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Abstract 19 

Six-rowed spike 1 (Vrs1) is a gene of major importance for barley breeding and germplasm 20 

management as is the main gene determining spike row-type (2-rowed vs 6-rowed). This is a 21 

widely used DUS trait, and has been often associated to phenotypic traits beyond spike type. 22 

Comprehensive re-sequencing Vrs1 revealed three two-rowed alleles (Vrs1.b2; Vrs1.b3; 23 

Vrs1.t1) and four six-rowed (vrs1.a1; vrs1.a2; vrs1.a3; vrs1.a4) in the natural population. 24 

However, the current knowledge about Vrs1 alleles and its distribution among Spanish barley 25 

subpopulations is still underexploited. We analyzed the gene in a panel of 215 genotypes, 26 

made of Spanish landraces and European cultivars. Among 143 six-rowed accessions, 57 had 27 

the vrs1.a1 allele, 83 were vrs1.a2 and three showed the vrs1.a3 allele. Vrs1.b3 was found in 28 

most two-rowed accessions, and a new allele was observed in 7 out of 50 two-rowed Spanish 29 

landraces. This allele, named Vrs1.b5, contains a ‘T’ insertion in exon 2, originally proposed as 30 

the causal mutation giving rise to the six-row vrs1.a2 allele, but has an additional upstream 31 

deletion that results in the change of 15 amino acids and a potentially functional protein. We 32 

conclude that eight Vrs1 alleles (Vrs1.b2, Vrs1.b3, Vrs1.b5, Vrs1.t1, vrs1.a1, vrs1.a2, vrs1.a3, 33 

vrs1.a4) discriminate two and six-rowed barleys. The markers described will be useful for DUS 34 

identification, plant breeders, and other crop scientists. 35 

 36 

 37 
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A feature relevant to describe the history of the barley crop Hordeum vulgare subsp. vulgare is 41 

the spike row-type, two- and six-rowed, according to the fertility of the lateral spikelets of 42 

each triplet sitting at each rachis node. H. vulgare subsp. spontaneum, the wild ancestor of 43 

barley, is two-rowed, as explained at length in Komatsuda et al. (2007). So far, five genes 44 

determining row-type (vrs1, vrs2, vrs3, vrs4 and vrs5) have been cloned. Vrs1 (syn. HvHoX1) 45 

encodes a homeodomain-leucine zipper class I (HD-ZIP I) transcription factor that inhibits the 46 

development of lateral spikelets (Komatsuda et al. 2007). Vrs2 encodes a homolog of SHORT 47 

INTERNODES (Youssef et al. 2017a). Vrs3 encodes a putative Jumonji histone demethylase (Bull 48 

et al. 2017; van Esse et al. 2017). Vrs4 encodes an orthologue of the maize RAMOSA 2 gene 49 

(Koppolu et al. 2013). The last gene, Vrs5 (syn. Int-c) encodes a homologue of maize TEOSINTE 50 

BRANCHED 1 (Ramsay et al. 2011). However, only two of them, Vrs1 and Vrs5, affect spike 51 

row-type in natural populations (Komatsuda et al. 2007; Saisho et al. 2009; Ramsay et al. 2011; 52 

Youssef et al. 2017b). 53 

Several possible mutations at Vrs1 convert the sterile lateral spikelets into fertile ones. These 54 

mutations occur naturally and may have been favored by farmers that interpreted increased 55 

fertility as a yield-increasing trait, even though biomass productivity differs little between the 56 

two forms (Evans and Wardlaw 1976). The six-rowed trait has appeared independently in 57 

several occasions during the history of the crop, acting as a driver of germplasm differentiation 58 

(von Bothmer et al. 2003; Komatsuda et al. 2007). Actually, the distinction between two-rowed 59 

and six-rowed types is one of the main divides in barley germplasm, as breeders tend to 60 

maintain their stocks apart, to avoid the cumbersome process of recovery of pure spike types.  61 

In addition to two two-rowed alleles (Vrs1.b2 and Vrs1.b3), at least three independent 62 

mutations in Vrs1 (vrs1.a1, vrs1.a2 and vrs1.a3, all six-rowed) are found among current barleys 63 

