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Abstract   9 

The thickness of the subcutaneous fat (SFT) is a very important parameter in the ham, since 10 

determines the process the ham will be submitted. This study compares two methods to predict 11 

the SFT in slaughter line: an automatic system using an SVM model (Support Vector Machine) 12 

and a manual measurement of the fat carried out by an experienced operator, in terms of accuracy 13 

and economic benefit. These two methods were compared to the golden standard obtained by 14 

measuring SFT with a ruler in a sample of 400 hams equally distributed within each SFT class. 15 

The results show that the SFT prediction made by the SVM model achieves an accuracy of 75.3%, 16 

which represents an improvement of 5.5% compared to the manual measurement. Regarding 17 

economic benefits, SVM model can increase them between 12-17%. It can be concluded that the 18 

classification using SVM is more accurate than the one performed manually with an increase of 19 

the economic benefit for sorting. 20 

 21 

Keywords dry-cured hams; ham-fat grading; subcutaneous fat thickness; pattern recognition; 22 

sorting23 

 24 

1. Introduction 25 

The thickness of subcutaneous fat (SFT) is one of the most critical parameters in hams for several 26 

reasons. Indeed, the thickness of the fat usually determines the process to which the ham will be 27 

subjected: dry-curing, cooking or the processing of the raw meat (Bosi, Russo, & Paolo, 2004). 28 

Moreover, SFT is particularly significant in the dry-curing process, as it is one of the critical 29 

factors determining the final quality of the product (Candek-Potokar & Skrlep, 2012). The SFT 30 

and the weight mostly determine the amount of salt and other ingredients necessary for the dry-31 

curing process (Škrlep et al., 2016) and the curing time (Buscailhon, Gandemer, & Monin, 1994; 32 



2 
 

Marriott, Graham, & Claus, 1992; Toldrá & Flores, 1998; Toldrá, Flores, & Sanz, 1997). Besides, 33 

SFT measure is essential to determine the yield in the production of raw meat, which in turn 34 

determines the lean percentage of the piece. 35 

It is possible to measure SFT once the green ham has been shaped, however it would be interesting 36 

to estimate SFT measure on-line in order to classify the ham before being processed (Masferrer 37 

et al. 2018). Optimization of the industrial processes in slaughterhouses is essential to become 38 

more competitive. A correct classification of the carcass and the ham on-line can lead to a 39 

substantial increase in the slaughterhouse yield. Indeed, it reduces the number of reprocessed 40 

primal cuts and allows the linearization of the processes in the cutting plant according to the 41 

characteristics of the batches, such as SFT, weight of the ham or breed.  42 

For the online classification of the carcasses and, consequently, the hams, the carcass weight and 43 

the lean meat percentage (LMP) are usually used, as they are mandatory data that slaughterhouses 44 

must measure according to the Commission Delegated Regulation (EU) 2017/1182. Although, 45 

the results obtained using  those parameters are positively correlated with ham SFT (Gispert et 46 

al., 2007; Pulkrábek, Pavlík, & Valis, 2006), there is significant room for improvement. On the 47 

other hand, there are slaughterhouses where hams are specifically classified according to their 48 

own characteristics, such as SFT or LMP of the ham. Furthermore, some slaughterhouses use 49 

online predictors obtained from automatic or semi-automatic devices (Font i Furnols & Gispert, 50 

2009), such as AutoFom and Fat-o-Meater or manual classification of the ham  measuring the 51 

SFT employing a pattern according to ZP (Zwei-Punkte Messverfahren) measure or similar (Font-52 

i-Furnols et al., 2016). 53 

Pattern recognition systems are widely used in many fields (Bishop, 2006; Jain, Duin, & 54 

Jianchang Mao, 2000). One of the most commonly used algorithms is the Support Vector Machine 55 

(SVM). The SVM algorithm is based on finding a hyperplane of separation between different 56 

categories. These type of algorithms allow making predictions of categories, in our case the 57 

categories based on the SFT of the ham. Those algorithms could be a useful tool in the meat 58 

industry, as the amount of data collected from the entire production chain, including the farm and 59 

the slaughterhouse, can be significant. 60 

Another relevant factor is the speed of the classification process, as the automatic algorithms, in 61 

addition to replacing manual work, allow sorting at high rates compared with manual 62 

classification. The objective of this study was to compare a SVM classification algorithm with a 63 

manual classification system, commonly used in commercial slaughterhouses, in order to classify 64 

hams according to their SFT. The SVM algorithm employs a middle Gaussian core, the best model 65 

obtained in Masferrer et al. (2018), which is trained with intrinsic data of the pigs (sex, weight 66 

and breed) and data predicted by AutoFom-III (Frontmatec Smørum A/S, Herlev, Denmark) 67 
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(Brøndum, Egebo, Agerskov, & Busk, 1998). Furthermore, it is also an objective of this work to 68 

evaluate the economic effect of the accuracy on ham classification method for the meat industry. 69 

