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Abstract 

BACKGROUND: Consumers perceive organic meat as having superior nutritional 

properties than conventional meat, although evidences from commercial samples are 

very scarce. This study compared the nutritional composition of organic and 

conventional beef meat sold at retail, including for the first time the bioactive 

compounds coenzyme Q10, carnosine, anserine, creatine, and taurine. Sampling 

comprised two muscles, Longissimus thoracis and Supraspinatus. RESULTS: Organic 

beef had 17% less cholesterol, 32% less fat, 16% less fatty acids, 24% less 

monounsaturated fatty acids, 170% more α-linolenic acid, 24% more α-tocopherol, 53% 

more β-carotene, 34% more coenzyme Q10 and 72% more taurine than conventional 

beef. Differences between organic and conventional samples were clearly dependent on 

the muscle, as Longissimus thoracis and Supraspinatus showed different patterns of 

compounds accumulation. CONCLUSIONS: For the first time, to our knowledge, 

higher amount of bioactive compounds in organic beef meat is reported. Retail organic 

beef had higher nutritional value than retail conventional beef, resulting from better-

balanced lipid and bioactive compounds contents. 
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Introduction 

Meat consumption is important in human diet to fully develop and maintain the 

optimal physiological and intellectual performances. In particular, beef meat is a rich 

source essential amino acids, vitamins, minerals and bioactive components.
1
 

Concerning beef meat bioactive compounds, coenzyme Q10, carnosine, anserine, 

creatine and taurine have gained interest due to their recognized involvement in disease 

prevention. Dietary coenzyme Q10 has been related to antihypertensive effects and 

cardiac function improvement.
2
 Carnosine scavenges harmful products originated from 

oxidative stress and reduces the formation of advanced glycation end-products, which 

are involved in cardiovascular ischemic damage and Alzheimer’s disease.
3, 4

 Anserine, 

in combination with carnosine, has been suggested to improve physical capacity, 

cardiometabolic health and cognitive functioning in the elderly.
5
 Meat is one of the 

primary dietary sources of creatine, which has been suggested to have positive impact 

on the immune and neurological system.
6
 Creatine is also used by athletes as a dietary 

supplementation for improved muscle strength and performances.
7
 On the other hand, 

taurine has been shown to reduce the effects of obesity, by stimulating the energy 

expenditure and modulating the lipid metabolism.
8
 Taurine has also been suggested as a 

potential therapeutic agent in chronic inflammatory disorders.
9
  

Despite the nutritional relevance of beef, some epidemiological studies support 

the classification of red meat as probably carcinogenic to humans, mainly due to the 

formation of harmful compounds during cooking, smoking or curing.
10

 Health concerns 

are also derived from the saturated fat content and cholesterol, although beef meat also 

contains beneficial omega-3 (n-3) polyunsaturated fatty acids (PUFA). Therefore, red 

meat has to be consumed in moderation in order to fit into a healthy diet.
11

 Anyhow, it 

is advisable that this moderate intake consists of minimally processed red meat with 
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high nutritional quality, in order to provide healthy levels of proteins, essential amino 

acids, minerals, vitamins and bioactive components.
12

 

Beef meat nutrients and bioactive contents largely depend on the muscle 

function and fiber type composition. For example, muscles with higher aerobic 

metabolism are found to contain more taurine and coenzyme Q10, and less carnosine and 

creatine.
13

 The production system also influences the nutritional value of beef meat. In 

this sense, the feed composition is a relevant factor affecting the nutritional profile, 

modulating the accumulation of fatty acids and other bioactive compounds.
13, 14

 α-

Tocopherol (vitamin E) and β-carotene (provitamin A) contents have been shown to be 

dependent on the feeding regime.
15

 Although meat is not an important dietary source of 

these two vitamins, their presence can be important in terms of meat stability due to 

their antioxidant activity.
16

 

Organic farming has gained popularity among consumers, thanks to the use of 

sustainable feeding and breeding practices, and their higher standards of animal 

welfare.
17

 In addition, consumers perceive organic meat as having better quality and 

healthy attributes than conventionally produced livestock products, although few 

evidences exist.
18, 19

 Namely, better balanced lipid profiles have been found in organic 

beef due to increased content in long chain n-3 fatty acids.
20

 Anyway, to the best of our 

knowledge, effects of organic farming on other beef meat bioactive components remain 

largely unknown.  

