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Abstract 43 

Root properties can influence plant drought resistance, and consequently plant species 44 

distribution. Root structure strongly varies across biomes partly as a result of phylogeny. 45 

However, whether the spatial distribution of phylogenetically close plant species is linked to 46 

differences in root properties remains unclear. We examined whether root properties mediate 47 

the strong correlation between summer drought intensity and the spatial segregation of pine 48 

species native to southern Europe. For this, we compared the seedling root growth and structure 49 

of five ecologically distinct pine species grown in 360L rhizotrons for 19 months under typical 50 

hot and dry Mediterranean conditions. We studied the mountain and boreo-alpine pines Pinus 51 

sylvestris and Pinus nigra, and the Mediterranean pines Pinus pinaster, Pinus pinea and Pinus 52 

halepensis. Mediterranean pines formed deep roots faster than mountain pines, their shoots and 53 

roots grew faster and had higher root growth, especially P. halepensis, at low air temperature. 54 

By the end of the study, Mediterranean pines had larger root systems than mountain pines. 55 

Neither distribution of root mass with depth nor root-to-shoot mass ratio varied significantly 56 

among species. Across species, minimal annual rainfall to which species are exposed in their 57 

range related negatively to root growth but positively to specific root length and the time needed 58 

for roots to reach a depth of 40 cm. This study highlights the importance of root growth as a 59 

driver of pine distribution in southern Europe and suggests that rapidly producing a large, deep 60 

root system may be a key attribute for pines to colonize dry Mediterranean locations.  61 

 62 

Keywords: Drought resistance; Pinus; Rhizotron; Root growth; Root structure; Rooting 63 

depth; Specific root length 64 

 65 

Key message:  The rapid production of a large, deep root system during seedling 66 

establishment is critical for pines to colonize dry Mediterranean locations 67 
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1. Introduction 68 

Water stress constrains plant life in many terrestrial ecosystems (Vicente-Serrano et al. 2013). 69 

Plants show a wide variety of adaptations to survive in dry ecosystems (Levitt 1980; Chaves et 70 

al. 2003; Brodribb et al. 2014). Roots vary widely in structure among plant species, and several 71 

root properties have been related to drought resistance of plants (Padilla and Pugnaire 2007; 72 

Alsina et al. 2011; Comas et al. 2013; Brunner et al. 2015). The size of the root system and 73 

rooting depth determine the plant's ability to access deep soil moisture reserves during dry 74 

periods (Schulze et al. 1996). Across species, the size of the root system, rooting depth and root 75 

hydraulic conductance increase with the size of growth forms (Canadell et al. 1996; Schenk and 76 

Jackson 2002; De Herralde et al. 2010). However, for a specific growth form, species inhabiting 77 

water-limited environments tend to have deeper roots than their mesic counterparts (Jackson et 78 

al. 1996).  79 

The proportion of mass allocated to roots has also been related to plant drought 80 

resistance. The proportion of root mass relative to either shoot mass (R/S) or entire plant mass 81 

(root mass fraction, RMF) are indicators of the potential balance between water uptake and 82 

evaporative capacity of a plant (Grossnickle 2012). Globally, R/S (Mokany et al. 2006), RMF 83 

(Poorter et al. 2012b) and the relative distribution of root mass in depth (Schenk and Jackson 84 

2002) usually increase with aridity. In addition, plants species differ substantially in fine root 85 

production (Ostonen et al. 2007; Valverde-Barrantes et al. 2017). Fine root growth is often 86 

studied using the proxy variable of specific root length (SRL), defined as the length of roots per 87 

root mass unit (Ostonen et al. 2007). High-SRL root systems have a large root surface and 88 

consequently high capacity to take up soil resources (Comas et al. 2013). In a global review of 89 

studies of fine-root traits, SRL was greater in plants from cold and temperate climatic areas 90 

than in plants from arid and tropical areas (Freschet et al. 2017). Fast growing woody plants, 91 
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which have high nutrient demand, grow more high-SRL roots than slow growing plants (Reich 92 

et al. 1998; Comas and Eissenstat 2004; Hernández et al. 2010).  93 

The seedling stage is a major bottleneck in the life history of plants and consequently in 94 

population dynamics (Pulido et al. 2010). Rooting depth determines the capacity of seedlings 95 

to access deep soil layers (Padilla and Pugnaire 2007), which  usually hold stable water reserves 96 

during the dry season (Brum et al. 2017). This fact likely explains why the ability of seedlings 97 

in seasonal dry climates to survive their first dry season depends on root system size and rooting 98 

depth (Grossnickle 2005; Padilla and Pugnaire 2007; Villar-Salvador et al. 2012). Plants can 99 

achieve a deep and extensive root system either by starting to grow early in the wet season (De 100 