2. Material and Methods 70 

2.1 Animals and facilities 71 

A total of 400 hams were selected from pigs slaughtered in the 13th of March 2018 at a commercial 72 

slaughterhouse (MAFRICA S.A.) located in Sant Joan de Vilatorrada, Catalonia, Spain (see 73 

section 2.2). The animals selected included three different genetic lines: (Large White × 74 

Landrace) × Piétrain, (Large White x Landrace) x Duroc and (Large White x Landrace) x (Duroc 75 

x Landrace). Animals came from farms, all of them less than 200 km far from the slaughterhouse 76 

and pigs were transported using trucks in groups of between 80 and 220 animals. Once in the 77 

slaughterhouse pigs rested into lairage pens between 2 and 4 hours before being slaughtered. 78 

Pigs were slaughtered after stunning with CO2 (90%) for 2 min. After pig scalding process, pigs 79 

were totally scanned using the ultrasound AutoFom-III system. Then pigs were eviscerated and 80 

automatically split according to standard commercial procedures using a robot. After that, the two 81 

half-carcasses were weighted and an experienced operator visually determined the sex of the pig 82 

(female, entire male or castrated male) and classified the half carcass as described in Masferrer et 83 

al. (2018), in order to normalize the classification. The left half carcass was always used to avoid 84 

possible errors produced by the robot cut deviation. For the Manual Classification (HC_M), SFT 85 

was measured with a ruler according to minimal fat depth over muscle gluteus medius. The 86 

following SFT thresholds were used: class HC1: < 9 mm; class HC2: between 9-12 mm; class 87 

HC3: between 13-19 mm and class HC4: > 19 mm. The thresholds used were determined by 88 

commercial requirements of the slaughterhouse where this study was carried out. HC_M was 89 

performed by one experienced operator who usually does the classification in the line.  90 

With the measures obtained with Autofom III and including information about sex, breed and 91 

warm carcass weight (see Table.1), the ham class predicted by SVM algorithm (HC_SVM) was 92 

obtained (Masferrer et al, 2018). 93 

Table 1. The eleven predictors used as the input of automatic classification system (SVM) 94 

Predictor Description 

Autofom III 

LMP Lean Meat Percentage 

F34 
According to the official formula, the subcutaneous fat thickness at 60 mm in the mid-line 

between the 3rd and the 4th last rib. (mm) 

M34 
According to the official formula, muscle thickness at 60 mm in the mid-line between the 3rd and 

the 4th last rib. (mm) 

F_GM1 
The minimum subcutaneous fat plus skin thickness measured with a ruler over the muscle 

Gluteus medius. (mm) 
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F_GM2 
The thickness of the subcutaneous fat plus skin measured with a ruler, perpendicularly to the 

skin, at the cranial part of muscle Gluteus medius. (mm) 

WGT_H Total weight of the ham. (kg) 

WGT_HWB Ham's weight without bone. (kg) 

WGT_HLM Total weight of the lean meat of the ham. (kg) 

Production line 

SEX Sex of animals (females, entire males and castrated males) 

BREED 
Crossbreed ((Large White x Landrace) x Pietrain, , (Large White x Landrace) x Duroc, and 

(Large White x Landrace) x (Duroc x Landrace)) 

WGT Warm carcass weight (kg) 

 95 

2.2 Ham shaping 96 

 Once the carcasses were pre-trimmed in the cutting room, they were refrigerated for 24 hours in 97 

a chilling room. When carcasses reached approximately 4ºC and the ham was extracted and 98 

processed to give the final shape and classified according to customer specifications (weight and 99 

SFT). Final shape process consisted of removing the tail, rounding off the bottom of the ham and 100 

lifting the leg (Fig. 1).  101 

 102 

Fig. 1. Ham after final shape process 103 

After the final shape process, 400 hams, one from each carcass were selected according to the 104 