Given the substantial lack of scientific data about the effects of organic farming 

on the nutritional value of beef meat, the objective of this study was to assess the 

nutritional parameters and bioactive compounds (water, collagen, protein, fat, fatty 

acids profile, cholesterol, α-tocopherol, β-carotene, coenzyme Q10, anserine, carnosine, 

creatine and taurine) of commercially available organic and conventional beef meat, 
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including two muscles with different fiber type composition and involvement in the 

physical activity: Longissimus thoracis (ribeye, LT) and Supraspinatus (mock tender, 

SS). 

 

Material and methods  

Chemicals 

 α-Tocopherol, β-carotene, coenzyme Q10, creatine, carnosine, anserine, taurine, 

fatty acid methyl esters (FAME) mixture and formic acid were provided by Sigma-

Aldrich (St. Louis, MO, USA). All solvents for compounds determinations were of 

chromatographic grade (Fisher Scientific, Madrid, Spain).  

 

Sampling and proximate composition 

 Organic samples were obtained from seven Spanish major retail chains, 

including one LT and one SS sample from each store (n=14). At the same time, 

conventional samples were obtained from the same retailers, including two LT and two 

SS samples from each store (n=28). Each sample had different origin and brand, and 

consisted of a tray-packaged piece of 200-1000 g. Sampling was concluded within a 

period of 3 months. The larger sampling size of conventional beef was aimed at being 

more representative of the higher number of available conventional items at retail. All 

organic samples were produced in Spain and were labelled with the EU organic 

logotype and the code of the control authorities. As the study was conducted on 

commercial samples from retail stores, varying farming practices, production, 

distribution and retailing conditions may have been involved. Samples were vacuum-

packed in aluminum foil bags and stored at –80 ºC until analysis. Analytical 

determinations were performed in ground meat after removal of the subcutaneous and 
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intermuscular fat and connective tissue. Protein, fat, collagen and water contents were 

determined in triplicate using a near infrared (NIR) meat analyzer (FoodScan, Foss, 

Hillerød, Denmark) with in-house calibrations.
21

 

 

Fatty acids determination 

Fatty acids were analyzed according to Mach et al.
22

 Briefly, 2 g of thawed 

sample were added with 2 mg glyceryl tritridecanoate (internal standard) and 

homogenized with 100 mL of chloroform: methanol (2:1 v/v) for 30 min. The organic 

fraction was separated, and the extraction repeated twice by adding 0.1 g ml
−1

 sodium 

chloride. Organic fractions were combined, and the solvent was evaporated with a 

rotary evaporator. FAME were obtained by following the ISO method 5509 
23

 and 

analyzed using an HP 5890 Series II gas chromatograph (Hewlett Packard SA, 

Barcelona, Spain). Samples were introduced by split injection into a BPX70 fused silica 

capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness - SGE, Milton Keynes, 

UK). Helium was the carrier gas at 30 cm s
−1

. The GC temperature was held at 150 °C 

for 1 min, then increased at 4 °C min
−1

 to 200 °C and held for 10 min. Individual fatty 

acids were identified by comparison of their retention times with those of pure 

standards. Quantification was made by using an internal standard calibration. 

 

Cholesterol determination 

 Cholesterol was quantified following the procedure of Cayuela, Garrido, Bañón, 

& Ross.
24

 Ground meat (100 mg) was mixed with 1 mg of 5α-colestanol (internal 

standard) and treated with 7.3 mL of saponification solution (115 g kg
-1

 potassium 

hydroxide in 55% ethanol v/v) during 15 min at 80 ºC. Then, cholesterol was extracted 

with 3 mL hexane and centrifuged (2,700 g, 10 minutes). An aliquot from the upper 
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organic phase was collected and evaporated to dryness with nitrogen. The residue was 

re-dissolved with mobile phase (acetonitrile: acetone, 50:50 v/v). Analysis was carried 

out using an HPLC (Waters, Milford, MA, USA), equipped with a refractive index (RI) 

detector (Waters). The separation was achieved using a Nucleosil 100-5 C18 column (4 

× 250 mm i.d., 5 µm particle size; Agilent) at a flow rate of 1.2 mL min
-1

. 