Luis et al. 2008) and/or by growing rapidly during the wet season (Holmgren et al. 2006; Stella 101 

and Battles 2010). Root growth in the wet season depends on soil and air temperature. Response 102 

of root growth to temperature varies among species (Lyr 1996; Pregitzer et al. 2000). Most plant 103 

species slow root growth greatly when soil temperature is < 10 ºC and root growth cessation 104 

occurs at 2-6ºC (Alvarez‐ Uria and Körner 2007). Species differences in the response of root 105 

growth to temperature seems to be related to the temperature to which species are exposed in 106 

their range (Lyr 1996). 107 

The spatial segregation of native pine species in southern Europe is correlated with 108 

summer drought and winter temperature (Barbero et al. 1998). Pinus nigra J.F. Arnold and P. 109 

sylvestris L. (hereafter referred to as mountain and boreo-alpine pines) inhabit cold winter sites 110 

in the high mountains of southern Europe, where rainfall is high and summer drought is mild 111 

and short. At these locations, cold is the main limitation for plant life (Barbero et al. 1998). In 112 

contrast, Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. (hereafter referred to 113 

as Mediterranean pines) thrive in low- and mid-altitude locations in a typical Mediterranean 114 

climate, where winter is mild-to-cool and humid, while the summer is hot and dry (Barbero et 115 

al. 1998). At these sites, summer water stress is the main limiting factor for plant life (Mitrakos 116 
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1980). The spatial segregation of these pine species can be explained in part by their capacity 117 

to withstand frost events. Pinus halepensis, P. pinea and to a lesser extent P. pinaster are less 118 

frost-tolerant than the high-mountain pines P. sylvestris and P. nigra (Climent et al. 2009; 119 

Fernández et al. 2017; Toca et al. 2017). However, the fact that P. sylvestris and P. nigra do 120 

not occur at low-altitude locations where summers are dry and hot could be explained by a 121 

lower capacity to survive water stress than Mediterranean pines in the early life stages (Salazar-122 

Tortosa et al. 2018).  123 

The objective of this study was to compare the growth and structure of root systems of 124 

five ecologically distinct pine species native to the Iberian Peninsula (P. sylvestris, P. nigra, P. 125 

pinaster, P. pinea and P. halepensis) under lowland Mediterranean conditions. For this, we 126 

grew seedlings of these pine species in a common garden experiment simulating the low 127 

precipitation and high temperature regime typical of low- and mid–altitude Mediterranean 128 

location. Plants were grown in 360-L rhizotrons to avoid small rooting volume constraints 129 

(Poorter et al. 2012a), and we analyzed the root dynamics and structure for 19 months. We 130 

hypothesized that Mediterranean pines will grow faster a larger and deeper root system, 131 

showing higher SRL than mountain and boreo-alpine pines under these experimental 132 

conditions. This study will contribute to explain why mountain and boreo-alpine pines species 133 

fail to colonize low altitude Mediterranean environments.    134 

 135 

2. Material and methods 136 

2.1 Experimental setup and plant growth 137 

Seeds of the five pine species were collected from populations in the southern part of the Iberian 138 

Range, eastern Spain (see Table S1 for locations and their environmental details). This region 139 

covers around 8500 km2 and natural populations of all studied species segregate along an 140 

altitudinal gradient from 650 to 2050 m a.s.l. (Blanco et al. 1998). Seeds were seeded in 141 
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February 2012 and seedlings were cultivated in trays (190/300-45, Plasnor, Spain) of 300 ml. 142 

Growing medium was fertilized peat (White 420 F6, Kekkilä, Finland) containing 0.8-1 kg/m3 143 

of slow-release fertilizer NPK 16-10-20. Seedlings were initially grown in a greenhouse of the 144 

Centro Nacional de Recursos Genéticos Forestales “El Serranillo” (Guadalajara, Spain) until 145 

late March 2012, then transported to the IRTA in Caldes de Montbui (Barcelona, Spain), where 146 

the rest of the study was performed. From late March to early June 2012, seedlings were kept 147 

inside a greenhouse and periodically watered until transplanted to rhizotrons.  148 

In early June 2012, six four-month-old seedlings per species were transplanted into 30 149 

rhizotrons (1 seedling per rhizotron; rhizotron dimensions were height: 1.2 m, width: 0.5 m and 150 

depth: 0.6 m) filled with washed river sand. The side and rear walls of the rhizotrons were made 151 

of galvanized iron sheets, while the front wall was glass, which was covered by reflective plastic 152 

to avoid radiation (light and temperature) at root level. The rhizotrons were placed inside an 153 

open greenhouse tunnel, which reduced ambient photosynthetic photon flux density by 30%. 154 

At the time of transplanting seedling height and diameter (±SE) were: 11.4 ± 0.7 cm and 2.3 ± 155 

0.1 mm for P. halepensis; 15.9 ± 0.2 cm and 3.1 ± 0.2 mm for P. pinea; 14.7 ± 1.3 cm and 2.8 156 