SFT measured at that moment. To obtain this parameter an operator employed a ruler to measure 105 

the minimal SFT of the ham located in the central part of the muscle gluteus medius, perpendicular 106 

to the skin (Golden Standard measure), as shown in Fig.2. Those 400 hams were equally 107 

distributed in four SFT classes of 100 samples: HC1: < 9 mm; class HC2: between 9-12 mm; 108 

class HC3: between 13-19 mm and class HC4: > 19 mm). Hams were randomly measured until 109 

100 samples were obtained for each category. When a class reaches 100 samples, no more hams 110 

were selected for that class. The measures obtained using this methodology were necessary to 111 

create the Ham Classification used as Golden Standard, (HC_GS) in order to assess the accuracy 112 

of the prediction of HC_M and HC_SVM classifications.   113 
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 114 

Fig. 2. Representation of the section and the ruler used to measure the minimal SFT of the ham located in the muscle 115 

gluteus medius. 116 

The characteristics of the pigs included in this work are presented in Table 2. It shows the mean 117 

and the standard deviation of the warm carcass weight (kg) and the fat thickness (mm) of the 118 

evaluated carcasses according to breed and sex. Fat thickness parameter is given by the ultrasound 119 

AutoFom-III system and it corresponds to the parameter F34, which is described as the fat 120 

thickness at 60 mm in the mid-line between the 3rd and the 4th last ribs. 121 

Table 2. Warm carcass weight and fat thickness at 60 mm in the mid-line between the 3rd and the 4th last rib of 400 122 

carcasses according to breed and sex. 123 

BREED n 
WEIGHT  

(mean ± s.d; kg) 

FAT THICKNESS  

(mean ± s.d; mm) 

(Large White × Landrace) × Piétrain 218 89.95 ± 8.12 15.13 ± 4.38 

(Large White x Landrace) x Duroc 139 93.19 ± 9.46 23.71 ± 5.11 

(Large White x Landrace) x (Duroc x Landrace) 43 94.48 ± 8.68 22.11 ± 9.36 

SEX    

Female 205 91.95 ±8.88 16.25 ± 4.10 

Castrated males 150 92.32 ± 9.54 24.49 ± 6.49 

Entire males 45 87.23 ± 3.31 11.99 ± 2.14 

 124 

2.3 Statistical analysis 125 

The objective of this statistical evaluation was to compare the classification obtained with the 126 

manual classification (HC_M) and the automatic classification performed by the SVM, 127 

respectively. SVM refers to Gaussian Medium algorithm (HC_SVM), the best model obtained in 128 

Masferrer et al. (2018), to classify hams according to SFT. In order to evaluate the prediction of 129 

the ham class, the SFT of the finished hams was specifically measured for this study, in order to 130 

obtain the Golden Standard Ham Class (HC_GS) as described in the previous section.  131 
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To compare the results obtained with HC_M and HC_SVM a Cohen's kappa coefficient (k-132 

values) was used to compare the classification performed by HC_M and HC_SVM methods and 133 

to compare HC_M and HC_SVM classifications with HC_GS, respectively. The guidelines 134 

developed by Landis & Koch (1977) were used to interpret the k-values: poor agreement (k < 135 

0.00), soft agreement (k = 0.00-0.20), fair agreement (k = 0.21-0.40), moderate agreement (k = 136 

0.41-0.60), substantial agreement (k = 0.61-0.80) and almost perfect agreement (k = 0.81-1).  137 

The means and variances of SFT measured by HC_GS according to the category assigned by the 138 

classification systems (HC_M and HC_SVM) were calculated. T-Test and Bartlett's Test were 139 

carried out to assess the mean and the homogeneity of variances, respectively. The significance 140 

level was established at p<0.05. Descriptive data is presented with means of mm and the standard 141 

error (mean±SE). 142 

Moreover, the accuracy of the prediction of HC_M and HC_SVM according with the results of 143 

HC_GS was calculated. The accuracy of the prediction is defined as the number of correct 144 

predictions divided by the number of total predictions. As a result, two confusion matrices were 145 

constructed using a cross-table with the real values (HC_GS) obtained by the "golden standard", 146 

and those provided by the operator (HC_M) and by the algorithm (HC_SVM), respectively. The 147 

accuracy was also calculated by breed and sex. 148 

In order to obtain additional information (i.e. assess if better results could be obtained using 149 

Golden Standard measures to train SVM, instead of using measures obtained with the manual 150 

measurement on-line), the SVM was trained with the measures obtained to create the HC_GS. 151 