Quantification was made using internal standard calibration.  

 

α-Tocopherol, β-carotene and coenzyme Q10 determination 

 α-Tocopherol, β-carotene and coenzyme Q10 were assessed by HPLC, with a 

protocol adapted from Purchas et al. 
25

 and Karadas et al. 
26

. All the procedure was 

conducted in subdued light. One gram of sample was mixed with 2 mL 0.15 M sodium 

chloride. After homogenization and addition of 2 ml of ethanol containing 0.1 g kg
-1

 

BHT, samples were extracted with 5 ml of hexane. Then, sample was gently stirred for 

15 min and centrifuged at 4,000 g at 4 ºC for 5 min. The hexane layer was transferred 

into an amber bottle and the extraction was repeated two more times. Supernatants were 

collected and evaporated to dryness under nitrogen stream. The dried extract was 

reconstituted in 1 ml of 2-propanol: acetonitrile (2:8, v/v), filtered through 0.2 µm PTFE 

filter and injected. Chromatographic separation was carried out in an Agilent 1100 

system equipped with diode array (DAD) and fluorescence (FLD) detectors (Agilent 

Technologies, Palo Alto, CA, USA), and a Luna 5 µm, C18 (150mm × 4.6mm i.d.) 

column (Phenomenex, Agilent, Torrance, CA, USA). Elution was performed at 1 ml 

min
-1

 with mobile phase varying linearly from 90% A (100% acetonitrile) and 10% B 

(acetonitrile: tetrahydrofurane 20:80, v/v), to 100 % B in 12 minutes. β-Carotene and 

coenzyme Q10 were detected by DAD at 445 nm and 275 nm (respectively), and α-
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tocopherol by FLD (Ex 280 nm, Em 330 nm). Quantification was made using 

calibration curves of the three standards (0 – 50 µg ml
-1

). 

 

Carnosine, anserine, creatine and taurine simultaneous determination  

Carnosine, anserine, creatine and taurine were extracted by adapting a method 

previously developed for porcine muscles.
27

 A portion of sample (1 g) was 

homogenized with 10 mL ultra-pure 0.01 N hydrochloric acid using an Ultra-Turrax 

disperser (IKA, Wilmington, NC, USA), and centrifuged at 4,500 g for 5 min (Beckman 

Coulter, Brea, CA, USA). Two mL of the supernatant were added to 2 mL acetonitrile 

and stirred for one hour at 4 ºC. After centrifugation (1,500 g, 3 min, 4 ºC), 1 mL of the 

supernatant was diluted up to 25 mL with 0.1% (v/v) formic acid.  

One ml was added with 25 µl of creatinine-d3 (internal standard) solution at 50 

g mL
-1

, filtered through PTFE and injected (5 μL) in an Acquity UHPLC system, 

equipped with a triple quadrupole mass detector (Waters). The chromatographic 

separation was carried out with an HSS T3 column (150 mm × 1.0 mm i.d., 1.8 μm 

particle size, Waters) with isocratic elution of mobile phase A (water: formic acid: 

acetonitrile, 979:1:20 v/v/v) at a flow rate of 0.130 mL min
-1

, followed by a washing 

step with mobile phase B (water: formic acid: acetonitrile, 299:1:700 v/v/v) during 1 

min. The electrospray ionization (ESI) source operated in the positive mode with a 

capillary voltage set at +3 KV. The source temperature was held at 140 ºC and the 

desolvation temperature at 350 ºC. Desolvation gas (nitrogen) flow rate was 350 L h
-1

, 

the cone gas (nitrogen) flow rate was 25 L h
-1

 and the collision gas (argon) flow rate 

was 0.10 mL min
-1

. 