(Komatsuda et al. 2007). These last alleles are caused by a deletion (vrs1.a1) or insertion 64 

(vrs1.a2) in the coding sequence, resulting in frame shifts; whereas vrs1.a3 is due to an amino 65 

acid change in the homeodomain region. Different surveys resequencing the gene across wild 66 

and cultivated barleys (Saisho et al. 2009; Cuesta-Marcos et al. 2010; Ramsay et al. 2011; 67 

Youssef et al. 2012, 2017b), ancient DNA from historic landraces (Leino and Hagenblad 2010), 68 

or through the use of specific KASP markers in herbarium specimens (Lister et al. 2013), also 69 

found the previous alleles and identified another two, Vrs1.t (deficiens), which is caused by a 70 

single amino acid change in the C-terminal region of the protein (Sakuma et al. 2017) and 71 

vrs1.a4 (six-rowed, without any apparent change in the open reading frame (ORF) of Vrs1.b 72 

alleles).  73 
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The Vrs1 region is associated not just to row-type. In fact, it turns up in many barley 74 

association scans, for a wide variety of agronomic traits (Cuesta-Marcos et al. 2010; Muñoz-75 

Amatriaín et al. 2014; Alqudah et al. 2016). Recently, some studies have provided functional 76 

proof of the gene involvement in several phenotypic traits. Liller et al. (2015) found an effect 77 

of Vrs1 on tillering, while Thirolugachandar et al. (2017) reported increased leaf width, vein 78 

number, leaf nitrogen content, and grain number associated to the six-rowed allele. 79 

Spain is at the end of the routes of distribution that brought barley and other crops to Europe, 80 

starting from the Neolithic and ending probably in the Middle Ages (Fischbeck 2003; 81 

Komatsuda et al. 2007), receiving crops with adaptations to environmental factors 82 

encountered along different routes (Banks et al. 2013; Müller 2015). Therefore, Spanish 83 

landraces actually summarize the evolution of the crop in, at least, Southern Europe. 84 

Additionally, Spain is one of the few European countries in which cereal landraces were 85 

collected and kept in germplasm banks before they disappeared from cultivation, because they 86 

were cultivated up to the second half of the 20th century (Igartua et al. 1998; Pujol-Andreu 87 

2011). 88 

Before cloning Vrs1, polymorphisms in the linked Chloroplast Elongation Factor G gene 89 

(cMWG699), closely linked to the Vrs1 locus, were used as a surrogate for its row-type 90 

characterization (Komatsuda et al. 1998; Tanno et al. 1999, 2002). Cuesta-Marcos et al. (2010) 91 

developed four SNP markers within the Vrs1 gene that have been widely used by the scientific 92 

and plant breeding community as diagnostic for row-type. However, the current knowledge 93 

about Vrs1 alleles and its distribution among barley subpopulations is still underexploited. In 94 

this work, we carry out a comprehensive survey of haplotypes at this locus by analyzing 95 

Spanish barley landraces, which are complementary of barley accessions analyzed in other 96 

studies (Saisho et al. 2009; Cuesta-Marcos et al. 2010; Ramsay et al. 2011; Sakuma et al. 2017; 97 

Youssef et al. 2017b), with a predominance of six-rowed over two-rowed accessions.  98 

   99 

Materials and Methods 100 

Plant materials 101 

This study involved 176 Spanish barley landraces (50 two-rowed and 126 six-rowed), most of 102 

them collected before 1954 (Supplementary Table 1). Of these landraces, 137 (126 six-rowed 103 

and 11 two-rowed) belonged to the Spanish Barley Core Collection (SBCC, Igartua et al. 1998) 104 
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and 39 come from the set assembled by Moralejo et al. (1994). Thirty-six additional cultivars 105 

originated from other countries were studied for comparative purposes: 8 landraces from 106 

Morocco (4 two-rowed and 4 six-rowed), 7 of them obtained from the USDA World collection, 107 

and 28 widely diverse cultivars (15 two-rowed and 13 six-rowed) that represented the 108 

cultivated gene pool from the world. Finally, we included 3 wild barley accessions from 109 