The same predictors were used (see Table 1) but using HC_GS as an independent variable 152 

(response). Moreover, the same SVM Medium Gaussian was used, and the training and 153 

verification phase was a 5-fold Cross-Validation.  154 

MATLAB, Statistics and Machine Learning Toolbox™ (Matlab R2018a; The MathWorks, Inc, 155 

1988-2019) have been used to develop and test all the models and algorithms. 156 

Moreover, the economic impact using those classification methods on the slaughterhouse was 157 

analysed and compared between the HC_M and HC_SVM. This slaughterhouse slaughters 158 

approximately 500,000 pigs/year (8,000-10,000 pigs/week). The distribution of ham classes 159 

according to sales data of hams of 2017 was 54% as HC1, 28% as HC2, 13% as HC3 and 5% as 160 

HC4. The economic data taken as reference correspond to the slaughterhouse where this study 161 

was carried out (MAFRICA S.A.). The economic profit according to increase in price due ham 162 

classification has been taken into account. This increase in prices was estimated reflecting an 163 

optimistic and pessimistic increased price according to slaughterhouse commercial data. 164 

Hams in category HC1 have no increase in price (i.e. +0 €/kg), hams in category HC2 have an 165 
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increase of price between +0.03 and +0.10 €/kg, hams in category HC3 have an increase of price 166 

between +0.12 and +0.20 €/kg and hams in category HC4 have an increase of price between +0.15 167 

and 0.30 €/kg. To estimate the weight of the hams, the average of the warm weight of the carcasses 168 

of the population of 2017 (i.e. 87 kg) was used, taking into account that the ham represents 169 

between 28-30% of the carcass (Cisneros, Ellis, McKeith, McCaw, & Fernando, 1996; Gispert et 170 

al., 2007). 171 

An increase of economic value was only applied when the ham was correctly classified by the 172 

predictors. Moreover, when a ham was misclassified, it was considered that the cost of reprocess 173 

or reclassify had a similar cost to the increase of price that could be assigned. 174 

3. Results and discussion 175 

3.1 Comparisons of classification methods 176 

The confusion matrices plot as a cross-table are shown in Fig. 3, where the rows correspond to 177 

the predicted class (HC_M and HC_SVM, respectively) and the columns correspond to the 178 

HC_GS class, that is, the Golden Standard. The diagonal cells correspond to samples that are 179 

correctly classified. The off-diagonal cells correspond to incorrectly classified samples. Both the 180 

number of samples and the percentage of the total number of samples are shown in each cell. The 181 

column on the right of the matrix shows the percentages of all the samples predicted to belong to 182 

each class that are correctly (positive predictive value) and incorrectly (false discovery rate) 183 

classified. The row at the bottom shows the percentages of all the samples belonging to each class 184 

that are correctly (true positive rate) and incorrectly (false negative rate) classified. The cell in the 185 

bottom right of the matrix shows the overall accuracy. 186 

 187 
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Fig3 Confusion matrices of Manual Ham Classification (HC_M) and Support Vector Machine Ham Classification 188 

(medium Gaussian kernel) (HC_SVM) compared with Golden Standard Ham classification (HC_GS). The results are 189 

given in number of observations and in percentage of accuracy. 190 

The accuracy of the prediction of HC_SVM was better than the HC_M (75.3% and 69.8%, 191 

respectively). Indeed, HC_SVM obtained better results in all classes except for HC1, where the 192 

HC_M obtained an 88% of correct predictions compared to the HC_SVM that obtained an 82%. 193 

This exception could be related to some Autofom III parameter used in the SVM algorithm. 194 

Specifically, the parameter F_GM1 (The minimum subcutaneous fat thickness over the muscle 195 

Gluteus medius (mm)) seems to be difficult to measure by AutoFom when SFT is very low. 196 

Indeed, Fig. 4 shows that hams with SFT lower than 6 mm according to HC_GS are overestimated 197 

by the F_GM1 parameter, (only eight hams have values below 6 mm of subcutaneous fat from 32 198 

obtained in HC_GS). Moreover, Fig. 4 shows that F_GM1 estimates the central values of SFT 199 

with more precision than extreme values, especially underestimate higher SFT values. 200 

 201 

Fig.4. Correlation between Golden Standard measure (mm of subcutaneous fat thickness of the ham after final 202 

shape process) and F-GM1 Autofom III parameter (mm of the minimum subcutaneous fat thickness over the muscle 203 