Target compounds were quantified by Multiple Reaction Monitoring (MRM) 

operating at unit resolution. MRM conditions were optimized with the Autotune Wizard 
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tool (MassLynx software, Waters) by infusing standard solutions (10 mg L
-1

) of each 

compound separately. Calibration curves were created by analyzing a sample of pooled 

meat spiked with known amounts of standards, using the peak area ratio of each 

compound to the internal standard in the MRM mode. Limits of detection (LOD) were 

calculated based on the calibration curves, as the concentration corresponding to a 

signal to noise ratio (s/n) of 3. Absolute recoveries were estimated by comparing the 

response of three control samples, spiked before extraction with known amounts of pure 

standards, with the response of the same samples spiked after extraction at the same 

concentrations. Repeatability of the method was estimated by analyzing three samples 

per triplicate the same day (intraday) and three different days (interday). 

 

Statistical analysis 

Data were analyzed with a full factorial 2-way ANOVA (JMP 8.0.1, SAS 

Institute, Cary, NC, USA), considering production system and muscle as factors, and 

their interaction. Mean differences were tested by the LS Means Student’s t (p < 0.05).  

 

Results and discussion 

Simultaneous analysis of anserine, carnosine, creatine and taurine. 

A new UHPLC-MS method was developed for the simultaneous evaluation of 

anserine, carnosine, creatine and taurine. The main validation parameters of the method 

are presented in Table 1. The target compounds were identified by comparing retention 

time and two specific MRM transitions of the deprotonated molecular ions with the 

corresponding data obtained from pure standard solutions. Recovery varied from 98.3% 

to 102.3%, LOD from 2.8 to 94 µg g
-1

, and repeatability had RSD values always below 
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6.0%.  These results confirmed the method suitability for the quantification of the four 

bioactive compounds in meat samples.  

The simultaneous determination of meat bioactive compounds has been 

described previously by few works. Zinellu et al.
28

 developed a method for the 

determination of carnosine, homocarnosine and anserine by capillary electrophoresis 

and UV detection. Some chromatographic methods have been described as well. A 

work by Aristoy et al.
27

 showed a reverse-phase HPLC method for the evaluation of 

carnosine, anserine and taurine, after derivatization to their phenylthiocarbamyl 

derivatives. Purchas et al.
25

 determined taurine and carnosine by cation exchange 

chromatography, and another work, described a hydrophilic interaction chromatography 

(HILIC) procedure for the simultaneous determination of carnosine, anserine, balenine, 

creatine and creatinine in meat.
29

 The present work presents a new reverse phase HPLC-

DAD-MS methodology, not requiring sample cleanup or derivatization, for the 

simultaneous determination of anserine, carnosine, creatine and taurine in meat. 

 

Effects of muscle 

The two muscles included in this study showed significant differences in their 

nutritional composition and bioactive contents (Table 2). LT samples had higher 

contents in protein, fat, saturated fatty acids (myristic acid, palmitic acid and stearic 

acid), elaidic acid (monounsaturated fatty acid, MUFA), carnosine and anserine. On the 

other hand, SS muscle contained higher water, collagen, polyunsaturated fatty acids 

(PUFA, eicosatrienoic acid and arachidonic acid), α-tocopherol, coenzyme Q10 and 

taurine contents.  

Differences in bioactive composition according to the muscle type are well 

documented.
30, 31

 These differences can be attributed to the energy requirements and the 
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metabolic differentiation between muscle types, as a consequence of their different 

involvement in the animal physical activity. In this sense, LT extends the vertebral 

column and participates in flexion and extension movements that require lower energy 

demand than SS, which is used in locomotion. Cattle SS contains higher percentage of 

fibers having high oxidative enzyme activity than LT, which is more adapted to 

contraction by anaerobic glycogenolysis (fast-twitch-glycolytic fibers).
32

 The results are 

in agreement with previous reports describing higher taurine and coenzyme Q10 contents 

and lower carnosine and anserine contents in muscles requiring higher percentage of 

aerobic metabolism.
13, 27

  

 

Collagen, protein and water contents in organic and conventional beef 

Organic beef contained more collagen and water than conventional beef, while 

their protein contents were similar (Table 2). In the case of moisture, differences were 

found according to the muscle, as shown by the significant interaction between 

production system and muscle factors (Table 2). In this regard, the higher water content 

in organic samples was due to the LT muscle, as SS water was similar in both organic 

and conventional beef (Figure 1).  