± 0.1 mm for P. pinaster; 8.7 ± 0.2 cm and 2.1 ± 0.1 mm for P. nigra; and 7.4 ± 0.2 cm and 2.5 157 

± 0.1 mm for P. sylvestris, respectively. Seedlings were water-supplied with approximately the 158 

average rainfall rate of Caldes de Montbui (altitude: 203 m a.s.l.). This location has a typical 159 

Mediterranean climate with a mean temperature of 15.5 ºC and a mean annual rainfall of 633 160 

mm. Water was supplied daily during the first month and then every 2-3 days thereafter. The 161 

cumulative amount of water supplied per plant during the study was 572 L. Soil volumetric 162 

water content (VWV, %) was measured every 2 weeks using a 70-cm frequency domain 163 

reflectometry probe (Diviner 2000, Sentek Sensor Technologies Stepney, Australia). The 164 

accession tube was inserted before planting of seedlings, and soil moisture was measured at 10-165 

cm intervals. For simplicity, we performed data analysis using soil VWC for the depth intervals 166 
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of 0-20, 20-40 and 40-70 cm. Mean VWC increased with depth and was higher in mountain 167 

and boreal pines than in Mediterranean pines (Figure S1). In general, soil VWC decreased 168 

slightly over time in the depth layers of 20-40 and 40-70 cm, whereas it fluctuated without any 169 

clear pattern in the 0-20 cm layer.  170 

Air temperature was measured daily using electronic sensors (PASSRHT, Decagon 171 

Devices, Washington, USA) placed next to the rhizotrons. Mean air temperature during the 172 

study was 16.6 ºC, fluctuating between 30.3 ºC in mid-August 2012 and 3.2 ºC in early 173 

December 2012 (Figure S2). The lowest air temperature was -2.6 ºC in late February 2013; the 174 

highest temperature was 40.9 ºC in late July 2012. 175 

2.2 Root and shoot measurements 176 

Root elongation measurement was initiated after seedlings were established in early October 177 

2012 and were taken every two weeks until May 2014. The length of the visible roots growing 178 

against the rhizotron wall was measured in four soil layers, each of which was 20-40 cm thick: 179 

these layers covered depths of 0-20, 20-40, 40-80, and 80-110 cm. These layers were 180 

photographed with a digital camera, and root length was determined using WinRHIZO (Regent 181 

Instruments, Canada). 182 

At the end of the experiment in early June 2014, plants were extracted from the 183 

rhizotrons by gently removing the growing medium with water. Plants were separated into 184 

shoots and roots and washed with tap water. The roots were cut at three depth layers (0-40, 40-185 

80 and 80-120 cm), scanned and their length quantified using WinRHIZO. Then all plant 186 

fractions were dried at 60 °C until constant weight. SRL was calculated as the ratio between 187 

total root length and total root mass, while R/S was calculated by dividing root mass by shoot 188 

mass. 189 

  Shoot growth was monitored by periodically measuring stem height and diameter, 190 

which was measured at 1 cm from the ground. Both measurements were performed at planting 191 
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and on the following days after transplanting: 336 (18 June 2013), 456 (16 October 2013), 545 192 

(13 January 2014), 618 (26 March 2014) and 686 (02 June 2014). We also used the relative 193 

growth rate (RGR) as a surrogated of plant growth. RGR was calculated as: 194 

𝑅𝐺𝑅 =
ln(𝑚𝑡2) − ln(𝑚𝑡1)

𝑡2 − 𝑡1
 195 

where m is the plant mass at the time of transplantation into the rhizotron (t1) and at the end of 196 

the experiment (t2). The mass at t1 was measured on 10 seedlings per species randomly sampled 197 

after drying at 60 ºC for 48 h.      198 

2.3 Data analysis 199 

Differences in height and diameter growth rates between species were assessed using a linear 200 

mixed model in which the random effect was individuals and the fixed effect was the interaction 201 

between species factor and the covariate time (days since planting). Significant differences 202 

(P<0.05) in the model slope meant that growth rates were different among species.     203 

 The effect of species on root and shoot measurements after harvesting were analyzed 204 

using one-way ANOVA. The response variables were shoot mass, total root mass, total root 205 

length, R/S, and SRL. We also evaluated the effect of species on the total root mass, and on the 206 

root mass proportion at the three different soil layers (0-40, 40-80 and 80-120 cm). Significant 207 

differences between species were evaluated using a Tukey HSD test (P<0.05).     208 