Morocco (Molina-Cano et al. 1982) donated by J.L. Molina-Cano (Table 1). 110 

SNPs genotyping 111 

Four SNPs within the Vrs1 gene (HORVU2Hr1G092290 in the new barley genome sequence 112 

(Mascher et al. 2017)) were genotyped as a part of the 9k Infinium iSelect SNP chip (Comadran 113 

et al. 2012). Two of those SNPs (12_30897 and 12_30901) were included in the Barley SNP 114 

Panel from Eureka Genomics Corporation (Hercules, CA). The CAPs marker cMWG699/TaqI 115 

(Komatsuda et al. 1998; Tanno et al. 1999), corresponding to HORVU2Hr1G092180, was 116 

evaluated in all the samples as previously described (Casas et al. 2005). The plant materials 117 

tested with each system are detailed in Table 1. 118 

Sanger sequencing 119 

Sanger-sequencing of Vrs1 and Int-c (HORVU4Hr1G007040) of selected accessions were 120 

carried out as described by Ramsay et al. (2011).  121 

Exome sequencing 122 

Exome capture was performed according to the methods described by Mascher et al. (2013). 123 

DNA sequencing, made at CNAG (Centro Nacional de Análisis Genómico, Barcelona), and data 124 

analysis were performed as described in Cantalapiedra et al. (2016). Briefly, mapping of paired-125 

end reads (2x101 bp) to the Morex WGS assembly was carried out with BWA MEM (Li and 126 

Durbin 2009). Variant calling was done by combining SAMtools (Li et al. 2009) and GATK 127 

(McKenna et al. 2010). In addition, snpEff (Cingolani et al. 2012) was used to estimate the 128 

effect of polymorphisms on coding sequences. Data for Vrs1 and Int-c were retrieved by 129 

inspecting the corresponding Morex WGS contigs (contig_135757, Vrs1, and contig_5747, Int-130 

c), as identified by BLASTN alignment at http://webblast.ipk-131 

gatersleben.de/barley_ibsc/viroblast.php. 132 

RNA extraction and reverse-transcription PCR  133 
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Total RNA was extracted from immature spikes, leaf blades, leaf sheaths, nodes and 134 

internodes at awn primordium stage using TRIzol (Invitrogen). RNA was quantified using a 135 

NanoDrop 2000 (Thermo Fisher Scientific). To remove genomic DNA contamination, RNA was 136 

treated with RNase-free DNase I (Roche). First-strand cDNA was synthesized with SuperScript 137 

III (Invitrogen) and first-strand cDNA derived from 20 ng RNA was used as PCR template. 138 

Primers used for RT-PCR are listed in Supplementary Table 2. Barley Actin gene was used as 139 

positive control. 140 

Phylogenetic analysis 141 

Over two hundred Vrs1 nucleotide sequences were retrieved with BLASTN from the NCBI nt 142 

database, using the sequence of SBCC153 (1,133 bp) as query. Hits with low similarity or query 143 

coverage, as well as redundant ones, were removed. The surviving sequences were trimmed to 144 

the length of SBCC153 and renamed using the allele and haplotype names defined in the work 145 

of Saisho et al. (2009). Haplotypes “hap13” and “hap3.2” were also filtered out for bearing 146 

large deletions. Sequences for barley genotypes widely used as standards for genomic studies, 147 

Barke, Bowman, Haruna Nijo and Morex Vrs1 were included. A multiple alignment was 148 

computed with clustal-omega-1.2.1 (Sievers et al. 2011). A parsimony haplotype network was 149 

generated with software TCS v1.21 (Clement et al. 2000) and default parameters, which 150 

consider gaps as a fifth character. The resulting phylogenetic tree was optimally plotted with 151 

http://cibio.up.pt/software/tcsBU (dos Santos et al. 2016). 152 

 153 

Results 154 

SNPs genotypes of Vrs1 155 

This study investigates 215 accessions that offer a good perspective of the diversity of the 156 

crop, with particular focus on the western Mediterranean region (Table 1). Vrs1 alleles were 157 

initially inferred combining spike row-type and the four SNPs within Vrs1 presented by the 9k 158 