The absence of protein differences between organic and conventional beef is in 

agreement with the results of a comprehensive meta-analysis for protein contents in 

organic and conventional meat.
19

 Conversely, the same meta-analysis did not find 

significant differences in water content. To our knowledge, this is the first work 

showing collagen differences between organic and conventional beef meat. Different 

factors, such as animal activity and diet, might have influenced the significant effects 

found in the present study. 

Lipid contents in organic and conventional beef 
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Organic beef meat had 17% less cholesterol, 32% less fat, 16% less total fatty 

acids, 17% less palmitic acid (saturated fatty acid) and 24% less MUFA (including 

palmitoleic acid, elaidic acid, oleic acid and vaccenic acid) than conventionally 

produced beef meat (Table 2). Concerning total PUFA, no significant differences were 

observed, although organic beef contained 170% more α-linolenic acid (n-3), 46% less 

eicosatrienoic acid (n-6) and 40% less arachidonic acid (n-6) than conventional beef. 

In many instances, the differences in lipid profile between organic and 

conventional beef depended on the muscle, as shown by the significant interactions 

between production system and muscle factors (Table 2). Among lipids influenced by 

the production system, there was no interaction for palmitic acid, oleic acid, total fatty 

acids and cholesterol, hence the effects of organic farming on these compounds were 

similar in SS and LT muscles. The rest of lipids could be listed in four categories 

according to their muscle-dependent response (P < 0.05) under organic farming (Fig. 1): 

i) Higher content in LT: Linoleic acid and α-linolenic acid. 

ii) Higher content in SS:  α-Linolenic acid (higher effect than LT). 

iii) Lower content in LT: Fat, myristic acid, margaric acid, palmitoleic acid, 

elaidic acid and vaccenic acid. 

iv) Lower content in SS: Eicosatrienoic acid, arachidonic acid and total PUFA. 

Previous works comparing organic and conventional lipid profiles in cattle meat 

have shown contrasting results. Lower fat, cholesterol and MUFA, and higher saturated 

fatty acids, PUFA and n-3 PUFA contents have been reported in LT samples of organic 

beef.
33

 Other reports showed higher concentrations of vaccenic acid (MUFA) and n-3 

PUFA in organic beef meat.
20, 34

 Higher fat content and no significant differences in 

fatty acids profile has also been reported in organic compared to conventional steer 

meat.
35

 A meta-analysis on livestock meat showed similar or slightly lower saturated 
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and MUFA concentration under organic production, while larger increased contents 

were found for PUFA and n-3 PUFA.
19

  

It has been stated that the feeding regime is a main factor affecting meat fatty 

acid composition.
36

 The European Regulation 834/2007 on organic production 

stipulates that organic livestock shall have permanent access to open air areas, 

preferably pasture.
37

 In line with this, results showed that organic samples contained 

lower MUFA and higher n-3 PUFA contents, which is indicative of a grass-based 

diet.
36, 38

 On the other hand, it has been shown that lipid concentrations in beef meat are 

highly dependent on the muscle.
30, 31

 In this work, muscles appeared to have different 

tendency to accumulate certain lipids under conventional or organic production systems. 

The muscle function could have determined the fat accumulation in beef bred under 

conventional farming, as it took place principally in the muscle less involved in 

locomotion (LT). 

A number of epidemiological studies have correlated fat and cholesterol intake 

with cardiovascular disease and cancer.
39, 40

 The results showed that cholesterol and 

overall fatty acids contents in retail organic beef were better-balanced than in retail 

conventional beef. 

 

α-Tocopherol and β-carotene contents in organic and conventional beef 

Organic beef contained 24% more α-tocopherol (vitamin E) and 53% more β-

carotene (provitamin A) than conventional beef (Table 2). More precisely, differences 

were found in LT muscles, as organic LT contained 50% more α-tocopherol and 341% 

more β-carotene than conventional LT, whereas no significant differences were found in 

the SS muscle (Figure 1). 
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The effect of organic farming on α-tocopherol and β-carotene contents can be 

attributed to the type of feed made available to the animals, given that a portion of the 

dietary intake accumulates into the body fat. Unlike conventional systems, certified 

organic beef must have access to pasture, so at least some of their diet comes from 

grass. 
37

 In agreement, it has been found that meat from beef fed with grass-rich diets 

contained higher β-carotene, their retinoid derivatives and α-tocopherol contents.
36, 41