Root elongation rate was analyzed using a Generalized Additive Mixed Model 209 

(GAMM) in which the random factor was individuals, the smoothed term was time (days since 210 

planting), and the fixed effect was species. We fitted four different GAMM models, one for 211 

each soil layer. To evaluate whether species had a significant effect on root elongation, we 212 

compared the model with a model in which species was omitted. If the difference between the 213 

two models was ≤ 2 in the corrected Akaike’s information criterion (AICc), then the simpler 214 

model was selected (Burnham and Anderson 2002). 215 
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We also analyzed the effect of air temperature on species root growth. For this, root 216 

length of all soil layers was added up to yield the total root length per seedling and measurement 217 

date. Then, we calculated root length increment (mm day-1) as the difference in root length 218 

between two consecutive measurement dates divided by the number of days between both 219 

measurements. As the magnitude of root length increment greatly differs among species, it was 220 

species-scaled to 0-1 values (hereafter RLI). We used a linear mixed model to evaluate whether 221 

the relationship between RLI and temperature was species idiosyncratic. This model included 222 

the interaction between species and temperature as fixed effect, and each individual as random 223 

term. First, we compared -based on the AICc- this model with a model in which temperature 224 

was considered as a second order polynomial. The selected model in this step was then 225 

compared with a model in which species factor was dropped.        226 

To assess whether species influenced root growth speed through depth, we quantified 227 

the time taken by each individual to reach a depth of 40 cm after transplanting into the 228 

rhizotrons. We considered that the roots of an individual reached a depth of 40 cm when the 229 

roots became visible in the layer at a depth of 40-50 cm. Data were analyzed using one-way 230 

ANOVA in which the response variable was the time taken by roots to reach a depth of 40 cm. 231 

We used linear regression to analyze whether inter-species differences in root properties 232 

were related to climatic conditions normally encountered by the species in their distribution 233 

range in the Iberian Peninsula. We used distribution data for continental Spain from the third 234 

Spanish Forest Inventory, which analyzed adults and saplings of all woody species in plots 235 

distributed over forest ecosystems according to a 1-km2 grid. We selected those plots classified 236 

as natural pine forests based on the Spanish Regions of Provenance (Ruiz-Benito et al. 2012). 237 

Then we selected the plots showing saplings for each studied pine species. Climatic variables 238 

were calculated from a map with 1-km2 spatial resolution (Gonzalo 2008) for each species, we 239 

chose the 2.5% percentile values for mean annual precipitation. This value represents the mean 240 
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annual rainfall in the 2.5% most arid locations in the range of each species. All statistical 241 

analyses were performed using R 3.2.5. 242 

 243 

3. Results 244 

3.1 Aboveground growth 245 

At the end of the experiment on day 728 after planting, P. halepensis, P. pinea and P. pinaster 246 

showed greater shoot mass than P. nigra and P. sylvestris (Figure S3). We found a significant 247 

interaction between species and time (days since planting) on seedling stem height and diameter 248 

(both P<0.001). Pinus halepensis showed a significantly larger diameter and faster height 249 

growth (higher interaction slope) than the other pine species, whereas P. sylvestris showed the 250 

slowest growth (Figure S4). Pinus pinaster showed faster height growth than P. pinea, P. nigra 251 

and P. sylvestris, while no significant differences were found between P. nigra and P. pinea. 252 

Similarly, no significant differences in diameter growth rate were observed among P. pinea, P. 253 

pinaster and P. nigra. P. halepensis also showed the highest RGR and P. nigra and P. sylvestris 254 

showed the lowest RGR, while P. pinea and P. pinaster had similar RGR (Figure S5).   255 

3.2 Belowground growth 256 

At the end of the experiment, P. halepensis, P. pinea and P. pinaster showed greater root mass 257 

than P. nigra and P. sylvestris (Figure 1a). However, species did not significantly differ in R/S. 258 

Root mass varied with depth in the same way that total root mass did (Figure 1). Pinus nigra 259 

and P. sylvestris showed the smallest root mass at all depths. However, the distribution of root 260 

mass with depth did not differ between species. Differences among species affected the mass 261 

of roots produced in the soil profile but not the relative distribution of root mass with depth. 262 

Total root length showed a similar pattern as root mass. Pinus halepensis and P. pinaster had 263 

longer roots than P. nigra and P. sylvestris; the latter two species had roots of similar length 264 
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(Figure 2a). Species SRL showed the opposite trend as root length and mass, with P. sylvestris 265 

showing the largest SRL and P. halepensis the smallest (Figure 2b).  266 

Root length increased over time to different extents among the various Iberian pine species 267 

(Figure 3, Table S2). Pinus halepensis showed the greatest capacity to quickly colonize soil 268 

layers (Figure 3), especially the layer at 0-20 cm, followed by P. pinaster and P. pinea. In 269 

general, these three species showed the greatest root length increase in each soil layer, whereas 270 

P. sylvestris showed the smallest and slowest increase in root length (Figure 3). Root length in 271 

P. nigra increased more than in P. sylvestris but less than in Mediterranean pines except in the 272 

0-20-cm layer, where P. nigra showed the lowest increase in root length of all five pine species. 273 

From day 385 onwards, P. pinea showed the longest roots in the layers at depths of 20-40 and 274 