Illumina Infinium assay (Cuesta-Marcos et al. 2010). The SNP markers provided information to 159 

discriminate among genotypes (Table 2). BOPA marker 12_30897 (G/A) differentiates Vrs1.b3 160 

(two-rowed) and vrs1.a3 (six-rowed) from the other alleles. Marker 12_30900 (C/G) is specific 161 

to the vrs1.a3 allele. Marker 12_30896 (G/A), although it does not contribute to function of 162 

Vrs1, can be used to identify six-rowed barleys with the vrs1.a1 allele from the rest. The last 163 

marker 12_30901 (G/A) separates one of the major branches of the phylogenetic tree of Vrs1 164 
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(with alleles Vrs1.b2, vrs1.a2 and Vrs1.t) from the other two major branches of cultivated 165 

barley (with alleles vrs1.a1, Vrs1.b3 and vrs1.a3). The BOPA scores of the 215 accessions are 166 

shown in Supplementary Table 1.  167 

 168 

Sequence validation of Vrs1 alleles 169 

Sanger sequencing of 28 accessions were also carried out (Supplementary Table 1). The 170 

sequence data discriminated between some non-committal genotypes and concluded all the 171 

allele calls by SNP genotyping. As a whole, nine polymorphisms differentiated seven Vrs1 172 

alleles (Table 2). The sequences of lines identified as vrs1.a1, vrs1.a2, Vrs1.b2, Vrs1.b3, and 173 

Vrs1.t were identical to the sequences downloaded from NCBI. A new allele, named Vrs1.b5, 174 

was found in seven two-rowed Spanish accessions. Exome sequencing of 73 genotypes (mostly 175 

Spanish landraces) independently confirmed the polymorphisms identified (Supplementary 176 

Table 3), providing full allelic discrimination. Thus, 26 lines were correctly classified as vrs1.a1, 177 

37 lines were vrs1.a2, 2 lines had the vrs1.a3 allele, and 7 carried the Vrs1.b3 allele and 1 as 178 

Vrs1.b5.  179 

 180 

Discovery of a novel allele Vrs1.b5 181 

The new Vrs1 allele was identified in seven two-rowed Spanish landraces (Fig. 1A). This allele 182 

has been named Vrs1.b5, the number being the next in sequence available for this gene. The 183 

Vrs1.b5 allele, presents the distinctive thymine (‘T’) insertion in exon 2, typical of vrs1.a2 but, 184 

on top of it, there was a single base deletion G/_ in the same exon, 45 bp upstream of this 185 

insertion. The coupled deletion/insertion results in a frameshift of a stretch of 15 amino acids 186 

(Fig. 1B) and restored two-rowed spike from the six-rowed spike (Fig. 1C). The frameshift was 187 

located outside of the homeodomain, in a region apparently not relevant for the function of 188 

the DNA-binding domain (Fig. 1B). The spike phenotype of the lines carrying the new allele is 189 

definitely two-rowed (Fig. 1C), indicating that the 15 substituted amino acids were not 190 

essential for the function of VRS1 in terms of suppressing the development of lateral florets. 191 

This change, a single base deletion, has not been observed in any other sequence reported for 192 

this gene. A molecular phylogeny analysis with 47 unique sequences from both domesticated 193 

and wild barleys, positioned the new Vrs1.b5 allele only one-step apart from the six-row 194 

vrs1.a2 allele, both sharing Vrs1.b2 as common ancestor (Fig. 2). 195 
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 196 

Expression of Vrs1.b5 197 

Transcript of Vrs1 was detected in the two accessions (SBCC153 and SBCC155) carrying Vrs1.b5 198 

(Fig. 3). Vrs1 was predominantly expressed in the immature spikes, as previously reported 199 

(Sakuma et al. 2010, 2013). A six-rowed accession (SBCC039) carrying vrs1.a2, the immediate 200 

ancestor of Vrs1.b5 allele, showed the same gene expression pattern with the Vrs1.b5 carriers. 201 