 

In the case of conventional LT and SS, results showed that fat content and fat-

soluble α-tocopherol and β-carotene contents had an opposite relationship, which was 

not found in organic LT and SS muscles (Figure 1). Hence, it is most likely that this 

effect was triggered by some specific breeding practices affecting conventional beef, 

such as type of feed or low physical activity. Under these conditions, the occurrence of 

a differentiated accumulation pattern of fat and fat-soluble vitamins in both muscles 

might be due to differences in their metabolism. Other works have also reported this 

opposite trend in bovine muscles.
30, 42

 

Beef meat is not an important dietary source of α-tocopherol and β-carotene, 

however, their presence in meat is important in terms of shelf life, thanks to their 

antioxidant and radical scavenging activity. It has been reported that endogenous α-

tocopherol increases meat color stability and delays lipid oxidation.
16

 Similarly, β-

carotene contributes to the meat preservation against oxidation, by quenching reactive 

oxygen species and retarding lipid and protein oxidation.
43

 It has been shown that β-

carotene acts synergistically with α-tocopherol on avoiding lipid peroxidation.
44

 The 

higher antioxidant contents can be particularly beneficial for extending shelf life of 

organic beef due to its higher concentration of easily oxidizable n-3 PUFA.
36 

 

 

Bioactive compounds contents in organic and conventional beef 
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Coenzyme Q10 participates in the electron transport chain in mitochondria, for 

which is required during aerobic cellular respiration. Carnosine and anserine are 

cytosolic antioxidants, which are believed to reduce muscle fatigue and prevent cell 

damage from harmful products of oxidative stress. Creatine is involved in the recycling 

of adenosine triphosphate (ATP) through the phosphocreatine system. After its 

synthesis in liver and kidneys, it is transported to tissues with high-energy demand, 

mainly skeletal muscle and brain, where high use of ATP is required. Taurine is 

essential for normal skeletal muscle functioning, as it is involved in muscle contraction, 

regulation and defense from oxidative stress.
45

 As all of these compounds are directly 

involved in muscle metabolism, their synthesis and levels in meat may depend on the 

animal physical activity and dietary factors. To the best of our knowledge, this is the 

first work assessing coenzyme Q10, carnosine, anserine, creatine, and taurine contents in 

organic and conventional beef meat at retail.  

Organic beef contained 72% and 34% higher taurine and coenzyme Q10 contents 

(respectively), while no differences were found for anserine, carnosine and creatine 

(Table 2). The increase in coenzyme Q10 contents in organic with respect to 

conventional beef was found to be similar in both LT and SS muscles. However, 

production system had significant interaction with muscle type for carnosine, anserine 

and taurine. Thus, carnosine and anserine contents were higher in organic LT, and 

taurine in organic SS (Figure 1).  

Martino et al.
46

 reported increased coenzyme Q10 and decreased anserine and 

carnosine levels in organic pig meat with respect to the conventional counterpart. 

According to the literature on cattle meat, the contents in taurine and coenzyme Q10 

could have been influenced by the feeding practice. In this sense, higher concentrations 

of taurine, carnosine and coenzyme Q10 have been found in meat from cattle finished on 
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pasture.
13

 Also, higher levels of taurine have been reported in steers grazed and finished 

on wheat instead of rye.
47

 

With regard to the differences between organic and conventional beef depending 

on the muscle, previous works have related high carnosine and anserine levels to 

anaerobic metabolism (glycolysis), and taurine to oxidative metabolism.
27, 30

 Therefore, 

the increase in carnosine and anserine in LT (glycolytic enzyme activity) and taurine in 

SS (oxidative enzyme activity) could be a sign of enhanced energy expenditure. It is 

noteworthy to mention that other factors, such as animals’ age, breed or metabolic 

status, could have also influenced the taurine, coenzyme Q10, carnosine and anserine 

higher contents in organic samples.
48

  

Several health benefits have been attributed to the intake of coenzyme Q10, 

anserine, carnosine and taurine. Several studies have correlated deficiency of coenzyme 

Q10 with cardiovascular disease, cancer and neurodegenerative diseases. Carnosine and 

anserine scavenge harmful products originated from oxidative stress, and have been 

related to protective effects against cardiovascular and neurodegenerative diseases.
3-5