Gluteus medius) 204 

Concerning the remaining HC2, HC3, and HC4 classes HC_SVM provides better predictions than 205 

HC_M improving the accuracy of prediction of HC3 and HC4 categories by a 4% and surprisingly 206 

by 20% in HC2. These results suggest that the operator tended to overestimate the class HC2, 207 

with a 9.8% of hams classified in HC3. This tendency is also shown in Fig. 5 where the mean of 208 

the SFT estimated by HC_MC measures is higher than the mean of the SFT estimated by 209 

HC_SVM measures (12.34 ± 0.65 HC_M2 and 10.58 ± 0.25 in HC_SVM2; t-test p=0.007). 210 

Moreover, it seems that the HC_M classification presented higher standard error within their 211 

group compared to HC_SVM classification (p= 0.000) (see Fig. 5). Indeed, the HC_M tend to 212 

overestimate (16.9%) in more cases than underestimate (13.6%) while the HC_SVM tend to 213 
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overestimate as well as underestimate (12.5 and 12.6%, respectively). These results suggest that 214 

measurement methods could explain those differences. A possible explanation is related to fat 215 

state, when the operator measured SFT the carcass was hot and was not compacted as it was 216 

subjected vertically. Maybe those differences could be the reason for observing more deviation 217 

in HC_M measures (see Fig.5). While SFT was measured by Autofom the carcass, even hot, was 218 

compacted because this measure was recorded with the carcass with an horizontal position 219 

supported on a surface. Moreover, when the Golden Standard measure was taken the carcass had 220 

been cooling for 24 hours and the fat was compacted because of low temperatures. Differences 221 

between HC_GS and the two other classification methodologies, HC_M and HC_SVM, could 222 

also be related to fatty acid profile. According to St. John et al. (1987) and Warnants, Van Oeckel, 223 

& Boucqué (1996), as more content of unsaturated fatty acids more decreases fat firmness and is 224 

softer than fat with more content of saturated fatty acids which may affect the thickness of the fat. 225 

Although less fatty hams tend to be more unsaturated (Ruiz-Carrascal, Ventanas, Cava, Andrés, 226 

& García, 2000), contrary to what would be expected, fewer differences were found between 227 

HC_M and HC_SVM regarding less fat categories, i.e. HC1 and HC2. This result suggests that 228 

the effect on the softness of the fat, due to saturated fatty acid content, is less appreciable in less 229 

fat categories because of the lower content of fat. 230 

Comparing the results showed on the right column of both matrices suggest that predictions of 231 

hams classified in categories HC3 and HC4 obtain better results in HC_SVM than in HC_M 232 

(64.5% vs. 53.2% in HC3 and 91.0% vs. 82.8% in HC4, respectively). While the results of the 233 

predictions of HC1 and HC2 are similar between HC_M and HC_SVM. These results have an 234 

impact on the economic benefits, since the categories HC3 and HC4 have a higher economic 235 

value than the other categories. These hams are intended for dry-curing processes and it is 236 

especially important to increase the percentage of true positives.  237 

Comparing the incorrectly predicted samples between HC_M and HC_SVM is interesting to 238 

observe the dispersion of those incorrected samples. While the HC_SVM had the 0.6% of the 239 

incorrect samples not distributed to neighbouring classes, this result increased to 3.8% in the case 240 

of the HC_M. Indeed, this dispersion is also showed in Fig.5 where the standard error is presented 241 

for each class in both ham classifications (HC_M and HC_SVM). These cases can lead to 242 

unexpected production line problems that force the ham to be reprocessed offline, or being 243 

processed inefficiently. Usually, a certain percentage of hams are expected to be destined to 244 

neighbouring categories, but they are processed in a similar way, for example, HC3 or HC4 hams 245 

are usually destined for dry-curing processes while HC1 or HC2 hams are usually deboned to 246 

produce raw meat. 247 

In addition to validate the results presented according to accuracy and confusion matrix a Cohen's 248 
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kappa was used to take into account the possibility that the classification is produced by chance. 249 

Comparing the classification carried out by HC_M and HC_SVM, a moderate almost substantial 250 

agreement was found (k= 0.596). Although it is a good result, the agreement between the two 251 

classifications methods could be expected to be slightly higher, as the HC_SVM is a method 252 

created to emulate HC_M. Perhaps this result could be explained due to the number of samples 253 

used. In this study only 400 hams were analysed due to technical reasons (specifically to obtain 254 

the Golden Standard measures). On the other hand, the SVM algorithm used in the present study 255 