40-80 cm. Roots of P. nigra and P. sylvestris lengthened more slowly towards the end of the 275 

experiment than initially, except for soil layer at a depth of 80-110 cm, where growth remained 276 

active (Figure 3). The Mediterranean pines, in contrast, showed active growth across all the soil 277 

depth layers. Roots lengthened at similar rates across all species in the soil layer at 80-110 cm 278 

(Table S2). 279 

 Scaled root length increment (RLI) showed a quadratic and idiosyncratic species 280 

response to temperature (Table S3). RLI monotonically increased in P. nigra and P. sylvestris 281 

(Figure 4). P. pinaster and P. pinea showed a similar response to mountain pines but reaching 282 

constant values around 20ºC. On the contrary, P. halepensis showed maximum RLI values at 283 

low temperatures and then decreased with temperature (Figure 4). RLI values at 7ºC was highest 284 

in P. halepensis (0.18 ± 0.03) followed by P. pinea and P. pinaster (0.04 ± 0.03, for both 285 

species). P. sylvestris and P. nigra showed the lowest scaled RLI values (0.02 ± 0.03 and 0.01 286 

± 0.03, respectively).         287 
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Species differed in how long roots needed to reach a depth of 40 cm (F=3.21, P=0.034) 288 

according to the trend: P. halepensis < P. pinea and P. pinaster < P. nigra (150 days after P. 289 

halepensis) < P. sylvestris (180 days after P. halepensis) (Figure 5).  290 

3.3 Relationship between root characteristics and rainfall in the distribution range 291 

Root mass at the end of the experiment and the stem diameter growth rate of each species 292 

correlated negatively with the 2.5% smallest annual precipitation in the natural range of that 293 

species (Figure 6). In contrast, SRL and the time for roots to reach a depth of 40 cm correlated 294 

positively with the 2.5% smallest annual rainfall in the natural range (Figure 6). 295 

 296 

4. Discussion 297 

Juveniles of pine species differ in how rapidly they grow during establishment and consequently 298 

in the final size of their root systems and shoots. Interestingly, root differences among species 299 

correlate strongly with the precipitation in the driest areas of the species range. In accordance 300 

with our hypothesis, seedlings of the Mediterranean pine species, which are exposed to high 301 

drought stress in their range (especially P. halepensis), show greater ability to rapidly colonize 302 

the soil profile and produce larger root systems than the seedlings of the mountain and the 303 

boreo-alpine pines under typical lowland Mediterranean conditions. These root differences may 304 

drive drought survival (Grossnickle 2005; Padilla and Pugnaire 2007; Villar-Salvador et al. 305 

2012). Consistent with this suggestion, survival and growth of P. nigra and P. sylvestris was 306 

significantly lower than P. halepensis survival in a common garden experiment in a dry hot 307 

Mediterranean location (Salazar-Tortosa et al. 2017; Salazar-Tortosa et al. 2018). Therefore, 308 

this study provides new insights into the functional basis of the latitudinal and altitudinal spatial 309 

segregation of pines in southern Europe. However, low field survival and growth of mountain 310 

and boreo-alpine pines might be also explained by poor physiological performance under water 311 

stress conditions (Salazar-Tortosa et al. 2017; Salazar-Tortosa et al. 2018). In addition, the use 312 
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of one provenance per species requires some caution when generalizing our results. Because 313 

we used provenances from the southern dry edge of the range of the mountain and boreo-alpine 314 

species, which are more drought resistant than northern and mesic provenances (Richter et al. 315 

2012; Matías et al. 2014), it is unlikely that the lower growth of these pine species compared to 316 

the Mediterranean pines is biased by provenances selection. Future studies, however, should 317 

evaluate provenances differences in root growth.  318 

In water-limited ecosystems, seedling mortality due to water stress during the first dry 319 

season is a bottleneck for forest regeneration (Castro et al. 2004; Pulido et al. 2010). Resistance 320 

of seedlings to drought relies on adaptations that increase water uptake and /or reduce water 321 

loss during dry periods (De Micco and Aronne 2012; Brunner et al. 2015). In the present study, 322 

Mediterranean pines colonized through soil depth more rapidly, as evidenced by shorter time 323 

to reach a depth of 40 cm (Figure 5) and showed the fastest aboveground growth, growing larger 324 

than mountain pines at the end of the experiment. This indicates that seedling establishment 325 

under Mediterranean climate conditions depends on how rapidly the root system colonizes the 326 

soil profile. Similar to our findings, Climent et al. (2011) observed that P. pinaster, P. pinea 327 

and P. halepensis grew faster  than P. nigra and P. sylvestris after 32 weeks of growth in 7-L 328 

containers. Higher shoot growth rate leads to greater foliage biomass and higher photosynthesis 329 