 

On the other hand, taurine possess anti-inflammatory and anti-oxidative effects. It has 

been related to lower risk of obesity through the stimulation of energy expenditure.
8
  

 

Conclusions 

This is the first time, to our knowledge, that an exhaustive evaluation of the beef 

meat nutritional value, including coenzyme Q10, carnosine, anserine, creatine and 

taurine, is reported for organic samples. The results showed that organic beef, from 

Spanish retail outlets, had higher nutritional value than beef produced under 

conventional farming. This statement is based on reduced cholesterol and fat, and higher 

contents in α-linolenic acid, α-tocopherol, β-carotene, coenzyme Q10, taurine, anserine 
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and carnosine, depending on the muscle. The difference in nutritional value was 

probably triggered by multiple factors, such as the feeding regime (e.g. pasture) or 

animals’ breed, age, physical activity and welfare, although further studies with 

controlled husbandry factors would be required in order to determine their specific 

effects. Results clearly depended on the muscle, as LT and SS showed divergences on 

the accumulation of compounds driven by the production system. The causes of these 

muscle divergences might be related to their different function in the animal activity and 

metabolic requirements. Since meat intake should be limited in a healthy diet, organic 

beef is a recommendable choice due to its better-balanced lipid profile and bioactive 

content beside conventionally raised beef.  
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Figure legends 

Figure 1. Interaction effects between production system and muscle on the nutritional 

and bioactive contents in commercially available beef meat. Asterisks indicate 

significant differences between conventional and organic production within muscles (* 

P < 0.05; ** P < 0.01; *** P < 0.001). LT: Longissimus thoracis; SS: Supraspinatus; 

AA: arachidonic acid; ALA: α-linolenic acid; EA: eicosatrienoic acid; PA: palmitoleic 

acid; PUFA: polyunsaturated fatty acids. 
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Table 1. Performance and validation parameters of the UHPLC-MS method for the 

simultaneous analysis of anserine, carnosine, creatine and taurine 

 

†
(Ax/Ais)=a(Cx/Cis)+b; where Ax is the peak area of the analyte; Ais is the peak area of 

the internal standard; Cx is the analyte concentration and Cis is the internal standard 

concentration. 
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Table 2. Nutritional and bioactive contents (mean ± SE) in commercially available beef 

meat, according to the production system and muscle 

    
Production system† Muscle† 

 

    

Conventional Organic 

Longissimus 

thoracis Supraspinatus 

Interacti

on‡ 

PS×M 

Water 

g 

k

g-

1 

707.5 ± 6.5 734.3 ± 5.5*** 691.1 ± 4.7 741.7 ± 
4.4**

* 
* 

Collagen  

g 

k

g-

1 

12.0 ± 0.6 14.5 ± 1.0* 11.6 ± 0.6 14.0 ± 0.8* 
 

Protein  

g 

k

g-

1 

217.5 ± 1.8 215.0 ± 3.9 226.0 ± 1.3*** 207.3 ± 1.5 
 

Fat 

g 

k

g-

1 

46.9 ± 
3.5**

* 
31.8 ± 1.5 53.1 ± 3.4*** 30.6 ± 1.8 *** 

Myristic 

acid (C14:0) 

m

g 

g-

1 

0.67 ± 0.05 0.59 ± 0.05 0.79 ± 0.04*** 0.49 ± 0.04 ** 

Palmitic acid 

(C16:0) 

m

g 

g-

1 

6.70 ± 0.32* 5.57 ± 0.45 7.10 ± 0.36** 5.54 ± 0.33 
 

Margaric 

acid (C17:0) 

m

g 

g-

1 

0.32 ± 0.02 0.27 ± 0.02 0.34 ± 0.02 0.28 ± 0.02 * 

Stearic acid 

(C18:0) 

m

g 

g-

1 

3.94 ± 0.16 4.23 ± 0.37 4.40 ± 0.20* 3.66 ± 0.23 
 

Total 

saturated 

fatty acids 

m

g 

g-

1 

11.63 ± 0.54 10.66 ± 0.89 12.63 ± 0.58* 9.98 ± 0.60 
 

Palmitoleic 

acid (C16:1, 

9c) 