(HC_SVM) was trained with more than 30000 obtained samples, being more robust.  256 

Moreover, when comparing both classification methods with the HC_GS, a substantial agreement 257 

(k = 0.670) was found for the HC_SVM method and a moderate almost substantial agreement (k 258 

= 0.597) was obtained for the HC_M. According to these results, it seems that the correct 259 

classifications with HC_SVM were slightly higher than with HC_M. Moreover, Fig.5 shows the 260 

mean and standard error in mm of SFT of the hams over the muscle gluteus medius calculated by 261 

the Golden Standard method for each class (HC1, HC2, HC3 and HC4) and for both methods 262 

(HC_M and HC_SVM).  Indeed, this figure shows that the standard error of the measures obtained 263 

by HC_SVM was lower than the standard error of the values obtained by HC_M. And the results 264 

of Bartlett's test show a significant difference on variance between methods in HC2 and HC3 (p= 265 

0.000 and p= 0.038, respectively).  266 

 267 

Fig.5 Subcutaneous fat thickness of hams over muscle gluteus medius (mean ± SE mm) measured by HC_GS according 268 

to the category assigned by the classification system HC_M (left columns) and HC_SVM (right columns). At the bottom 269 

of columns the p-value of two-samples T-test between HC_M and H_SVM in each ham class. 270 
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Other factors may explain why HC_SVM obtained better results than HC_M. One of them is the 271 

probably operator fatigue, according to Font-i-Furnols et al. (2016) and Olsen et al. (2007), 272 

process repeatability or overexposure to a same class tends to lead to errors in classification (e.g. 273 

after classifying as HC4 a large number of hams, hams with slightly less fat tend to be classified 274 

into lower categories). Moreover, the cutting process of the carcasses usually obtain asymmetries 275 

in the two half-carcasses hindering the process of classification (Nissen et al., 2006). These factors 276 

could also affect the HC_GS measures. However, the HC_M measures were obtained on-line, 277 

with the speed of the production chain, while HC_GS was done out-line, without any speed chain.  278 

These factors suggest that using automatic algorithms with all information available and with a 279 

proper training phase it is possible to obtain better predictions of SFT of hams and therefore 280 

improve its classification.  281 

Table 3. Percentage of correct, overestimate and underestimate classifications, between Manual prediction (HC_M) 282 

and automatic system (HC_SVM) from 400 hams according to breed and sex. 283 

 HC_M HC_SVM 

 Correcta Overb Underc Correcta Overb Underc 

SEX 

Female 63% 23% 14% 71% 15% 15% 

Castrated males 73% 13% 15% 77% 12% 11% 

Entire males 91% 2% 7% 89% 2% 9% 

BREED 

(Large White x Landrace) x Duroc 69% 17% 14% 78% 14% 9% 

(Large White x Landrace) x (Duroc x 

Landrace) 
67% 19% 14% 79% 12% 9% 

(Large White × Landrace) × Pietrain  71% 16% 13% 73% 11% 16% 
a Correct, b Over Overestimate, c Under Underestimate  284 

Table 3 shows the results of the classification of the two assessed methods. The results are shown 285 

in percentage and distributed according to successes, overestimated and underestimated 286 

categories. Those classifications are showed according to sex, at the top of the table, and 287 

according to breed, at the bottom of the table. 288 

The results according to sex show that the HC_SVM obtained better results and the number of 289 

overestimate measures of castrated males and females was lower than in HC_M. Moreover, in 290 

both methods, the percentage of success in entire males was very high with a percentage of 91% 291 

in the case of HC_M and 89% in the case of HC_SVM. Those results suggest that better 292 

predictions are obtained due to entire males have leaner hams with low deviation of the SFT (see 293 

Table 2). Consequently, they were easy to predict as HC1. 294 

Instead, regarding breed, HC_SVM obtained better results of overestimation and underestimation 295 

in all breeds except for crossbreed Pietrain underestimation, compared to HC_M. Therefore, 296 

correct predictions were similar between the two methods in the case of (Large White × Landrace) 297 

× Pietrain with 71% and 73% of correct predictions of HC_M and HC_SVM, respectively. 298 
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Moreover, HC_SVM obtained better results when crossbreed included a Duroc line, compared to 299 

HC_M. Indeed correct predictions were a 9% and a 12% higher regarding the (Large White x 300 