(Cuesta et al. 2010). This greater C assimilation will support the growth of new organs during 330 

the wet season, triggering a positive feedback loop in which shoot and root growth support each 331 

other (Burdett 1990; Villar-Salvador et al. 2012). In addition, Mediterranean pines, especially 332 

P. halepensis achieved maximum root growth potential at lower air temperature than mountain 333 

and boreo-alpine pines (Figure 4). Maximizing root elongation during the cool and wet season 334 

can facilitate seedling establishment before the summer drought, the most limiting season for 335 

seedling life in Mediterranean climates (Castro et al. 2004; Pulido et al. 2010). Mediterranean 336 

pines were also able to grow faster despite they reduced soil moisture more than the mountain 337 



15 
 

and boreo-alpine pines (Figure S1). Taken all together, our results indicate that Mediterranean 338 

pines avoid summer drought maximizing their growth during the wet and cool season, accessing 339 

rapidly deep water reserves and exploring a large soil volume (Jackson et al. 1996; Schulze et 340 

al. 1996; Padilla and Pugnaire 2007). We suspect that these pines also avoid drought because 341 

of early emergence: they disperse seeds in the summer and most seedlings emerge in autumn 342 

(Calama et al. 2017). This early emergence in the wet season, together with fast growth and 343 

higher root growth under cool air conditions, likely facilitates seedling establishment long 344 

before the onset of summer drought. In contrast, the two mountain pine species in our study 345 

disperse seeds in winter, and seedlings emerge in spring (Castro 2006; Tíscar and Linares 2011). 346 

This later emergence in the wet season, together with lower growth capacity, results in less root 347 

growth prior to summer drought and therefore greater seedling vulnerability to water stress 348 

(Castro 2006; De Luis et al. 2008). 349 

Mediterranean pines showed shorter SRL than mountain pines. In other words, the 350 

mountain and boreo-alpine pines grew longer roots per root mass unit invested, which does not 351 

support our initial hypothesis. Körner and Renhardt (1987) reported that that perennial herb 352 

species that grow at low altitude had thicker fine roots and lower SRL than perennial herbs 353 

species inhabiting at high altitude location. Differences in SRL allows for coping with changes 354 

in soil resources. SRL variability reflects a trade-off between stress tolerance and resource 355 

exploitation (Comas and Eissenstat 2004; de la Riva et al. 2017): fast growing species, which 356 

usually thrive in rich resource environments, are expected to have higher SRL, whereas slow 357 

growing, stress-tolerant species are expected to have lower SRL. However, whether root traits 358 

are primarily aligned along the acquisition-conservation axis is under debate (de la Riva et al. 359 

2016; Kramer-Walter et al. 2016; de la Riva et al. 2017). Our data show that although 360 

Mediterranean pines inhabit drier locations they have lower SRL but higher growth rates than 361 

mountain and boreo-alpine pines. The high SRL in mountain and boreo-alpine pines is 362 
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consistent with the idea from recent global reviews that plants inhabiting low-temperature 363 

ecosystems tend to have higher SRL (Freschet et al. 2017; Valverde-Barrantes et al. 2017). 364 

High SRL in cold-climate plants may be an adaptation to enhance soil nutrient exploitation, 365 

counteracting the negative effects of low temperature on organic matter mineralization (Comas 366 

et al. 2012).                                367 

Plants can also maintain their water status through increased biomass allocation to roots 368 

(Grossnickle 2005; Brunner et al. 2015). However, we found no significant R/S differences 369 

among species, suggesting a conservative pattern in the allocation of biomass among pine 370 

species. These results contrast with previous reports of higher R/S in P. nigra and P. sylvestris 371 

than in our Mediterranean pines (Climent et al. 2011; Matías et al. 2017). Differences between 372 

our study and previous ones may reflect that our study used a much larger rooting volume 373 

(Poorter et al. 2012a): in our study it was 360L, compared to 7L in Climent et al. (2011) or 2.5L 374 

in Matías et al. (2017). Similarly, our data showed no inter-species differences in the 375 

distribution of root mass through depth, in contrast to quantitative reviews and experimental 376 

studies showing that tree species adapted to dry conditions generally invest more root mass in 377 

depth than species inhabiting mesic environments (Schenk and Jackson 2002; Mokany et al. 378 

2006; Markesteijn and Poorter 2009; Poorter et al. 2012b). It is possible that root depth and root 379 

system size are more important than R/S for survival under dry conditions (Padilla and Pugnaire 380 

2007). Plants can also respond to water stress by constructing root systems with a larger taproot 381 

and increasing the allocation of biomass to coarse roots at the expenses of fine roots. It is also 382 

possible that our results are phylogenetically biased: the species in our study belong to the same 383 

genus, and morphological root traits are phylogenetically structured (Valverde-Barrantes et al. 384 