m

g 

g-

1 

0.95 ± 
0.04*

** 
0.67 ± 0.07 0.88 ± 0.06 0.83 ± 0.05 ** 

Elaidic acid 

(C18:1, 9t) 

m

g 

g-

1 

1.48 ± 
0.20*

** 
0.62 ± 0.15 1.91 ± 0.20*** 0.48 ± 0.07 *** 

Oleic acid 

(C18:1, 9c) 

m

g 

g-

1 

11.33 ± 0.46* 9.19 ± 0.87 10.89 ± 0.56 10.35 ± 0.70 
 

Vaccenic 

acid (C18:1, 

11t) 

m

g 

g-
0.64 ± 

0.03*

* 
0.45 ± 0.05 0.58 ± 0.04 0.57 ± 0.04 * 
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1 

Total 

monounsatur

ated fatty 

acids 

m

g 

g-

1 

14.40 ± 
0.65*

* 
10.94 ± 0.97 14.26 ± 0.83 12.23 ± 0.81 

 

Linoleic acid 

(C18:2, n-6) 

m

g 

g-

1 

1.66 ± 0.09 1.83 ± 0.13 1.59 ± 0.11 1.85 ± 0.08 * 

α-Linolenic 

acid (C 18:3, 

n-3) 

m

g 

g-

1 

0.03 ± 0.01 0.07 ± 
0.01**

* 
0.04 ± 0.00 0.04 ± 0.01 * 

Eicosatrienoi

c acid (C 

20:3, n-6) 

m

g 

g-

1 

0.20 ± 
0.02*

** 
0.11 ± 0.01 0.10 ± 0.01 0.25 ± 

0.03*

** 
*** 

Arachidonic 

acid (C20:4, 

n-6) 

m

g 

g-

1 

0.67 ± 
0.09*

* 
0.40 ± 0.03 0.30 ± 0.04 0.87 ± 

0.09*

** 
*** 

Total 

polyunsatura

ted fatty 

acids 

m

g 

g-

1 

2.58 ± 0.19 2.41 ± 0.15 2.03 ± 0.16 3.01 ± 
0.16*

* 
*** 

Total fatty 

acids 

m

g 

g-

1 

28.59 ± 1.19* 24.01 ± 1.91 28.92 ± 1.43 25.21 ± 1.48   

Cholesterol  

m

g 

k

g-

1 

712.2 ± 
20.8*

** 
590.3 ± 20.8 652.0 ± 14.5 691.1 ± 31.0 

 

α-

Tocopherol  

µ

g 

g-

1 

2.19 ± 0.08 2.73 ± 
0.14**

* 
2.15 ± 0.13 2.59 ± 

0.06*

* 
** 

β-Carotene 

µ

g 

g-

1 

0.39 ± 0.07 0.60 ± 0.06* 0.33 ± 0.09 0.59 ± 0.03 *** 

Coenzime 

Q10 

µ

g 

g-

1 

10.48 ± 0.91 14.01 ± 2.12* 8.52 ± 0.84 14.78 ± 
1.42*

**  

Carnosine 

µ

g 

g-

1 

3927.

63 
± 

262.5

4 

4654.

69 
± 521.11 

4994.

74 
± 

232.13*

** 

3316.

12 
± 

367.0

2 
* 

Anserine 

µ

g 

g-

1 

925.4

9 
± 66.91 

905.4

4 
± 149.28 

1138.

53 
± 

57.70**

* 

687.7

7 
± 98.98 *** 

Creatine 

µ

g 

g-

1 

1014.

90 
± 34.71 

1011.

29 
± 54.69 

1016.

56 
± 28.93 

1010.

64 
± 52.27 

 

Taurine 
µ

g 

347.0

9 
± 23.39 

598.2

0 
± 

115.11

** 

374.4

2 
± 17.82 

494.1

7 
± 

90.27

* 
** 
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g-

1 
 

†
Bold numbers and asterisks indicate significant differences within production systems 

or muscles.  

‡
Asterisks indicate significant interaction between production system (PS) and muscle 

(M). 

*P < 0.05; ** P < 0.01; *** P < 0.001. 
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