Implication was that the gain of Vrs1 function in Vrs1.b5 was effected by the frameshift, not by 202 

any change of transcription. 203 

 204 

Diversity and geographical distribution of Vrs1 alleles 205 

Using the four SNPs from Cuesta-Marcos et al. 2010, together with the morphological 206 

identification of the row number, allows the precise identification of most, but not all, Vrs1 207 

alleles. To illustrate this, we predicted the Vrs1 allele for another study involving 138 European 208 

winter cultivars (Digel et al. 2016, Supplementary Table 4). Marker-based assignment of Vrs1 209 

alleles allowed unequivocal identification of 60 Vrs1.b3 alleles, 4 vrs1.a1, and 30 vrs1.a3. For 210 

the rest, marker information complemented with spike row-type allowed assigning allele 211 

vrs1.a2 to 39 cultivars, and five cultivars (all two-rowed) were still inconclusive. Scoring the 212 

rest of polymorphisms in Table 2 would allow further differentiation of the Vrs1.b2, Vrs1.b5 213 

and Vrs1.t alleles. 214 

We could also predict correctly row type and specific allele for 109 of the 126 landraces 215 

studied by Russell et al. (2016). We retrieved the data for SNPs and indels within Vrs1 (Morex 216 

WGS contig_135757) from that study, identifying four polymorphic sites of the nine presented 217 

in Table 2 (Supplementary Table 5). Most of the 72 six-rowed accessions carried the vrs1.a1 218 

allele (52), originating from Asia and in Africa; vrs1.a3 was present in 13 accessions, mainly 219 

from Eastern Europe, and vrs1.a2 was only found in 4 landraces from Spain and the French 220 

Pyrenees. Regarding two-rowed accessions, 39 were identified as having the Vrs1.b3 allele. 221 

Further 13 accessions were identified as carrying one of the Vrs1.b2 alleles, and four could not 222 

be determined due to missing data. 223 

 224 

Association of Vrs1 and EF-G alleles  225 



9 

 

Previously, variation in the EF-G locus, closely linked to Vrs1, was used to infer different origins 226 

within cultivated barley (Tanno et al. 1999, 2002; Casas et al. 2005), and allows further 227 

differentiating the Vrs1.t allele (A-type) from the Vrs1.b2 and vrs1.a2 lineage (D-type). Most 228 

two-rowed accessions analyzed in this study (57 out of 72) had the Vrs1.b3 allele, associated 229 

with the K-type in EF-G. Twelve two-rowed lines, (3 wild, 2 landraces from Morocco and 7 230 

Spanish landraces), however, showed a D-type, which is typical of six-rowed lines.  231 

The wild barleys and cultivated landraces from Morocco all carried the Vrs1.b2 allele, as 232 

expected, as a similar finding was reported previously by Komatsuda et al. (2007). 233 

Among 143 six-rowed accessions analyzed, 83 carried vrs1.a2 allele, and 78 of the vrs1.a2 234 

accessions carried the D-type of EF-G (cMWG699) confirming their tight linkage (Komatsuda et 235 

al. 1999) and association (Tanno et al. 2002). The vrs1.a2 was derived from Vrs1.b2 (Fig. 3) as 236 

described earlier (Komatsuda et al. 2007) and all the Vrs1.b2 carriers were D-type carriers 237 

(Table 2, Supplementary Table 1). 238 

All the accessions carrying Vrs1.b5 and most of the six-rowed accessions (78 out of 83) with 239 

vrs1.a2 also carried the D-type at the EF-G locus, indicating that both alleles belong to the 240 

same lineage, an implication of the restoration of gene function in Vrs1.b5 from vrs1.a2 due to 241 

the deletion. The Int-c gene that intervenes in the size of the lateral spikelets was sequenced in 242 

several lines (Supplementary Table 1). Using Sanger and exome sequence data available for 75 243 

accessions, six-rowed lines carried the Int-c.a allele, as expected, whereas seven two-rowed 244 

lines, including two with the Vrs1.b5 allele, were int-c.b1, typical of two-rowed cultivated lines 245 