2017). Indeed, Pinus species show a strong phylogenetic signal in some functional traits (He et 385 

al. 2012) and mass allocation may also have evolved conservatively. 386 
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In conclusion, seedlings of southern Europe pines differ in how rapidly they grow and 387 

colonize the soil profile, and the sensitivity of root growth to low temperature. Mediterranean 388 

pines showed faster growth rates, larger root systems, faster rooting through the soil depth and 389 

at lower temperature and soil moisture than mountain and boreo-alpine pines under lowland 390 

Mediterranean conditions. These differences related to the aridity to which the species are 391 

normally exposed in their range. SRL was higher in mountain and boreo-alpine pines than in 392 

Mediterranean pines. The distribution of root mass through soil depth and the ratio of mass 393 

allocation to roots and shoots did not differ among pines. Our results suggest that differences 394 

in growth rate play an important role in determining the capacity of pine species to colonize dry 395 

Mediterranean locations. However, other functional attributes related to plant’s water economy 396 

and tolerance to high temperatures might also contribute to explain pine species distribution 397 

and should be addressed in future studies. Climate change projections for southern Europe 398 

predict an increase in aridity over the next century (Christensen and Christensen 2007), which 399 

can potentially trigger shifts in the tree species distribution. Based on our results, the higher 400 

growth capacity of Mediterranean pines may allow the colonization of zones at higher altitude 401 

and thereby displace mountain pines, which are also more vulnerable to warming and drought 402 

(Matías et al. 2017; Salazar-Tortosa et al. 2018).                        403 
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Figure legends 598 

Figure 1: Root mass of pine species at the end of the experiment over the entire soil depth (a) 599 

and in layers at depths of 0-40 cm (b), 40-80 cm (c), and 80-110 cm (d). Boxes show the 95% 600 

and 5% percentile values, while the solid line indicates the median. Different letters show 601 

significant differences (p < 0.05) between pine species.  602 

Figure 2: Total root length (a) and specific root length (b) of pine species at the end of the 603 

experiment. Boxes are the 95% and 5% percentile values, while the solid line indicates the 604 

median. Different letters show significant differences (p < 0.05) between pine species.  605 

Figure 3: Root length at different soil depths in pine species. Lines depict the mean values 606 

(n=6) for each species at each measurement date, while strips represent the SE. The scale of the 607 

root length axis differs among panels.       608 

Figure 4: Relationship of pine species’ scaled root length increment with temperature. Points 609 

show observed scaled root length increment. Lines depict the predictions of the fitted linear 610 

mixed model for each species, while strips represent the SE of these predictions. 611 

Figure 5: Time needed for roots to reach a depth of 40 cm across pine species. Boxes are the 612 

95% and 5% percentile values, while the solid lines indicate the median. Different letters show 613 

significant differences (p < 0.05) between pine species. 614 

Figure 6: Relationships of a pine species' root mass at the end of the experiment, shoot diameter 615 

growth rate, specific root length (SRL) and time for roots to reach a depth of 40 cm with 2.5% 616 

percentile values of annual rainfall in the distribution range of that species. Equations of the 617 

adjusted linear models are shown together with r2 and P values. Each point represents mean 618 

values ± 1 SE. Ph=P.halepensis, Pa=P.pinea, Ppt=P.pinaster, Pn=P.nigra and Ps=P.sylvestris. 619 

 620 
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Figure 6 642 

Annual rainfall of the 2.5% driest locations (mm)

0 300 350 400 450 500 550 600 650

S
p
e
c
if
ic

 r
o
o
t 

le
n
g

th
 (

c
m

 g
-1

)

0

100

200

300

400

500

600

 

R
o
o
t 

m
a
s
s
 (

g
)

0

50

100

150

200

250

300

S
te

m
 d

ia
m

e
te

r 
g

ro
w

th
 r

a
te

 (
m

m
 d

-1
 ×

1
0

-3
)

0,0

2,0

2,5

3,0

3,5

4,0

Annual rainfall of the 2.5% driest locations (mm)

0 300 350 400 450 500 550 600 650

D
a
y
s
 t

o
 r

e
a
c
h
 4

0
 c

m
 i
n
 d

e
p
th

0

200

250

300

350

400

450

y = 0.6691x - 6.1699
r² = 0.94, P=0.006

Ps

Ph

PsPn

PptPa

y = -0.6478x + 403.99
r² = 0.86, P=0.02

y = 0.9767x - 154.48
r² = 0.99, P<0.001

y = -0.0052x + 5.2345
r² = 0.92, P=0.01

Ph

Ps

Pn

Ppt

Pa

Ph

Ps

Pn

Ppt

Pa

Ph

Pn

Ppt

Pa



1 
 

SUPPLEMENTARY MATERIAL 1 

 2 

Rooting big and deep rapidly: the ecological roots of pine species distribution 3 

in southern Europe   4 

 5 

Enrique Andivia1, Paolo Zuccarini2,3, Beatriz Grau2, Felicidad de Herralde2, Pedro Villar-6 

