

the continent-specific landscape parameters contributes to a broader assessment. In the case of 457 

scenario and sensitivity analysis, application method and allocation for the off-field emission 458 

were identified as the main descriptors for modeling emissions of pesticides. The use of the 459 

modeling framework presented in this study allows for delivering more robust results and 460 

accurate evaluation of ecotoxicity impacts. Finally, to provide consumers and policymakers 461 

with more reliable information on the environmental performances of agricultural systems, 462 

LCA studies need to include all relevant emission outputs; therefore, a final consensus needs 463 

to be reached with a specific emission model recommendation. 464 
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APPENDIX A. SUPPORTING INFORMATION 474 

The following is the supplementary material related to this article. Detailed information of 475 

scenarios, physicochemical properties, and data on pesticide active ingredients, further 476 

annotations on pesticide emission quantification, data and sources for the derivation of new 477 

CFs, as well as supporting materials for results and sensitivity analysis included in the study 478 

are provided in the Supporting information.   479 
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• Pesticide use is not an apt indicator for impact as toxicity may be higher for 
pesticides applied in low rates 

• A suitable interface between LCI and LCIA and related mass distribution for 
pesticides is framed  

• Crop growth development and application method have major influence on the 
emission model 

• Substance ranking with a simplified modeling framework serve as proxy in LCA 
studies when detailed data lacks 

 

 

 

 