Landrace) x Duroc and the (Large White x Landrace) x (Duroc x Landrace), respectively.  301 

These results suggest that the HC_SVM better predicted ham classification than HC_M, 302 

especially in the fattest carcasses which mainly included carcasses from females, castrated males 303 

and Duroc crosses according to Gispert et al. (2010) and Wood, Enser, Whittington, Moncrieff, 304 

& Kempster (1989). This makes sense since HC_SVM improves mainly in the fatter groups of 305 

classification (HC2 to HC4). In contrast, the results obtained from the leaner carcasses are similar 306 

between HC_SVM and HC_M, which mainly included entire males and Pietrain crosses. Those 307 

results are especially relevant from an economic point of view, as the fattest hams are the ones 308 

that can be more valued for drying purposes. 309 

3.2 Re-training of the algorithm with HC_GS 310 

To assess whether it was possible to improve the HC_SVM algorithm, the SVM algorithm was 311 

re-trained using HC_GS as a response variable. As a result of this test, a model (HC_SVM2) was 312 

obtained with an accuracy of 75% and a coefficient k, of 0.67 (substantial agreement) was 313 

obtained. The results obtained in the HC_SVM2 model do not improve the percentage of success 314 

obtained in the classification of HC_SVM obtained in this study. This result suggests that the 315 

original SVM algorithm obtained by Masferrer et al (2018) was as good as the re-trained model 316 

HC_SVM2 probable because a large amount of data was used in HC_SVM. Although HC_SVM2 317 

did not improve on the previous ones, it might be interesting for future work to explore other 318 

methods using HC_GS as a continuous variable. 319 

3.3 Slaughterhouse profit 320 

The impact of the correct hams classification is shown in Table 3. This table compares the 321 

potential benefits of a commercial slaughterhouse in 2017 classifying hams with a manual 322 

classification (HC_M) and with an automatic classification using an SVM model (HC_SVM). In 323 

order to quantify this potential benefit, an increase in price according to ham category was 324 

assigned as described in section 2.3. 325 

Table 3. Comparison of the potential benefits of a year between classifying hams with the manual classification (HC_M) 326 

and with the automatic classification using an SVM model (HC_SVM). Data showed in the table is obtained from 2017 327 

and belongs to a commercial slaughterhouse. 328 

HC 
 Categories 

(%) Pigs 

HC_M 

Correct 

HC_M Profit 

increase 

HC_SVM 

Correct HC_SVM Profit increase 

HC1 54 269400 237072 0 € 220908 0 € 

HC2 28 138850 55540 42.038-140.127 € 83310 63.057-210.191€ 
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HC3 13 66750 49395 149.548-249.247 € 52065 157.632-262.720 € 

HC4 5 25000 19250 72.852-145.703 € 20250 76.636-153.272 € 

Total 100 500000 361257 264.438-535.078€ 376533 297.325-626.183  € 

 329 

As expected, as showed in Table 3 better economic results are obtained using HC_SVM than 330 

using HC_M. Indeed, there is a difference between 30.000-90.000€, which represents an increase 331 

between 12-17% of the benefits. 332 

Analysing these results according to HC, the HC_SVM obtained a potential benefit of 5% higher 333 

than using the HC_M in categories HC3 and HC4. Moreover, regarding the hams classified in 334 

HC2 category this difference was more than 50%. As expected, these results are due to the 335 

difference in accuracy of prediction in HC2 category between the two classification methods, 336 

being the HC_SVM better than the HC_M, but also because represents the 28% of all hams.   337 

Furthermore, although it has not been taken into account in the previous economic analysis, the 338 

use of the SVM model allows to classify without an operator, saving the costs of production line 339 

personnel. 340 

4. Conclusions 341 

The results of the present study suggest that the use of automatic pattern recognition algorithms, 342 

and in this particular case, the SVM algorithm improves the prediction of the SFT measure and, 343 

therefore, the classification of the ham compared to HC_M. In addition, this method could allow 344 

the replacement of an operator in the production line, saving personnel costs, allowing faster chain 345 

speeds and reducing errors due to the fatigue of the operator. Moreover, it could improve 346 

subsequent processes in the cutting line, reducing the number of reprocessed hams and 347 

homogenizing batches for dry-curing processes. Consequently, this automatic HC_SVM method 348 

is more accurate and economically more beneficial for the meat industry than the manual HC_M 349 

method. 350 
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