(Ramsay et al. 2011).  246 

 247 

Discussion 248 

The present study adds a new two-rowed allele Vrs1.b5 to the catalogue of Vrs1 diversity. The 249 

new allele was created by a restoration of gene function in the ancestral recessive allele by a 250 

single nucleotide deletion. This sort of mutation, a kind of gain-of function, is unusual in 251 

nature. The direction of mutation from recessive vrs1 to dominant Vrs1 was opposite to the 252 

normal direction so far discovered (Komatsuda et al. 2007). In the present study, we identified 253 

7 two-rowed lines with the Vrs1.b5 allele, out of 50 two-rowed Spanish lines analyzed, i.e., 254 

14% of two-rowed Spanish barleys carry the new allele. The phenotype of these lines is 255 

definitely two-rowed, and two accessions surveyed for int.c carry the allele typically found in 256 
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two-rowed lines (Ramsay et al. 2011). A maximum parsimony phylogenetic analysis suggests 257 

that Vrs1.b5 was a reversion of vrs1.a2 to the two-rowed state through a new mutation. The 258 

reversion of the six-rowed to two-rowed seems far more uncommon than the opposite in the 259 

history of the crop (Komatsuda et al. 2007). Phylogenetically, loss-of-function allele vrs1.a2 260 

seems to derive from Vrs1.b2. Later, a deletion in vrs1.a2 likely gave rise to Vrs1.b5, which 261 

restored the ORF and reverted to the two-rowed phenotype. Thirulogachandar et al. (2017) 262 

performed a phylogenetic analysis for plants HD-ZIP I proteins, identifying putative motifs 263 

evolutionary conserved. Motif 16, 14 amino acids long starting from Lys29, which corresponds 264 

to part of the 15 amino acid region changed in the Vrs1.b5 allele, separated the monocot from 265 

the dicot proteins, as reported by those authors. The amino acid change in Vrs1.b5 allele did 266 

not affect functionality of the protein although the motif was predicted to have a nuclear 267 

localization signal ('RRRRRRSAR'). 268 

 269 

Origin of Vrs1.b5 270 

The presence of the Vrs1.b2 to vrs1.a2 lineage in the western Mediterranean was previously 271 

reported by Komatsuda et al. (2007), who proposed that the vrs1.a2 allele could be native to 272 

the region. This view was supported by studies carried out with the EF-G locus (marker 273 

cMWG699). Several surveys done with this marker concluded that the D-type (associated to 274 

vrs1.a2 and Vrs1.b2) was found preferentially in the Mediterranean region (Tanno et al. 1999, 275 

2002; Casas et al. 2005; Baba et al. 2011), but it was also present in winter six-rowed cultivars 276 

from Germany, France, and other western European countries (Casas et al., 2005). Since both 277 

two- and six-rowed barleys carrying the D allele are present in North Africa, Baba et al. (2011) 278 

proposed that the origin of the D allele was in Morocco. Our results illustrate that the D allele 279 

is profusely present in Spanish six-rowed landraces, most of them with the vrs1.a2 allele, and 280 

in a small group of two-rowed landraces featuring the new Vrs1.b5 allele. Moreover, even 281 

today, a large proportion of six-rowed vrs1.a2 genotypes can still be found among European 282 

modern winter cultivars, as derived from data provided in Digel et al. (2016). Therefore, its 283 

geographic origin cannot be indicated with certainty. Vrs1.b2 probably appeared in the Middle 284 

East. Recent sequencing of a 6,000-year-old barley from a cave in Israel revealed that it carried 285 

a putative two-rowed Vrs1.b2 genotype (Mascher et al. 2016). Vrs1.b2 has also been found in 286 

the old landrace Palmella Blue (Komatsuda et al. 2007), collected in Egypt early in the 20th 287 

century (https://npgsweb.ars-grin.gov/gringlobal/accessiondetail.aspx?id=1025310). In this 288 

study, we have found this allele in two landraces from Morocco which, could represent 289 
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remains of the same genetic stock, found at the two ends of its geographical distribution after 290 

westwards expansion though the Mediterranean during the Neolithic (Zilhao 2011).  291 