Salvador1, Robert Savé2, * 7 

 8 

1. Forest Ecology and Restoration Group, Departmento de Ciencias de la Vida, Universidad de 9 

Alcalá, Apdo. 20, Alcalá de Henares, Madrid 28805, Spain  10 

2. Plant Science Area –IRTA– Institut de Recerca i Tecnologia Agroalimentaries, Torre 11 

Marimon, C-59, Km 12.1, Caldes de Montbui, Barcelona 08140, Spain 12 

3. CREAF, Campus de Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 13 

Barcelona 08193, Spain 14 

 15 

* Author for correspondence: Robert Savé, Plant Science Area –IRTA– Institut de Recerca i 16 

Tecnologia Agroalimentaries, Torre Marimon, C-59, Km 12.1, Caldes de Montbui, Barcelona 17 

08140, Spain. Tel: +34 93 4674040, ext. 1326.     Email: robert.save@irta.cat 18 

 19 

Emails of other authors: EA (e.andivia@gmail.com), PZ (p.zuccarini@creaf.uab.cat), BG 20 

(beatriz.grau.s@gmail.com), FdeH (felicidad.deherralde@irta.cat), PVS pedro.villar@uah.es). 21 

 22 

 23 

mailto:p.zuccarini@creaf.uab.cat
mailto:beatriz.grau.s@gmail.com
mailto:felicidad.deherralde@irta.cat


2 
 

Table S1. Geographic location and climatic characteristics of the provenances of the seeds 

used in the study.  

 

Species Provenance name* 
Latitude 

 (N) 

Longitude 

(W) 

Altitude 

(m a.s.l.) 

Mean 

temperature 

(ºC) 

Annual 

rainfall 

(mm) 

P. halepensis Alcarria 40º24’52’' 2º24’33’’ 860 12.6 580 

P. pinea La Mancha 39º12’02’’ 1º57’59’’ 675 14.2 397 

P. pinaster Cuenca 39º38’44’’ 1º13’52’’ 1135 12 540 

P. nigra subsp. 

salzmanii 

Sistema Ibérico 

Meridional 
40º15’16’’ 1º58’22’’ 1515 10.4 617 

P. sylvestris Montes Universales 40º28'09'' 1º38'42'' 1725 9.2 894 

* According to Alía et al. (2009). 24 
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Table S2: Comparison of Generalized Additive Mixed Models to assess the effects of the factor 26 

species on the seedling elongation rate of pine species at different soil depths (0-20, 20-40, 40-27 

80 and 80-110 cm). The model with the factor species is compared with a model without species 28 

effect (- sp). All models included time (days since planting) as a smoothed term. Model 29 

selection was performed based on the corrected Akaike’s Information Criteria (AICc). The final 30 

model for each soil layer is shown in boldface. 31 

Soil depth  AICc R2 

0-20 cm    

 full 11177.9 0.57 

 -sp 11186.61 0.42 

20-40 cm    

 full 13279.3 0.46 

 -sp 13282.8 0.37 

40-80 cm    

 full 12131.0 0.34 

 -sp 12134.7 0.29 

80-110 cm    

 full 12816.5 0.40 

 -sp 12812.5 0.37 

    

  32 
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Table S3: Comparison of Linear Mixed Models to assess the relationship between scaled root 34 

length increment and temperature for the studied pine species. First, we compared a model 35 

including the interaction between temperature (T) and the factor species (Sp) with a model 36 

including the interaction between temperature as a second polynomial order (polyT) and the 37 

factor species. The model selected in this step is then compared with a model without the effect 38 

of the interaction. Model selection was performed based on the corrected Akaike’s Information 39 

Criteria (AICc). The final model is shown in boldface.  40 

Model  AICc R2 

T x Sp  -1117.3 0.20 

polyT x Sp  -1167.4 0.24 

polyT  -1115.2 0.12 

    

  41 
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Figure S1: Soil volumetric water content variation during the experiment at three soil depth 42 

layers (upper figure) and per species (lower figure) as aggregate mean. 43 

  44 
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Figure S2: Air temperature values during the experiment. 45 

 46 
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Figure S3: Shoot mass (g) of five pine species at the end of the experiment. Boxes are the 48 

95% and 5% percentile values, while the solid line indicates the median. Different letters 49 

show significant differences (p < 0.05) in the mean values between pine species.  50 
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Figure S4: Model predictions for the height (cm) and diameter (mm) growth of seedlings of 52 

five pine species. Grey strips depict the 95% confidence interval for model predictions. 53 

Different letters show significant differences (p < 0.05) in the slope of the model between pine 54 

species. 55 

 56 

  57 
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Figure S5: Relative Growth Rate (RGR) (day-1) of five pine species during the experiment. 58 

Boxes are the 95% and 5% percentile values, while the solid line indicates the median. 59 

Different letters show significant differences (p < 0.05) in the mean values between pine 60 

species.  61 

 62 
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