Considering together the presence of the precursor allele of Vrs1.b5 (vrs1.a2) exclusively in 292 

Western Europe and, in lower frequencies, in Morocco (Casas et al. 2005, Baba et al. 2011, and 293 

data derived from Digel et al. 2016, and Russell et al. 2016), and the discovery of Vrs1.b5 in 294 

Spanish landraces, we hypothesize that this new allele is native to the western part of the Old 295 

World.  296 

 297 

Application of the SNP markers for germplasm characterization 298 

An updated classification of the Vrs1 alleles can facilitate the analysis and differentiation of 299 

genotypes. Earlier efforts by Cockram et al. (2012), who developed a set of KASP markers for 300 

morphological traits assessed to determine distinctiveness, uniformity and stability (DUS) of 301 

new plant breeding varieties, including Vrs1, did not differentiate among all possible alleles. 302 

Similarly, the four SNP markers developed by Cuesta-Marcos et al. (2010) are not fully 303 

diagnostic, but at least allow an easy first discriminating step that could be implemented in all 304 

datasets based on the 9K and 50K (Bayer et al. 2017) barley chips. We illustrated its application 305 

by correctly estimating the Vrs1 allele for 133 of the 138 cultivars evaluated by Digel et al. 306 

(2016), with five inconclusive (Supplementary Table 4). Four of the remaining genotypes 307 

shared a common parent with the Vrs1.t allele (Intro) in their pedigree, and two of them have 308 

recently been identified as deficiens (Sakuma et al. 2017). 309 

Different studies carried out genome wide association analysis for type of spike or yield related 310 

traits and found QTL in the region of the Vrs1 locus. Even though Cuesta-Marcos et al. (2010) 311 

developed the 4 SNP BOPA markers described in Table 2, these authors reported more highly 312 

significant associations by the use of ‘synthetic markers’ which summarized the 313 

dominant/recessive nature of the Vrs1 allele than with any SNP within the gene. In another 314 

genome-wide study with six-rowed cultivars and advanced breeding lines, Berger et al. (2013) 315 

identified markers in the vrs1 region associated with QTL for test weight but were not able to 316 

differentiate the lines. The authors concluded that either there was a closely linked gene for 317 

test weight, or there were two or more vrs1 alleles segregating in the breeding materials with 318 

one of them contributing directly to increased test weight. An examination of the specific Vrs1 319 

alleles present in their dataset would have shed further light on these hypotheses. In the work 320 
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by Muñoz-Amatriaín et al. (2014), with the USDA barley core collection, the largest panel 321 

tested up to date, the top hit for spike row number corresponded to marker 12_30896. This 322 

marker separates six-rowed vrs1.a1 accessions from the rest, which includes not only 2-rowed 323 

accessions, but also other 6-rowed ones with different alleles. Therefore, this marker does not 324 

discriminate row type. It was captured by GWAS probably because there was an imbalance of 325 

allelic frequencies in the genotypes, with a majority of 6-rowed presenting vrs1.a1. In the last 326 

study published by Thirulogachandar et al. (2017), the two SNPs associated with variation in 327 

leaf area are 12_30896 and 12_30900 (both within Vrs1 and differentiating six-rowed lines 328 

with allele vrs1.a1 or vrs1.a3, respectively). Overall, a comprehensive evaluation of Vrs1 for 329 

the markers differentiating all alleles, as haplotypes instead of considering them 330 

independently, would allow an accurate characterization of the alleles present in barley 331 

materials as the ones reported in those studies. A definitive allele characterization could 332 

provide new insights on association of specific Vrs1 alleles to the relevant agronomic and 333 

morphological traits reportedly related to this gene. 334 

This study completes the allelic catalogue of gene Vrs1, offers new insights on explanations for 335 

their geographic distribution, and provides a full list of SNP markers useful for breeders and 336 

germplasm banks to better analyse genetic variation associated to this gene, and facilitate 337 

germplasm classification.   338 
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Table 1 Plant materials and genotyping platforms used in this study. 532 

Country/ 
Region  

Type of 
material 

Spike row-
type 

No. 
 

 Genotyping Reference 

Morocco Wild  Two-rowed 3  Eureka Genomics, EF-G, 
Sanger 

Molina-Cano et al. 1982 

Morocco Landraces Two- and 
six-rowed 

8  Eureka Genomics, EF-G, 
Sanger (3) 

Moralejo et al. 1994, 
Molina Cano et al. 2005  

Spain Landraces Two-rowed 39  Eureka Genomics, EF-G, 
Sanger (5) 

Moralejo et al. 1994 

Spain Landraces Two- and 
six-rowed 

137  9k iSelect, EF-G, exome 
capture (66), Sanger (14) 

Igartua et al. 1998  

Europe/ 

USA 

Cultivars Two- and 
six-rowed 

28  9k iSelect, EF-G, exome 
capture (7), Sanger (3) 

This study 

533 
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Table 2 Vrs1 alleles detected in this study. 534 
 535 

 Nucleotide positions referred to Morex WGS contig_135757 (vrs1.a1 allele)  
  

 Exon 1  Exon 2  Intron 2  Exon 3  3’ UTR Row EF-G No. of  
Allele 1067   1240 1246 1288 1393   1608   1725 1818   1961 type type accessions 
Vrs1.b2 G  G G – C  T  G A  C 2 D 5 
vrs1.a2 G  G G T C  T  G A  C 6 D 83 
Vrs1.b5 G  – G T C  T  G A  C 2 D 7 
vrs1.a1 G  G G – C  C  – A  T 6 A 57 
Vrs1.b3 A  G T – C  C  G A  C 2 K 57 
vrs1.a3 A  G T – G  C  G A  C 6 A 3 
Vrs1.t1 G  G G – C  T  G G  C 2 A 3 
Effect Gly8>Asp  Glu26>F.S. Glu26>Asp Ala40>F.S. Phe75>Leu    Glu152>F.S. Ser184>Gly   

 
  

BOPA 12_30897         12_30900   12_30901         12_30896      

BOPA markers 12_30901 and 12_30896 interrogate the complementary strand, therefore are usually reported as A/G and G/A, respectively 536 
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Figure legends 537 

Fig. 1 Discovery of Vrs1.b5. (A) Alignment of Vrs1.b2, vrs1.a2 and Vrs1.b5 DNA partial 538 

sequences of exon 2 indicating the creation of Vrs1.b5 by 1-bp deletion in vrs1.a2. (B) Multiple 539 

alignment of protein sequences of different alleles of the Vrs1 gene. Secondary structure 540 

elements of the homeodomain (HD) and the leucine zipper dimerization domain (Leu zipper) 541 

are shown as color-filled boxes. Predicted protein-DNA interfaces residues are marked with 542 

circles. Boxed sequences highlight differences among alleles and asterisks mark premature 543 

stop codons. Three wild barley lines (‘‘OUH’’ identifiers) used as outgroups in a previous 544 

phylogeny (Komatsuda et al. 2007) are also shown. Alignment was computed with clustal-545 

omega-1.2.1. (C) Barley spikes from Spanish landraces SBCC039 (vrs1.a2) six-rowed (left) and 546 

SBCC155 (Vrs1.b5) two-rowed (right). 547 

 548 

Fig. 2 Sequence analysis of 47 aligned Vrs1 alleles. Parsimony network where edges represent 549 

single-mutation transitions, and nodes correspond to haplotypes. Tiny circles represent 550 

intermediate states (with no associated genotypes). Six-rowed barley accessions are displayed 551 

as thick circles. The central haplotype corresponds to OUH630. The labeled circles match the 552 

haplotypes shown in Figure 1B. 553 

 554 

Fig. 3 Reverse transcription PCR (RT-PCR) analysis of Vrs1 555 

Vrs1 was predominantly expressed in the immature spikes in both six-rowed (SBCC039) and 556 

two-rowed barley (SBCC153 and SBCC155). All organs were collected from main tiller at the 557 

awn primordium stage. The PCR product of Vrs1 was directly sequenced to confirm the 558 

specificity. Actin was used as a control. 559 

 560 
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